Effect of Arabinoxylan and Xylo-Oligosaccharide on Growth Performance and Intestinal Barrier Function in Weaned Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sources of XOS and AX
2.2. Animals, Diets, and Experimental Design
2.3. Sample Collection
2.4. Chemical Analysis and Calculation
2.4.1. Growth Performance
2.4.2. Nutrient Digestibility
2.4.3. Intestinal Morphology
2.4.4. Intestinal Antioxidant and Immune Function
2.5. In Vitro Fermentation Assay
2.6. Determination of SCFA Concentration
2.7. Intestinal Microbial Community
2.8. Statistical Analysis
3. Results
3.1. Effect of AX and XOS on Growth Performance and Diarrhea Incidence of Weaned Piglets
3.2. Effect of AX and XOS on Nutrients Digestibility in Weaned Piglets
3.3. Effect of AX and XOS on Intestinal Morphology in Weaned Piglets
3.4. Effect of AX and XOS on Intestinal Antioxidant Capacity in Weaned Piglets
3.5. Effect of AX and XOS on Intestinal Immune Function in Weaned Piglets
3.6. Effect of AX and XOS on SCFA Concentrations in the Intestine of Weaned Piglets
3.7. Effect of In Vitro Fermentation of AX and XOS on Organic Acid Concentration in the Intestinal Digesta of Weaned Piglets
3.8. Effect of AX and XOS on Intestinal Microflora of Weaned Piglets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lamberti, L.M.; Walker, C.F.; Noiman, A.; Victora, C.; Black, R.E. Breastfeeding and the risk for diarrhea morbidity and mortality. BMC Public Health 2011, 11 (Suppl. S3), S15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.X.; Xie, Y.N.; Zhong, R.Q.; Liu, L.; Lin, C.G.; Xiao, L. Effects of Xylo-Oligosaccharides on growth and Gut Microbiota as Potential Replacements for Antibiotic in Weaning Piglets. Front. Microbiol. 2021, 12, 641172. [Google Scholar] [CrossRef] [PubMed]
- Adam, J.M.; Calvin, S.P.; Mrigendra, R. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Anim. Nutr. 2017, 3, 313–321. [Google Scholar]
- Cao, S.T.; Wang, C.C.; Wu, H.; Zhang, Q.H.; Jiao, L.F.; Hu, C.H. Weaning disrupts intestinal antioxidant status, impairs intestinal barrier and mitochondrial function, and triggers mitophagy in piglets. J. Anim. Sci. 2018, 96, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Mao, X.; He, J.; Yu, B.; Huang, Z.; Yu, J. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br. J. Nutr. 2013, 110, 1837–1848. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Zhao, J.B.; Wang, W.; Guo, P.T.; Lu, W.; Wang, C. Dietary born bran altered the diversity of microbial communities and cytokine production in weaned pigs. Front. Microbiol. 2018, 9, 2090. [Google Scholar] [CrossRef]
- Deepak, M.; Sheweta, B. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int. J. Biol. Macromol. 2013, 61, 1–6. [Google Scholar]
- Adebowale, T.O.; Yao, K.; Oso, A.O. Major cereal carbohydrates in relation to intestinal health of monogastric animals: A review. Anim. Nutr. 2019, 5, 331–339. [Google Scholar] [CrossRef]
- Sebastián, C.; Gil, G.; José, A.; Manuel, J.D.; Francisco, L. Xylooligosaccharides Production from Arundo donax. J. Agric. Food Chem. 2007, 55, 5536–5543. [Google Scholar]
- Lequart, C.; Nuzillard, J.M.; Kurek, B.; Debeire, P. Hydrolysis of wheat bran and straw by an endoxylanase: Production and structural characterization of cinnamoyl-oligosaccharides. Carbohydr. Res. 1999, 319, 102–111. [Google Scholar] [CrossRef]
- Chen, M.; Fan, B.; Liu, S.J.; Xie, Y.Y.; Wen, B.; Xin, F.J. The in vitro effect of Fibers with Different Degrees of Polymerization on Human Gut Bacteria. Front. Microbiol. 2020, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.; Cardoso, V.; Ferreira, L.M.A.; Lordelo, M.M.S.; Coelho, E.; Moreira, A.S.P. Xylo-oligosaccharides display a prebiotic activity when used to supplement wheat or corn-based diets for broilers. Poult. Sci. 2018, 12, 4330–4341. [Google Scholar] [CrossRef] [PubMed]
- Kale, M.S.; Hamaker, B.R.; Campanella, O.H. Alkaline extraction conditions determine gelling properties of corn bran arabinoxylans. Food Hydrocoll. 2013, 31, 121–126. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Zhang, S.H.; Yang, Q.; Peng, Q.; Zhu, J.L.; Zeng, X.F. Effect of high fiber diets formulated with different fibrous ingredients on performance, nutrient digestibility and fecal microbiota of weaned piglets. Arch. Anim. Nutr. 2016, 70, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- De Coca-Sinova, A.; Mateos, G.G.; González-Alvarado, J.M. Comparative study of two analytical procedures for the determination of acid insoluble ash for evaluation of nutrient retention in broilers. Span. J. Agric. Res. 2011, 9, 761–768. [Google Scholar] [CrossRef] [Green Version]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed. Rev. 2nd ed.; AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Holdman, L.V.; Johnson, J.L. Bacteroides disiens sp. nov. and Bacteroides bivius sp. nov. from human clinical infections. Int. J. Syst. Evol. Microbiol. 1977, 27, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Bryant, L.R.; Trinkle, J.K.; Mobin-Uddin, K.; Baker, J.; Griffen, W.O. Bacterial Colonization Profile with Tracheal Intubation and Mechanical Ventilation. Arch. Surg. 1972, 104, 647–651. [Google Scholar] [CrossRef]
- McCracken, B.A.; Spurlock, M.E.; Roos, M.A.; Zuckermann, F.A.; Gaskins, H.R. Weaning Anorexia May Contribute to Local Inflammation in the Piglet Small Intestine. J. Nutr. 1999, 129, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Lallèsa, J.P.; Boudrya, G.; Faviera, C.; Floc’ha, N.L.; Lurona, I.; Montagne, L. Gut function and dysfunction in young pigs: Physiology. Anim. Res. 2004, 53, 301–316. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Zhang, W.; Ma, C.; Xie, P.; Blachier, F.; Kong, X. Dietary Supplementation with Xylo-oligosaccharides Modifies the Intestinal Epithelial Morphology, Barrier Function and the Fecal Microbiota Composition and Activity in Weaned Piglets. Front. Vet. Sci. 2021, 8, 680208. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zheng, D.; Zhang, Z.; Ye, H.; Cao, Q.; Zhang, C. Efficacy of combination of endo-xylanase and xylan-debranching enzymes in improving cereal bran utilization in piglet diet. Anim. Biosci. 2022, 5, 1733–1743. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.B.; Cao, S.C.; Liu, J.; Xie, Y.N.; Zhang, H.F. Effect of probiotics and xylo-oligosaccharide supplementation on nutrient digestibility, intestinal health and noxious gas emission in weanling pigs. Asian-Australas. J. Anim. Sci. 2018, 31, 1660–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.B.; Zhang, G.; Dong, W.X.; Zhang, Y.; Wang, J.J.; Zhang, S. Effects of dietary particle size and fiber source on nutrient digestibility and short chain fatty acid production in cannulated growing pigs. Anim. Feed. Sci. Technol. 2019, 258, 114310. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, X.; Zhang, Y.; Liu, L.; Wang, J.; Zhang, S. Effects of body weight and fiber sources on fiber digestibility and short chain fatty acid concentration in growing pigs. Asian-Australas. J. Anim. Sci. 2020, 33, 1975–1984. [Google Scholar] [CrossRef] [Green Version]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Backhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [Green Version]
- De Maesschalck, C.; Eeckhaut, V.; Maertens, L.; De Lange, L.; Marchal, L.; Nezer, C. Effects of Xylo-Oligosaccharides on Broiler Chicken Performance and Microbiota. Appl. Environ. Microbiol. 2015, 81, 5880–5888. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, W.; Degroote, J.; Possemiers, S.; Chen, D.; De Smet, S. Arabinoxylan in wheat is more responsible than cellulose for promoting intestinal barrier function in weaned male piglets. J. Nutr. 2015, 145, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Pang, J.; Zhou, X.; Ye, H.; Wu, Y.; Wang, Z.; Lu, D. The High Level of Xylooligosaccharides Improves Growth Performance in Weaned Piglets by Increasing Antioxidant Activity, Enhancing Immune Function, and Modulating Gut Microbiota. Front. Nutr. 2021, 8, 764556. [Google Scholar] [CrossRef]
- Hou, Z.; Wu, D.; Dai, Q. Effects of dietary xylo-oligosaccharide on growth performance, serum biochemical parameters, antioxidant function, and immunological function of nursery piglets. Rev. Bras. Zootec. 2020, 49, e20190170. [Google Scholar] [CrossRef]
- Ma, C.; Gao, Q.; Zhang, W.; Zhu, Q.; Tang, W.; Blachier, F. Supplementing synbiotic in sows’ diets modifies beneficially blood parameters and colonic microbiota composition and metabolic activity in suckling piglets. Front. Vet. Sci. 2020, 7, 575685. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.H.F.; Frøkiær, H.; Christensen, A.G.; Bergström, A.; Licht, T.R.; Hansen, A.K. Dietary Xylooligosaccharide Downregulates IFN-γ and the Low-Grade Inflammatory Cytokine IL-1β Systemically in Mice. J. Nutr. 2013, 143, 533–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.H.; Chen, Y.K.; Chang, H.C.; Lin, S.Y. Immunomodulatory Effects of Xylooligosaccharides. Food Sci. Technol. Res. 2012, 18, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Christensen, E.G.; Licht, T.R.; Leser, T.D. Dietary Xylo-oligosaccharide stimulates intestinal bifidobacteria and lactobacilli but has limited effect on intestinal integrity in rats. BMC Res. Notes 2014, 7, 660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lordan, C.; Thapa, D.; Ross, R.P.; Cotter, P.D. Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes 2020, 11, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, N.K.; Keerqin, C.; Wallace, A.; Wu, S.B.; Choct, M. Effect of arabinoxylo-oligosaccharides and arabinoxylans on net energy and nutrient utilization in broilers. Anim. Nutr. 2019, 5, 56–62. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, F.; Li, H.; Sun, Z.; Liu, L.; Zhang, X.; Zhao, J. Effect of Arabinoxylan and Xylo-Oligosaccharide on Growth Performance and Intestinal Barrier Function in Weaned Piglets. Animals 2023, 13, 964. https://doi.org/10.3390/ani13060964
Sun F, Li H, Sun Z, Liu L, Zhang X, Zhao J. Effect of Arabinoxylan and Xylo-Oligosaccharide on Growth Performance and Intestinal Barrier Function in Weaned Piglets. Animals. 2023; 13(6):964. https://doi.org/10.3390/ani13060964
Chicago/Turabian StyleSun, Feize, Huahui Li, Zhiqiang Sun, Ling Liu, Xiujun Zhang, and Jinbiao Zhao. 2023. "Effect of Arabinoxylan and Xylo-Oligosaccharide on Growth Performance and Intestinal Barrier Function in Weaned Piglets" Animals 13, no. 6: 964. https://doi.org/10.3390/ani13060964
APA StyleSun, F., Li, H., Sun, Z., Liu, L., Zhang, X., & Zhao, J. (2023). Effect of Arabinoxylan and Xylo-Oligosaccharide on Growth Performance and Intestinal Barrier Function in Weaned Piglets. Animals, 13(6), 964. https://doi.org/10.3390/ani13060964