Mapping of Repetitive Sequences in Brachyhypopomus brevirostris (Hypopomidae, Gymnotiformes) from the Brazilian Amazon
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Cytogenetic Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cassemiro, F.A.S.; Albert, J.S.; Antonelli, A.; Menegotto, A.; Wüest, R.O.; Cerezer, F.; Coelho, M.T.P.; Reis, R.E.; Tan, M.; Tagliacollo, V.; et al. Landscape dynamics and diversification of the megadiverse South American freshwater fish fauna. Proc. Natl. Acad. Sci. USA 2023, 120, e2211974120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Albert, J.S. Species Diversity and Phylogenetic Systematics of American Knifefishes (Gymnotiformes, Teleostei); Museum of Zoology, University of Michigan: Ann Arbor, MI, USA, 2001; No. 190; pp. 1–129. [Google Scholar]
- Albert, J.S.; Crampton, W.G.R. Family Hypopomidae (Bluntnose Knifefishes). In Check List of Freshwater Fishes of the South and Central America; Reis, R.E., Kullander, S.O., Ferraris, C.J., Eds.; Edipucrs: Porto Alegre, Brazil, 2003; 729p. [Google Scholar]
- Almirón, A.; Casciotta, J.; Ciotek, L.; Giorgis, P. Pisces, Gymnotiformes, Hypopomidae, Brachyhypopomus Mago-Leccia, 1994: First country record of three species of the genus, Argentina. CheckList 2010, 6, 572–575. [Google Scholar] [CrossRef]
- Crampton, W.G.R.; Santana, C.D.; Waddel, J.C.; Lovejoy, N.R. Phylogenetic Systematics, Biogeography, and Ecology of the Electric Fish Genus Brachyhypopomus (Ostariophysi: Gymnotiformes). PLoS ONE 2016, 11, e0161680. [Google Scholar] [CrossRef]
- Crampton, W.G.R.; Santana, C.D.; Waddell, J.C.; Lovejoy, N.R. A taxonomic revision of the Neotropical electric fish genus Brachyhypopomus (Ostariophysi: Gymnotiformes: Hypopomidae), with descriptions of 15 new species. Neotrop. Ichthyol. 2016, 14, e150146. [Google Scholar] [CrossRef]
- Alves-Gomes, J.A.; Guillermo, O.; Haygood, M.; Heiligenberg, W.; Meyer, A. Phylogenetic analysis of the South American electric fish (order Gymnotiformes) and the evolution of their electrogenic system: A synthesis based on morphology, electrophysiology, and mitochondrial sequence data. Mol. Biol. Evol. 1995, 2, 298–318. [Google Scholar]
- Alves-Gomes, J.A. The phylogenetic position of the South American electric fish genera Sternopygus and Archolaemus (Ostariophysi: Gymnotiformes) according to 12S and 16S mitocondrial DNA sequences. In Phylogeny and Classification of Neotropical Fishes; Malabarba, L.R., Reis, R.E., Vari, R.P., Lucena, Z.M.S., Lucena, C.A.S., Eds.; Edipucrs: Porto Alegre, Brazil, 1998; pp. 447–460. [Google Scholar]
- Albert, J.S.; Crampton, W.G.R. Diversity and phylogeny of Neotropicalelectric fishes (Gymnotiformes). In Electroreception; Bullock, T.H., Hopkins, C.D., Fay, R.R., Eds.; Springer Handbook of Auditory Research Series; Springer: New York, NY, USA, 2005; pp. 360–409. [Google Scholar]
- Albert, J.S.; Crampton, W.G.R. Electroreception and electrogenesis. In The Physiology of Fishes, 3rd ed.; Evans, D., Ed.; CRC Press: New York, NY, USA, 2005; pp. 431–472. [Google Scholar]
- Crampton, W.G.R.; Albert, J.S. Evolution of electric signal diversity in gymnotiform fishes. Part A. Phylogenetic systematics, ecology, and biogeography. In Communication in Fishes; Ladish, R., Collin, S.P., Moller, P., Kapoor, B.G., Eds.; Science Publishers: Enfield, UK, 2006; pp. 647–696. [Google Scholar]
- Crampton, W.G.R. Gymnotiform fish: An important component of Amazonian floodplain fish communities. J. Fish Biol. 1996, 48, 298–301. [Google Scholar] [CrossRef]
- Almeida-Toledo, L.F. Contribuição à Citogenética de Gymnotoidei (Pisces, Osthariophysi). Ph.D. Thesis, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil, 1978. [Google Scholar]
- Cardoso, A.L.; Pieczarka, J.C.; Crampton, W.G.R.; Ready, J.S.; De Figueiredo Ready, W.M.B.; Waddell, J.C.; Oliveira, J.A.; Nagamachi, C.Y. Karyotypic Diversity and Evolution in a Sympatric Assemblage of Neotropical Electric Knifefish. Front. Genet. 2018, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.L.; Pieczarka, J.C.; Nagamachi, C.Y. X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus. Genet. Mol. Biol. 2015, 38, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Toledo, L.F.; Daniel-Silva, M.F.Z.; Lopes, C.E.; Toledo-Filho, S.A. Sex chromosome evolution in fish: Second occurrence of a X1X2Y sex chromosome system in Gymnotiformes. Chromosome Res. 2000, 8, 335–340. [Google Scholar] [CrossRef]
- Mendes, V.P.; Portela-Castro, A.L.B.; Júlio-Júnior, H.F. First record of supernumerary (B) chromosomes in electric fish (Gymnotiformes) and the karyotype structure of three species of the same order from the upper Paraná River basin. Comp. Cytogenet. 2012, 6, 1–16. [Google Scholar] [CrossRef]
- Takagui, F.H.; Cardoso, A.L.; Dionisio, J.F.; Shibattac, O.A.; Giuliano-Caetanoa, L. Cytogenetic Analysis of Two Species of Brachyhypopomus (Hypopomidae): New Inferences about Karyotypic Diversification of Grass Knifefish. J. Ichthyol. 2022, 62, 828–839. [Google Scholar] [CrossRef]
- Dias, A.L.; Foresti, F. Cytogenetic studies on fishes of the family Pimelodidae (Siluroidei). Rev. Bras. Genética 1993, 16, 585–600. [Google Scholar]
- Bertollo, L.A.C.; Born, G.G.; Dergam, J.A.; Fenocchio, A.S.; Moreira-Filho, O. A biodiversity approach in the neotropical Erythrinidae fish, Hoplias malabaricus. Karyotypic survey, geographic distribution of cytotypes and cytotaxonomic considerations. Chromosome Res. 2000, 8, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Artoni, R.F.; Castro, J.P.; Jacobina, U.P.; Lima-Filho, P.A.; da Costa, G.W.W.F.; Molina, W.F. Inferring Diversity and Evolution in Fish by Means of Integrative Molecular Cytogenetics. Sci. World J. 2015, 2015, 365787. [Google Scholar] [CrossRef] [PubMed]
- Jacobina, U.P.; Affonso, P.R.A.D.M.; Carneiro, P.L.S.; Dergam, J.A. Biogeography and comparative cytogenetics between two populations of Hoplias malabaricus (Bloch, 1794) (Ostariophysi: Erythrinidae) from coastal basins in the State of Bahia, Brazil. Neotrop. Ichthyol. 2009, 7, 617–622. [Google Scholar] [CrossRef]
- Molina, W.F. Fish cytogenetics. In Chromosome Changes and Stasis in Marine Fish Groups; Pisano, E., Ozouf-Costa, C., Forest, F., Kapoor, B.G., Eds.; Science Publisher: Enfield, CT, USA, 2007; pp. 69–110. [Google Scholar]
- Singh, R.S.; Jiang, J.; Gill, B.S. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 2006, 49, 1057–1068. [Google Scholar]
- Vicari, M.R.; De Mello Pistune, H.F.; Castro, J.P.; De Almeida, M.C.; Bertollo, L.A.C.; Moreira-Filho, O.; Camacho, J.P.M.; Artoni, R.F. New insights on the origin of B chromosomes in Astyanax scabripinnis obtained by chromosome painting and FISH. Genetica 2011, 1073, 139. [Google Scholar] [CrossRef]
- Yano, C.F.; Poltronieri, J.; Bertollo, L.A.C.; Artoni, R.F.; Liehr, T.; Cioffi, M.B. Chromosomal mapping of repetitive DNAs in Triportheus trifurcatus (Characidae, Characiformes): Insights into the differentiation of the Z and W chromosomes. PLoS ONE 2014, 9, e90946. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.; Matoso, D.A.; Vicari, M.R.; De Almeida, M.C.; Margarido, V.P.; and Artoni, R.F. Physical Mapping of 5S rDNA in Two Species of Knifefishes: Gymnotus pantanal and Gymnotus paraguensis (Gymnotiformes). Cytogenet. Genome Res. 2011, 134, 303–307. [Google Scholar] [CrossRef]
- Lehmann, R.; Kovařík, A.; Ocalewicz, K.; Kirtiklis, L.; Zuccolo, A.; Tegner, J.N.; Wanzenböck, J.; Bernatchez, L.; Lamatsch, D.K.; Symonová, R. DNA transposon expansion is associated with genome size increase in Mudminnows. Genome Biol. Evol. 2021, 13, evab228. [Google Scholar] [CrossRef]
- Santos, R.Z.; Calegari, R.M.; Silva, D.M.Z.A.; Ruiz-Ruano, F.J.; Melo, S.; Oliveira, C.; Foresti, F.; Uliano-Silva, M.; Porto-Foresti, F.; Utsunomia, R. A long-term conserved satellite DNA that remais unexpanded in several genomes of Characiformes fish is actively transcribed. Genome Biol. Evol. 2021, 13, evab002. [Google Scholar]
- Yano, C.F.; Sember, A.; Kretschmer, R.; Bertollo, L.A.C.; Ezaz, T.; Hatanaka, T.; Liehr, T.; Ráb, P.; Al-Rikabi, A.; Viana, P.F.; et al. Against the mainstream: Exceptional evolutionary stability of ZW sex chromosomes across the fish families Triportheidae and Gasteropelecidae (Teleostei: Characiformes). Chromosome Res. 2021, 29, 391–416. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, I.M.; Bastos, Y.F.; Barreto, D.S.; Lourenço, L.S.; Penha, J.M. The efficacy of clove oil as an anesthetic and in eutanásia procedure for small-sized tropical fishes. Braz. J. Biol. 2016, 77, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Hijmans, R.J.; Guarino, L.; Bussink, C.; Mathur, P.; Cruz, M.; Barrentes, I.; Rojas, E. DIVA-GIS. Vsn. 5.0. A Geographic Information System for the Analysis of Species Distribution Data. 2004. Available online: http://www.diva-gis.org (accessed on 1 February 2024).
- Bertollo, L.A.C.; Takahashi, C.S.; Moreira-Filho, O. Cytotaxonomic considerations on Hoplias lacerdae (Pisces, Erythinidae). Braz. J. Genet. 1978, 2, 103–120. [Google Scholar]
- Bertollo, L.A.C. Estimulação de mitoses em peixes. In Proceedings of the I Simpósio de Citogenética Evolutiva e Aplicada de Peixes Neotropicais, Sao Carlos, Brazil, 13–17 August 1986. [Google Scholar]
- Sumner, A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972, 75, 304–306. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, T.; Galetti, P.M., Jr. Mapping 18S and 5S ribosomal RNA genes in the fish Prochilodus argenteus Agassiz, 1929 (Characiformes, Prochilodontidae). Genetica 2004, 122, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Suárez, P.; Pinto Barroso, I.C.G.; Silva, D.D.S.; Milhomem, S.S.R.; Cabral-de-Mello, D.C.; Martins, C.; Pieczarka, J.C.; Nagamachi, C.Y. Highest diploid number among Gymnotiformes: First cytogenetic insights into Rhabdolichops (Sternopygidae). Zebrafish 2017, 14, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Colgan, D.J.; McLauchlan, A.; Wilson, G.D.F.; Livingston, S.P.; Edgecombe, G.D.; Macaranas, J.; Cassis, G.; Gray, M.R. Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Aust. J. Zool. 1998, 46, 419–437. [Google Scholar] [CrossRef]
- Ijdo, J.W.; Wells, R.A.; Baldini, A.; Reeders, S.T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991, 19, 4780. [Google Scholar] [CrossRef]
- Pinkel, D.; Straume, T.; Gray, J.W. Cytogenetic analysis using quantitative, highsensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA 1986, 83, 2934–2938. [Google Scholar] [CrossRef]
- Cardoso, A.L.; Pieczarka, J.C.; Feldberg, E.; Milhomem, S.S.R.; Moreira-Almeida, T.; Silva, D.D.S.; da Silva, P.C.; Nagamachi, C.Y. Chromosomal characterization of two species of genus Steatogenys (Gymnotiformes: Rhamphichthyoidea: Steatogenini) from the Amazon basin: Sex chromosomes and correlations with Gymnotiformes phylogeny. Rev. Fish Biol. Fish. 2011, 21, 613–662. [Google Scholar] [CrossRef]
- Almeida-Toledo, L.F. Cytogenetic markers in neotropical freshwater fishes. In Phylogeny and Classification of Neotropical Fishes; Malabarba, L.R., Reis, R.E., Vari, R.P., Lucena, Z.M., Lucena, C.A.S., Eds.; EDIPUCRS: Porto Alegre, Brazil, 1998; pp. 583–588. [Google Scholar]
- Silva, D.S.; Milhomem, S.S.R.; Souza, A.C.P.; Pieczarka, J.C.; Nagamachi, C.Y. A conserved karyotype of Sternopygus macrurus (Sternopygidae, Gymnotyformes) in the Amazon region: Differences from other hydrographic basins suggest cryptic speciation. Micron 2008, 39, 1251–1254. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, P.C.; Nagamachi, C.Y.; Dos Santos Silva, D.; Milhomem, S.S.R.; Cardoso, A.L.; De Oliveira, J.A.; Pieczarka, J.C. Karyotypic similarities between two species of Rhamphichthys (Rhamphichthyidae, Gymnotiformes) from the Amazon basin. Comp. Cytogenet. 2013, 7, 279–291. [Google Scholar] [CrossRef] [PubMed]
- White, M.J.D. Animal Cytology and Evolution; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- De Jesus, I.S.; Ferreira, M.; Garcia, C.R.; Leila, B.; Alves-Gomes, J.A.; Feldberg, E. First Cytogenetic Description of Microsternarchus bilineatus (Gymnotiformes: Hypopomidae) from Negro River (Brazilian Amazon). Zebrafish 2016, 13, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Batista, J.A.; Cardoso, A.L.; Milhomem-Paixão, S.S.R.; Ready, J.S.; Pieczarka, J.C.; Nagamachi, C.Y. The Karyotype of Microsternarchus aff. bilineatus: A First Case of Y Chromosome Degeneration in Gymnotiformes. Zebrafish 2017, 14, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.H.R.; Pieczarka, J.C.; Cardoso, A.L.; Silva, P.C.; de Oliveira, J.A.; Nagamachi, C.Y. Chromosomal diversity in three species of electric fish (Apteronotidae, Gymnotiformes) from Amazon Basin. Genet. Mol. Biol. 2014, 37, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Araya-Jaime, C.A.; Mazzoni Zerbinato de Andrade Silva, D.; Ribeiro da Silva, L.R.; Neves do Nascimento, C.; Oliveira, C.; Foresti, F. Karyotype description and comparative chromosomal mapping of rDNA and U2 snDNA sequences in Eigenmannia limbata and E. microstoma (Teleostei, Gymnotiformes, Sternopygidae). Comp. Cytogenet. 2022, 16, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Araya-Jaime, C.; Mateussi, N.T.B.; Utsunomia, R.; Costa-Silva, G.J.; Oliveira, C.; Foresti, F. ZZ/Z0: The New System of Sex Chromosomes in Eigenmannia aff. trilineata (Teleostei: Gymnotiformes: Sternopygidae) Characterized by Molecular Cytogenetics and DNA Barcoding. Zebrafish 2017, 14, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.P.; Machado, M.d.A.; Pety, A.M.; Silva, D.d.S.; Souza, A.C.P.; Pieczarka, J.C.; Nagamachi, C.Y. Archolaemus janeae (Gymnotiformes, Teleostei): First insights into karyotype and repetitive DNA distribution in two populations of the Amazon. Ecol. Evol. 2021, 11, 15468–15476. [Google Scholar] [CrossRef]
- Utsunomia, R.; Scacchetti, P.C.; Pansonato-Alves, J.C.; Oliveira, C.; Foresti, F. Comparative Chromosome Mapping of U2 snRNA and 5S rRNA Genes in Gymnotus Species (Gymnotiformes, Gymnotidae): Evolutionary Dynamics and Sex Chromosome Linkage in G. pantanal. Cytogenet. Genome Res. 2014, 142, 286–292. [Google Scholar] [CrossRef]
- Silva, D.S.; Milhomem, S.S.R.; Pieczarka, J.C.; Nagamachi, C.Y. Cytogenetic studies in Eigenmannia virescens (Sternopygidae, Gymnotiformes) and new inference on the origin of sex chromosome in the Eigenmannia genus. BMC Genet. 2009, 10, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.P. Systematics and Evolution of the Toothless Knifefishes Rhamphichthyoidea Mago-Leccia (Actinopterygii: Gymnotiformes): Diversification in South American Freshwaters. Ph.D. Thesis, University of Louisiana at Lafayette, Lafayette, LA, USA, 2013. [Google Scholar]
- Jenkins, C.N.; Alves, M.A.S.; Uezu, A.; Vale, M.M. Patterns of Vertebrate Diversity and Protection in Brazil. PLoS ONE 2015, 10, e0145064. [Google Scholar] [CrossRef] [PubMed]
- Maltchik, L.; Stenert, C.; Kotzian, C.B.; Pires, M.M. Responses of Odonate Communities to Environmental Factors in Southern Brazil Wetlands. Kans. (Cent. States) Entomol. Soc. 2010, 83, 208–220. [Google Scholar] [CrossRef]
- Crampton, W.G.R. Ecology and life history of an Amazon floodplain cichlid: The discus fish Symphysodon (Perciformes: Cichlidae). Neotrop. Ichthyol. 2008, 6, 599–612. [Google Scholar] [CrossRef]
- Boschman, L.M.; Carraro, L.; Cassemiro, F.A.S.; de Vries, J.; Altermatt, F.; Hagen, O.; Hoorn, C.; Pellissier, L. Freshwater fish diversity in the western Amazon basin shaped by Andean uplift since the Late Cretaceous. Nat. Ecol. Evol. 2023, 7, 2037–2044. [Google Scholar] [CrossRef]
Species | Locality | 2n | Sex | Sex System | KF | NOR/18S rDNA | 5S rDNA | U2 snDNA | Reference |
---|---|---|---|---|---|---|---|---|---|
B. brevirostris | Humaitá—AM | 36 | 6m/sm + 30st/a | [13] | |||||
Tefé—AM | 38 | 38st/a | [14] | ||||||
38 | 38st/a | 19q | 14p; 16p | 3 pairs | Present study | ||||
Santarém—PA | 38 | 38st/a | 19q | 14p; 16p | 3 pairs | Present study | |||
B. pinnicaudatus | Mamirauá—AM | 41 | M | X1X1X2X2/ X1X2Y | 1m/sm + 40st/a | [15] | |||
42 | F | 42st/a | |||||||
B. flavipomus | Mamirauá—AM | 43 | M | X1X1X2X2/ X1X2Y | 1m/sm + 42st/a | [15] | |||
44 | F | 44st/a | |||||||
B. batesi | Tefé—AM | 40 | 38m/sm + 2st/a | [14] | |||||
B. hendersoni | Tefé—AM | 38 | 34m/sm + 4st/a | [14] | |||||
B. regani | Tefé—AM | 38 | 14m/sm + 24st/a | [14] | |||||
B. beebei | Tefé—AM | 40 | 8m/sm + 32st/a | [14] | |||||
B. hamiltoni | Tefé—AM | 36 | 6m/sm + 30st/a | [14] | |||||
B. bennetti | Tefé—AM | 40 | 2m/sm + 38st/a | [14] | |||||
B. walteri | Tefé—AM | 40 | 2m/sm + 38st/a | [14] | |||||
B. cf. draco | Lagoa dos Quadros—RS | 26 | 2m + 24a | 13p | [18] | ||||
B. gauderio | Porto Rico—PR | 41 | M | X1X1X2X2/ X1X2Y | 1m + 40a | 8 signals | [17] | ||
42 | F | 42a | |||||||
Tietê River—SP | 41 | M | X1X1X2X2/ X1X2Y | 1m + 40a | [16] | ||||
42 | F | 42a | |||||||
Paranapanema River—PR | 41 | M | X1X1X2X2/ X1X2Y | 1m + 40a | 2p, 5p, 1q, 16q | [18] | |||
42 | F | 42a |
Species | Locality | ID * | Sample |
---|---|---|---|
Brachyhypopomus brevirostris | Mamirauá Reserve—Tefé—AM/Amazon Basin | P-2635 | 1 ♀ |
Aramanaí stream—Santarém—PA/Amazon Basin | P-3665; P-3667; P-3669 | 2♀/1 indetermined |
Specie (Localities) | 2n | KF | snDNA U2 | Reference |
---|---|---|---|---|
Eigenmannia limbata (Rio Branco—AC) | 38 | 8m + 4sm + 26a | 3 pairs (11, 12, 14) | [49] |
E. microstoma (Francisco Dumont—MG) | 38 | 8m + 10sm + 20a | 4 pairs (10, 12, 16, 17) | [49] |
E. aff. trilineata (Rio Miranda-Paraguai) | 32 | ♂ 8m + 2sm + 22a ♀ 8m + 1sm + 22a | Simple (Par 12) | [50] |
Archolaemus janeae (Altamira—PA and Santarém—PA) | 46 | 4m/sm + 42st/a | 3 pairs (3, 6, 13) | [51] |
Gymnotus pantanal (Colômbia, SP) | 40 | 4m + 3sm + 13st | 7 pairs (9, 10, 11, 18, 20, X1) | [52] |
Gymnotus carapo (Iquitos-Peru) | 42 | 12m + 6sm + 3st | Simple (par 1) | [52] |
Gymnotus sylvius (Botucatu, SP) | 40 | 11m + 6sm + 3st | Simple (par 1) | [52] |
Gymnotus inaequilabiatus (Botucatu, SP) | 54 | 21m + 5sm + 1st | Simple (par 5) | [52] |
Gymnotus pantherinus (Mongaguá, SP) | 52 | 16m + 9sm + 1st | Simple (par 4) | [52] |
Gymnotus javari (Iquitos-Peru) | 50 | 6m + 4sm + 15st | Simple (par 11) | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, P.P.; Machado, M.d.A.; Pety, A.M.; Oliveira da Silva, W.; Pieczarka, J.C.; Nagamachi, C.Y. Mapping of Repetitive Sequences in Brachyhypopomus brevirostris (Hypopomidae, Gymnotiformes) from the Brazilian Amazon. Animals 2024, 14, 1726. https://doi.org/10.3390/ani14121726
Rodrigues PP, Machado MdA, Pety AM, Oliveira da Silva W, Pieczarka JC, Nagamachi CY. Mapping of Repetitive Sequences in Brachyhypopomus brevirostris (Hypopomidae, Gymnotiformes) from the Brazilian Amazon. Animals. 2024; 14(12):1726. https://doi.org/10.3390/ani14121726
Chicago/Turabian StyleRodrigues, Paula Pinto, Milla de Andrade Machado, Ananda Marques Pety, Willam Oliveira da Silva, Julio Cesar Pieczarka, and Cleusa Yoshiko Nagamachi. 2024. "Mapping of Repetitive Sequences in Brachyhypopomus brevirostris (Hypopomidae, Gymnotiformes) from the Brazilian Amazon" Animals 14, no. 12: 1726. https://doi.org/10.3390/ani14121726
APA StyleRodrigues, P. P., Machado, M. d. A., Pety, A. M., Oliveira da Silva, W., Pieczarka, J. C., & Nagamachi, C. Y. (2024). Mapping of Repetitive Sequences in Brachyhypopomus brevirostris (Hypopomidae, Gymnotiformes) from the Brazilian Amazon. Animals, 14(12), 1726. https://doi.org/10.3390/ani14121726