Impact of Heat Stress on the Balance between Oxidative Markers and the Antioxidant Defence System in the Plasma of Mid-Lactating Modicana Dairy Cows
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Management and Treatment
2.2. Environmental Data
2.3. Milk Performance and Analysis
2.4. Blood Sample Collection and Analysis
2.5. Statistical Analysis
3. Results
3.1. Environmental Conditions
3.2. Milk Parameters
3.3. Haematology, Biomarkers of Energy, Muscle Body Mass, and Liver Function
3.4. Oxidative Biomarkers and Antioxidant Parameters in Plasma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, B.; Singh, G.; Wankar, A.; Dutta, N.; Chaturvedi, V.B.; Verma, M.R. Effect of Simulated Heat Stress on Digestibility, Methane Emission and Metabolic Adaptability in Crossbred Cattle. Asian Australas. J. Anim. Sci. 2016, 29, 1585–1592. [Google Scholar] [CrossRef]
- Stillman, J.H. Heat Waves, the New Normal: Summertime Temperature Extremes Will Impact Animals, Ecosystems, and Human Communities. Physiology 2019, 34, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, P.J.; Oosthuizen, M.K.; Mitchell, C.; Blount, J.D.; Bennett, N.C. Heat and dehydration induced oxidative damage and antioxidant defenses following incubator heat stress and a simulated heat wave in wild caught four-striped field mice Rhabdomys dilectus. PLoS ONE 2020, 15, e0242279. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-3/Europe_braces_for_sweltering_July (accessed on 23 May 2024).
- Kadzere, C.T.; Murphy, M.R.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Meneses, J.A.M.; de Sá, O.A.A.L.; Coelho, C.F.; Pereira, R.N.; Batista, E.D.; Ladeira, M.M.; Casagrande, D.R.; Gionbelli, M.P. Effect of Heat Stress on Ingestive, Digestive, Ruminal and Physiological Parameters of Nellore Cattle Feeding Low or High-Energy Diets. Livest. Sci. 2021, 252, 104676. [Google Scholar] [CrossRef]
- Kibler, H.H. Thermal Effects of Various Temperature-Humidity Combinations on Holstein Cattle as Measured by Eight Physiological Responses. Res. Bull. Mo. Agric. Exp. Stn. 1964, 862, 1–42. [Google Scholar]
- Tejaswi, V.; Balachander, B.; Samad, H.A.; Sarkar, M.; Maurya, V.P.; Singh, G. Assessment of heat stress induced alterations in polymorphonuclear (PNM) cell activity in native and crossbred cows. J. Appl. Anim. Res. 2020, 48, 549–552. [Google Scholar] [CrossRef]
- De Almeida, A.J.P.O.; De Oliveira, J.C.P.L.; Da Silva Pontes, L.V.; De Souza Júnior, J.F.; Gonçalves, T.A.F.; Dantas, S.H.; De Almeida Feitosa, M.S.; Silva, A.O.; De Medeiros, I.A. R.O.S. Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. Oxidative Med. Cell. Longev. 2022, 2022, 1225578. [Google Scholar] [CrossRef] [PubMed]
- Slimen, I.B.; Najar, T.; Grham, A.; Dabbebi, H.; Ben Mrad, M.; Abdrabbah, M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int. J. Hyperth. 2014, 30, 513–523. [Google Scholar] [CrossRef]
- Giannone, C.; Bovo, M.; Ceccarelli, M.; Torreggiani, D.; Tassinari, P. Review of the heat stress-induced responses in dairy cattle. Animals 2023, 13, 3451. [Google Scholar] [CrossRef]
- Alberti, A.; Bolognini, L.; Macciantrelli, D.; Carratelli, M. The radical cation of N,N-diethyl-para-phenyldiamine: A possible indicator of oxidative stress in biological samples. Res. Chem. Intermed. 2000, 26, 253–267. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Turk, R.; Podpečan, O.; Mrkun, J.; Flegar-Meštrić, Z.; Perkov, S.; Zrimšek, P. The effect of seasonal thermal stress on lipid mobilisation, antioxidant status and reproductive performance in dairy cows. Reprod. Domest. Anim. 2015, 50, 595–603. [Google Scholar] [CrossRef]
- Cristani, M.; Speciale, A.; Saija, A.; Gangemi, S.; Minciullo, P.L.; Cimino, F. Circulating advanced oxidation protein products as oxidative stress biomarkers and progression mediators in pathological conditions related to inflammation and immune dysregulation. Curr. Med. Chem. 2016, 23, 3862–3882. [Google Scholar] [CrossRef] [PubMed]
- Baba, S.P.; Bhatnagar, A. Role of thiols in oxidative stress. Curr. Opin. Toxicol. 2018, 7, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Young, A.J.; Lowe, G.L. Carotenoids-Antioxidant Properties. Antioxidants 2018, 7, 28. [Google Scholar] [CrossRef]
- Di Martino, A.; Trusova, M.E.; Postnikov, P.S.; Sedlarik, V. Enhancement of the antioxidant activity and stability of β-carotene using amphiphilic chitosan/nucleic acid polyplexes. Int. J. Biol. Macromol. 2018, 117, 773–780. [Google Scholar] [CrossRef]
- Ralla, T.; Kluenter, A.M.; Litta, G.; Müller, M.A.; Bonrath, W.; Schäfer, C. Over 100 years of vitamin E: An overview from synthesis and formulation to application in animal nutrition. J. Anim. Physiol. Anim. Nutr. 2024, 108, 646–663. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J.; Imtiwati; Kumar, R. Impact of heat stress on health and performance of dairy animals: A review. Vet. World 2016, 9, 260–268. [Google Scholar] [CrossRef]
- Grelet, C.; Vanden Dries, V.; Leblois, J.; Wavreille, J.; Mirabito, L.; Soyeurt, H.; Franceschini, S.; Gengler, N.; Brostaux, Y.; Happy Moo Consortium; Dehareng, F. Identification of chronic stress biomarkers in dairy cows. Animal 2022, 16, 100502. [Google Scholar] [CrossRef]
- Valenti, B.; Criscione, A.; Moltisanti, V.; Bordonaro, S.; De Angelis, A.; Marletta, D.; Di Paola, F.; Avondo, M. Genetic polymorphisms at candidate genes affecting fat content and fatty acid composition in Modicana cows: Effects on milk production traits in different feeding systems. Animal 2019, 13, 1332–1340. [Google Scholar] [CrossRef] [PubMed]
- Salzano, A.; Di Meo, M.C.; D’Onofrio, N.; Bifulco, G.; Cotticelli, A.; Licitra, F.; Iraci Fuintino, A.; Cascone, G.; Balestrieri, M.L.; Varricchio, E.; et al. Breed and feeding system impact the bioactive anti-inflammatory properties of bovine milk. Int. J. Mol. Sci. 2022, 23, 11088. [Google Scholar] [CrossRef]
- NRC. A Guide to Environmental Research on Animals National Academy of Sciences; NRC: Washington, DC, USA, 1971. [Google Scholar]
- Lopreiato, V.; Ghaffari, M.H.; Cattaneo, L.; Ferronato, G.; Alharthi, A.S.; Piccioli-Cappelli, F.; Loor, J.J.; Trevisi, E.; Minuti, A. Suitability of rumination time during the first week after calving for detecting metabolic status and lactation performance in simmental dairy cows: A cluster-analytic approach. Ital. J. Anim. Sci. 2021, 20, 1909–1923. [Google Scholar] [CrossRef]
- Bionaz, M.; Trevisi, E.; Calamari, L.; Librandi, F.; Ferrari, A.; Bertoni, G. Plasma paraoxonase, health, inflammatory conditions, and liver function in transition dairy cows. J. Dairy Sci. 2007, 90, 1740–1750. [Google Scholar] [CrossRef] [PubMed]
- Ferre’, N.; Camps, J.; Prats, E.; Vilella, E.; Paul, A.; Figuera, L.; Joven, J. Serum paraoxonase activity: A new additional test for the improved evaluation of chronic liver damage. Clin. Chem. 2002, 48, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Hanasand, M.; Omdal, R.; Norheim, K.B.; Gøransson, L.G.; Brede, C.; Jonsson, G. Improved detection of advanced oxidation protein products in plasma. Clin. Chim. Acta 2012, 413, 901–906. [Google Scholar] [CrossRef] [PubMed]
- West, J.W. Effects of Heat-Stress on Production in Dairy Cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef] [PubMed]
- Bohmanova, J.; Misztal, I.; Cole, J.B. Temperature-humidity indices as indicators of milk production losses due to heat stress. J. Dairy Sci. 2007, 90, 1947–1956. [Google Scholar] [CrossRef] [PubMed]
- Spiers, D.E.; Spain, J.N.; Sampson, J.D.; Rhoads, R.P. Use of physiological parameters to predict milk yield and feed intake in heat-stressed dairy cows. J. Therm. Biol. 2004, 29, 759–764. [Google Scholar] [CrossRef]
- El-Tarabany, A.; Mostafa, M.; Mohamed, A. Effect of dietary olive cake on reproductive and physiological traits of native pregnant ewes. Arab. J. Nucl. Sci. Appl. 2018, 51, 135–142. [Google Scholar] [CrossRef]
- Bernabucci, U.; Biffani, S.; Buggiotti, L.; Vitali, A.; Lacetera, N.; Nardone, A. The effects of heat stress in Italian Holstein dairy cattle. J. Dairy Sci. 2014, 97, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.L.; Wall, E. Dairy cattle in a temperate climate: The effects of weather on milk yield and composition depend on management. Animal 2015, 9, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ezernieks, V.; Wang, J.; Arachchillage, N.W.; Garner, J.B.; Wales, W.J.; Cocks, B.G.; Rochfort, S. Heat stress in dairy cattle alters lipid composition of milk. Sci. Rep. 2017, 7, 961. [Google Scholar] [CrossRef] [PubMed]
- Nasr, M.A.F. The impact of crossbreeding Egyptian and Italian buffalo on milk yield and composition under subtropical environmental conditions. J. Dairy Res. 2016, 83, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Y.; Li, R.; Wu, Y.; Zhang, D.; Xu, H.; Zhang, Y.; Qi, Z. Effect of seasonal thermal stress on oxidative status, immune response and stress hormones of lactating dairy cows. Anim. Nutr. 2021, 7, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Lambertz, C.; Sanker, C.; Gauly, M. Climatic effects on milk production traits and somatic cell score in lactating Holstein-Friesian cows in different housing systems. J. Dairy Sci. 2014, 97, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.J.; Weng, X.G.; Wang, J.F.; Zhou, D.; Zhang, W.; Zhai, C.C.; Hou, Y.X.; Zhu, Y.H. Effects of temperature-humidity index and chromium supplementation on antioxidant capacity, heat shock protein 72, and cytokine responses of lactating cows. J. Anim. Sci. 2014, 92, 3026–3034. [Google Scholar] [CrossRef] [PubMed]
- Bouraoui, R.; Lahmar, M.; Majdoub, A.; Djemali, M.; Belyea, R. The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res. 2002, 51, 479–491. [Google Scholar] [CrossRef]
- Pasciu, V.; Nieddu, M.; Sotgiu, F.D.; Baralla, E.; Berlinguer, F. An overview on assay methods to quantify ROS and enzymatic antioxidants in erythrocytes and spermatozoa of small domestic ruminants. Animals 2023, 13, 2300. [Google Scholar] [CrossRef]
- Alberghina, D.; Giannetto, C.; Vazzana, I.; Ferrantelli, V.; Piccione, G. Reference intervals for total protein concentration, serum protein fractions, and albumin/globulin ratios in clinically healthy dairy cows. J. Vet. Diagn. Investig. 2011, 23, 111–114. [Google Scholar] [CrossRef]
- Da Silva, R.G.; Da Costa, M.J.; Sobrinho, A.G. Influence of hot environments on some blood variables of sheep. Int. J. Biometeorol. 1992, 36, 223–225. [Google Scholar] [CrossRef]
- Alhidary, I.A.; Shini, S.; Al Jassim, R.A.M.; Gaughan, J.B. Effect of various doses of injected selenium on performance and physiological responses of sheep to heat load. J. Anim. Sci. 2012, 90, 2988–2994. [Google Scholar] [CrossRef] [PubMed]
- Roland, L.; Drillich, M.; Iwersen, M. Hematology as a diagnostic tool in bovine medicine. J. Vet. Diagn. Investig. 2014, 26, 592–598. [Google Scholar] [CrossRef]
- Oehler, R.; Pusch, E.; Zellner, M.; Dungel, P.; Hergovics, N.; Homoncik, M.; Eliasen, M.M.; Brabec, M.; Roth, E. Cell type-specific variations in the induction of Hsp70 in human leukocytes by feverlike whole body hyperthermia. Cell Stress Chaperones 2001, 6, 306–315. [Google Scholar] [CrossRef]
- Lamp, O.; Derno, M.; Otten, W.; Mielenz, M.; Nürnberg, G.; Kuhla, B. Metabolic heat stress adaption in transition cows: Differences in macronutrient oxidation between late-gestating and early-lactating German Holstein dairy cows. PLoS ONE 2015, 10, e0125264. [Google Scholar] [CrossRef] [PubMed]
- Akbar, H.; Grala, T.M.; Vailati Riboni, M.; Cardoso, F.C.; Verkerk, G.; McGowan, J.; Macdonald, K.; Webster, J.; Schutz, K.; Meier, S.; et al. Body condition score at calving affects systemic and hepatic transcriptome indicators of inflammation and nutrient metabolism in grazing dairy cows. J. Dairy Sci. 2015, 98, 1019–1032. [Google Scholar] [CrossRef]
- Giurgiu, O.V.; Berean, D.I.; Ionescu, A.; Ciupe, M.S.; Cimpean, C.R.; Radu, C.I.; Bitica, D.G.; Bogdan, S.; Bogdan, M.L. The effect of oral administration of zeolite on the energy metabolism and reproductive health of Romanian spotted breed in advanced gestation and postpartum period. Vet. Anim. Sci. 2023, 23, 100333. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, M.L.; Rhoads, R.P.; VanBaale, M.J.; Collier, R.J.; Sanders, S.R.; Weber, W.J.; Crooker, B.A.; Baumgard, L.H. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci. 2009, 92, 1986–1997. [Google Scholar] [CrossRef]
- Wheelock, J.B.; Rhoads, R.P.; VanBaale, M.J.; Sanders, S.R.; Baumgard, L.H. Effects of heat stress on energetic metabolism in lactating Holstein cows. J. Dairy Sci. 2010, 93, 644–655. [Google Scholar] [CrossRef]
- Schönfeld, P.; Wojtczak, L. Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic. Biol. Med. 2008, 45, 231–241. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Celi, P.; Leury, B.J.; Clarke, I.J.; Dunshea, F.R. Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep. J. Anim. Sci. 2014, 92, 3364–3374. [Google Scholar] [CrossRef] [PubMed]
- Bucktrout, R.E.; Ma, N.; Aboragah, A.; Alharthi, A.S.; Liang, Y.; Lopreiato, V.; Lopes, M.G.; Trevisi, E.; Alhidary, I.A.; Fernandez, C.; et al. One-carbon, carnitine, and glutathione metabolism-related biomarkers in peripartal Holstein cows are altered by prepartal body condition. J. Dairy Sci. 2021, 104, 3403–3417. [Google Scholar] [CrossRef]
- Bernabucci, U.; Ronchi, B.; Lacetera, N.; Nardone, A. Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows. J. Dairy Sci. 2005, 88, 2017–2026. [Google Scholar] [CrossRef] [PubMed]
- Cavallini, D.; Mammi, L.M.E.; Buonaiuto, G.; Palmonari, A.; Valle, E.; Formigoni, A. Immune-metabolic-inflammatory markers in Holstein cows exposed to a nutritional and environmental stressing challenge. J. Anim. Physiol. Anim. Nutr. 2021, 105, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Bernabucci, U.; Ronchi, B.; Lacetera, N.; Nardone, A. Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. J. Dairy Sci. 2002, 85, 2173–2179. [Google Scholar] [CrossRef]
- Aviram, M.; Rosenblat, M. Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic. Biol. Med. 2004, 37, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Síktar, E.; Ekinci, D.; Síktar, E.; Beydemir, S.; Gülçin, I.; Günay, M. Protective role of L-carnitine supplementation against exhaustive exercise induced oxidative stress in rats. Eur. J. Pharmacol. 2011, 668, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Celi, P.; Merlo, M.; Da Dalt, L.; Stefani, A.; Barbato, O.; Gabai, G. Relationship between late embryonic mortality and the increase in plasma advanced oxidised protein products (AOPP) in dairy cows. Reprod. Fertil. Dev. 2011, 23, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Celi, P.; Merlo, M.; Barbato, O.; Gabai, G. Relationship between oxidative stress and the success of artificial insemination in dairy cows in a pasture-based system. Vet. J. 2012, 193, 498–502. [Google Scholar] [CrossRef]
- Celi, P.; Robinson, A. Effects of Yerba Mate (Ilex paraguariensis) supplementation on the performance of dairy calves. Anim. Prod. Sci. 2010, 50, 376–381. [Google Scholar] [CrossRef]
- Mary, A.E.P.; Artavia Mora, J.I.; Ronda Borzone, P.A.; Richards, S.E.; Kies, A.K. Vitamin E and beta-carotene status of dairy cows: A survey of plasma levels and supplementation practices. Animal 2021, 15, 100303. [Google Scholar] [CrossRef] [PubMed]
- Madureira, A.M.L.; Pohler, K.G.; Guida, T.G.; Wagner, S.E.; Cerri, R.L.A.; Vasconcelos, J.L.M. Association of concentrations of beta-carotene in plasma on pregnancy per artificial insemination and pregnancy loss in lactating Holstein cows. Theriogenology 2020, 142, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Otocka-Kmiecik, A. Effect of Carotenoids on Paraoxonase-1 Activity and Gene Expression. Nutrients 2022, 14, 2842. [Google Scholar] [CrossRef] [PubMed]
Group 1 | Number of Lactations | DIM at T1 | Group 2 | Number of Lactations | DIM At T3 |
---|---|---|---|---|---|
Fortunata | 4 | 147 | Ardua | 4 | 126 |
Gioia | 3 | 137 | Effe | 3 | 151 |
Ibla | 2 | 152 | Elisea | 3 | 150 |
Iblea | 2 | 122 | Elvana | 3 | 111 |
Iena | 2 | 148 | Formia | 5 | 115 |
Imperia | 2 | 133 | Irianna | 2 | 144 |
Messina | 3 | 84 | Lisa | 2 | 127 |
Angela | 6 | 110 | Luisa | 2 | 146 |
Batia | 5 | 112 | Melinda | 2 | 217 |
Delia | 5 | 110 | Michelle | 2 | 146 |
Elisa | 3 | 180 | Nina | 2 | 123 |
Zeta | 4 | 110 | Siciliana | 5 | 108 |
Mean ± s.d. | 3.42 ± 1.38 | 129 ± 26 | 2.91 ± 1.16 | 139 ± 29 |
Ingredients, % of DM | |
---|---|
Corn meal | 40 |
Roasted soybean flour | 16.5 |
Barley meal | 12 |
Beetpulp | 9 |
Wheat bran | 6 |
Sunflower meal. | 6 |
RUMEN Bypass Fat | 2.5 |
Minerals and Vitamins Mix | 1.5 |
Calcium Carbonate | 1.3 |
Saccharomyces dried yeast | 1 |
Cane molasses | 1 |
Na bicarbonate | 1 |
Na chloride | 0.7 |
P dicalcium | 0.6 |
NutriGen 40 C | 0.5 |
Mg oxide | 0.4 |
Chemical composition, % of DM | |
Crude Protein | 17.7 |
Fat | 5.01 |
Starch | 45.64 |
Crude Fibre | 4.40 |
Ash | 9.84 |
Nel, Mcal/kg of DM | 1.81 |
Week | Time | T °C min | T °C max | T °C mean | Hr (%) min | Hr (%) max | Hr (%) mean | wTHI min | wTHI max | wTHI mean | n. Days THImax 75–78 | n. Days THImax > 78 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4–11 April | T1 | 12 | 18 | 15 | 55 | 83 | 72 | 50 | 59 | 55 | 0 | 0 |
20–27 May | T2 | 19 | 25 | 22 | 43 | 82 | 64 | 63 | 74 | 68 | 1 | 2 |
10–17 June | T3 | 20 | 27 | 23 | 50 | 88 | 72 | 65 | 79 | 71 | 3 | 4 |
19–26 July | T4 | 27 | 35 | 30 | 28 | 83 | 59 | 71 | 91 | 80 | 0 | 7 |
wTHI Periods | |||||
---|---|---|---|---|---|
Item | wTHI1 55 | wTHI2 68 | wTHI3 71 | wTHI4 80 | p-Values |
Milk yield, kg/d | 13.45 ± 3.92 | 11.97 ± 3.95 | 13.49 ± 3.42 | 11.33 ± 2.77 | 0.38 |
Fat, g/100 g | 4.72 ± 0.81 | 3.64 ± 1.41 | 3.35 ± 1.40 | 3.73 ± 0.62 | <0.05 |
Proteins, g/100 g | 3.94 ± 0.33 | 3.84 ± 1.18 | 3.48 ± 1.30 | 3.73 ± 0.62 | 0.67 |
Caseine, g/100 g | 3.01 ± 0.28 | 2.85 ± 0.32 | 2.83 ± 0.30 | 2.96 ± 0.19 | 0.32 |
Lactose, g/100 g | 4.64 ± 0.22 | 4.79 ± 0.16 | 4.89 ± 0.34 | 4.82 ± 0.17 | 0.07 |
wTHI Periods | |||||
---|---|---|---|---|---|
Items | wTHI1 55 | wTHI2 68 | wTHI3 71 | wTHI4 80 | p-Values |
PCV, % | 28.79 ± 3.86 | 32.02 ± 4.30 | 29.93 ± 7.39 | 28.93 ± 4.18 | 1.01 |
RBC, M/μL | 6.57 ± 0.82 * | 7.19 ± 0.89 ** | 6.21 ± 1.97 | 5.30 ± 0.69 | <0.01 |
Hb, g/dL | 9.33 ± 1.16 | 10.02 ± 1.20 | 9.59 ± 1.36 | 8.93 ± 1.14 | 0.18 |
PLT, K/μL | 396 ± 91 | 299 ± 66 | 366 ± 99 | 360 ± 115 | 0.09 |
WBC, K/μL | 10.57 ± 2.49 | 12.83 ± 1.57 * | 10.81 ± 1.82 | 10.45 ± 1.66 | <0.05 |
Neutrophils, K/μL | 4.21 ± 1.42 | 5.60 ±1.23 | 4.56 ±1.66 | 4.54 ± 1.33 | 0.10 |
Lymphocytes, K/μL | 6.06 ± 1.15 | 5.12 ±1.58 | 5.63 ±1.18 | 4.08 ± 1.18 | 0.14 |
Eosinophils, K/μL | 0.98 ± 0.51 | 1.66 ±1.12 * | 0.98 ± 0.80 | 0.76 ± 0.37 | <0.05 |
Monocytes, K/μL | 0.23 ± 0.06 * | 0.27 ± 0.05 | 0.20 ± 0.10 ** | 0.34 ± 0.12 | <0.01 |
wTHI Periods | |||||
---|---|---|---|---|---|
Items | wTHI1 55 | wTHI2 68 | wTHI3 71 | wTHI4 80 | p-Values |
Glucose, mmol/L | 3.94 ± 0.23 ** | 3.57 ± 0.28 | 3.72 ± 0.28 * | 3.41 ± 0.33 | <0.001 |
Fructosamine, µMol/L | 261 ± 24 | 277 ± 27 | 277 ± 20 | 281 ± 17 | 0.17 |
NEFA, mmol/L | 0.06 ± 0.02 | 0.05 ± 0.01 | 0.09 ± 0.05 | 0.05 ± 0.01 | <0.01 |
BHB, mmol/L | 0.45 ± 0.14 * | 0.51 ± 0.10 | 0.61 ± 0.20 | 0.62 ± 0.17 | <0.05 |
Creatinine, mmol/L | 87.19 ± 5.37 ** | 102 ± 7.32 | 105 ± 13.2 | 109 ± 7.83 | <0.001 |
Urea, mmol/L | 4.88 ± 0.93 | 4.89 ± 0.75 | 5.26 ± 1.08* | 4.83 ± 0.81 | 0.10 |
Cholesterol, mmol/L | 4.05 ± 0.90 | 4.33 ± 0.37 | 3.40 ± 0.92 | 3.75 ± 1.03 | 0.10 |
Total protein, g/L | 85.8 ± 6.8 | 90.5 ± 7.7 | 92.5 ± 0.37 | 91.06 ± 5.52 | 0.08 |
Albumin, g/L | 31.41 ± 3.14 | 33.26 ± 3.59 | 31.37 ± 2.33 | 31.13 ± 3.38 | 0.33 |
A/G ratio | 0.59 ± 0.09 | 0.59 ± 0.11 | 0.52 ± 0.07 | 0.52 ± 0.07 | 0.10 |
Bilirubin, µmol/L | 1.00 ± 0.35 | 1.10 ± 0.23 | 1.19 ± 0.78 | 1.20 ± 0.79 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberghina, D.; Amato, A.; Brancato, G.; Cavallo, C.; Liotta, L.; Lopreiato, V. Impact of Heat Stress on the Balance between Oxidative Markers and the Antioxidant Defence System in the Plasma of Mid-Lactating Modicana Dairy Cows. Animals 2024, 14, 2034. https://doi.org/10.3390/ani14142034
Alberghina D, Amato A, Brancato G, Cavallo C, Liotta L, Lopreiato V. Impact of Heat Stress on the Balance between Oxidative Markers and the Antioxidant Defence System in the Plasma of Mid-Lactating Modicana Dairy Cows. Animals. 2024; 14(14):2034. https://doi.org/10.3390/ani14142034
Chicago/Turabian StyleAlberghina, Daniela, Annalisa Amato, Giacoma Brancato, Carmelo Cavallo, Luigi Liotta, and Vincenzo Lopreiato. 2024. "Impact of Heat Stress on the Balance between Oxidative Markers and the Antioxidant Defence System in the Plasma of Mid-Lactating Modicana Dairy Cows" Animals 14, no. 14: 2034. https://doi.org/10.3390/ani14142034
APA StyleAlberghina, D., Amato, A., Brancato, G., Cavallo, C., Liotta, L., & Lopreiato, V. (2024). Impact of Heat Stress on the Balance between Oxidative Markers and the Antioxidant Defence System in the Plasma of Mid-Lactating Modicana Dairy Cows. Animals, 14(14), 2034. https://doi.org/10.3390/ani14142034