Sanitization of Biomass in Agricultural Biogas Plants Depends on the Type of Substrates
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Samples
2.2. Biogas Plant Characteristics
- A preliminary tank with a capacity of 962 m3, in which slurry from the farm was stored.
- A component tank with a capacity of 962 m3.
- A fermentation tank with a capacity of 3990 m3.
- A post-fermentation tank with a capacity of 2490 m3, which was also a biogas storage.
- A preliminary tank with a capacity of 950 m3, in which slurry from the farm was stored.
- Two stirred fermentation tanks, both with a capacity of 3884 m3.
- A post-fermentation tank with a capacity of 2490 m3, which was also a biogas storage.
2.3. Biological Sample Collection
2.4. Parameters of the Methane Fermentation Process
- Daily average temperature;
- pH in fermentation chambers;
- Hydraulic retention time (HRT);
- Concentration of volatile fatty acids (VFA) in fermenting biomass.
2.5. Physicochemical Analyses
2.5.1. Contents of Dry Matter, Dry Organic Matter, and Crude Ash
2.5.2. Ammonium Nitrogen Content
2.6. Microbiological Analyses
2.6.1. Quantification of Selected Groups of Bacteria
2.6.2. Effectiveness of Sanitization in a Biogas Plant
2.7. Statistical Analyses
3. Results and Discussion
3.1. Basic Chemical Composition of Slurry
3.2. Input Biomass Composition
3.3. Composition of Fermentation Residues
3.4. Parameters of Methane Fermentation in the Biogas Plants
3.5. Efficiency of Sanitization of Slurry, Input Biomass, and Digestate Residues in the Biogas Plants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buelna, G.; Dubé, R.; Turgeon, N. Pig manure treatment by organic bed biofiltration. Desalination 2008, 231, 297–304. [Google Scholar] [CrossRef]
- Foged, H.; Flotats, X.; Blasi, A.; Palatsi, J.; Magri, A.; Schelde, K. Inventory of Manure Processing Activities in Europe. Available online: https://upcommons.upc.edu/bitstream/handle/2117/18943/21010_technical_report_I_inventory.pdf?sequence=1&isAllowed=y (accessed on 15 February 2018).
- Lin, Y.W.; Tuan, N.N.; Huang, S.L. Metaproteomic analysis of the microbial community present in a thermophilic swine manure digester to allow functional characterization: A case study. Int. Biodeterior. Biodegrad. 2016, 115, 64–73. [Google Scholar] [CrossRef]
- Seidavi, A.R.; Zaker-Esteghamati, H.; Scanes, C.G. Present and potential impacts of waste from poultry production on the environment. Worlds Poult. Sci. J. 2019, 75, 29–42. [Google Scholar] [CrossRef]
- Iannotti, E.L.; Fischer, J.R.; Sievers, D.M. Characterization of bacteria from a swine manure digester. Appl. Environ. Microbiol. 1982, 43, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Guan, T.Y.; Holley, R.A. Pathogen survival in swine manure environments and transmission of human enteric illness—A Review. J. Environ. Qual. 2003, 32, 383–392. [Google Scholar] [CrossRef]
- Iwu, C.D.; Okoh, A.I. Preharvest transmission routes of fresh produce associated bacterial pathogens with outbreak potentials: A review. Int. J. Environ. Res. Public Health 2019, 16, 4407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ada, K.O.E.; Clare, E.C.; Chidinma, O.E.S. Isolation of multidrug resistant and extended spectrum β-Lactamase producing bacteria from faecal samples of piggery farms in Anambra State, Nigeria. Am. J. Infect. Dis. 2021, 9, 106–113. [Google Scholar]
- Adeolu, M.; Alnajar, S.; Naushad, S.S.; Gupta, R. Genome-Based Phylogeny and Taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales Ord. Nov. Divided into the Families Enterobacteriaceae, Erwiniaceae Fam. Nov., Pectobacteriaceae Fam. Nov., Yersiniaceae Fam. Nov., Hafniaceae Fam. Nov., Morganellaceae Fam. Nov., and Budviciaceae Fam. Nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [Google Scholar] [CrossRef] [PubMed]
- Bicudo, J.R.; Goyal, S.M. Pathogens and manure management systems: A review. Environ. Technol. 2003, 24, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Cotta, M.A.; Whitehead, T.R.; Zeltwanger, R.L. Isolation, characterization and comparison of bacteria from swine faeces and manure storage pits. Environ. Microbiol. 2003, 5, 737–745. [Google Scholar] [CrossRef] [Green Version]
- Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R.; Harwood, V.J. Enterococci in the environment. Microbiol. Mol. Biol. Rev. 2012, 76, 685–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agga, G.E.; Arthur, T.M.; Durso, L.M.; Harhay, D.M.; Schmidt, J.W. Antimicrobial-resistant bacterial populations and antimicrobial resistance genes obtained from environments impacted by livestock and municipal waste. PLoS ONE 2015, 10, e0132586. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, V.; Cresence, V.M.; Rejitha, J.S.; Lekshmi, M.U.; Dharsana, K.S.; Prasad, S.P.; Vijila, H.M. Listeria-review of epidemiology and pathogenesis. J. Microbiol. Immunol. Infect. 2007, 40, 4–13. [Google Scholar] [PubMed]
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H. Biogas as a renewable energy source—A review. Energy Source Part A 2009, 31, 1280–1293. [Google Scholar] [CrossRef]
- Curkowski, A.; Mroczkowski, P.; Oniszk-Popławska, A.; Wiśniewski, G. Biogaz Rolniczy-Produkcja i Wykorzystanie. Warszawa: Mazowiecka Agencja Energetyczna Sp. z o.o. 2009. Available online: http://www.mae.com.pl/files/poradnik_biogazowy_mae.pdf (accessed on 12 January 2016).
- Weiland, P. Biogas Production: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef] [PubMed]
- WBA. World Global Bioenergy Statistics. 2017. Available online: https://www.worldbioenergy.org/uploads/WBA%20GBS%202017_hq.pdf (accessed on 6 February 2017).
- Tambone, F.; Scaglia, B.; D’Imporzano, G.; Schievano, A.; Orzi, V.; Salati, S.; Adani, F. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 2010, 81, 577–583. [Google Scholar] [CrossRef]
- Grudziński, M.; Pietruszka, A.; Sawicki, W. Anaerobic digestion in sanitization of pig slurry and biomass in agricultural biogas plant. J. Microbiol. Biotechnol. 2015, 4, 524–526. [Google Scholar] [CrossRef] [Green Version]
- Bendixen, H.J. Safeguards against pathogens in danish biogas plants. Water Sci. Technol. 1994, 30, 171–180. [Google Scholar] [CrossRef]
- Duarte, E.A.; Mendes, B.; Oliveira, J.S. Removal of Salmonella, streptococci and coliforms in pig breeding effluent by anaerobic mesophilic digestion. Water Sci. Technol. 1992, 26, 2169–2172. [Google Scholar] [CrossRef]
- Côté, C.; Massé, D.I.; Quessy, S. Reduction of indicator and pathogenic microorganisms by psychrophilic anaerobic digestion in swine slurries. Bioresour. Technol. 2006, 97, 686–691. [Google Scholar] [CrossRef]
- Pandey, P.K.; Soupir, M.L. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures. AMB Express 2011, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- Manyi-Loh, C.E.; Mamphweli, S.N.; Meyer, E.L.; Makaka, G.; Simon, M.; Okoh, A.I. An overview of the control of bacterial pathogens in cattle manure. Int. J. Environ. Res. Public Health 2016, 13, 843. [Google Scholar] [CrossRef] [Green Version]
- Strauch, D. Survival of pathogenic micro-organisms and parasites in excreta, manure and sewage sludge. Rev. Sci. Tech. 1991, 10, 813–846. [Google Scholar] [CrossRef] [PubMed]
- Sahlström, L. A Review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour. Technol. 2003, 87, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Latimer, G.W. Official Methods of Analysis of AOAC International. Available online: http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=BFHIA.xis&method=post&formato=2&cantidad=1&expresion=mfn=016229 (accessed on 6 February 2017).
- Myczko, A.; Myczko, R.; Kołodziejczyk, T.; Golimowska, R.; Lenarczyk, J.; Janas, Z.; Kliber, A.; Karłowski, J.; Dolska, M. Poradnik Dla Inwestorów Zainteresowanych Budową Biogazowni Rolniczych; Publisher: Kraków, Poland, 2011. [Google Scholar]
- Waring, S.A.; Bremner, J.M. Ammonium Production in soil under waterlogged conditions as an index of nitrogen availability. Nature 1964, 201, 951–952. [Google Scholar] [CrossRef]
- Marszałek, M.; Kowalski, Z.; Makara, A. Physicochemical and microbiological characteristics of pig slurry. Czasopismo Techniczne. Chemia 2014, 18, 81–91. [Google Scholar]
- Kowalski, Z.; Makara, A.; Fijorek, K. Changes in the Properties of Pig Manure Slurry. Acta Biochim. Pol. 2013, 60, 845–850. [Google Scholar] [CrossRef] [Green Version]
- Latimier, P.; Dourmad, J.Y. Effect of three protein feeding strategies, for growing-finishing pigs, on growth performance and nitrogen output in the slurry and in the air. In EAAP Publication (Netherlands); Pudoc Scientific Publishers: Wageningen, The Netherlands, 1993. [Google Scholar]
- van der Peet-Schwering, C.; Verdoes, N.; Voermans, M. Effect van voeding en huisvesting op de ammoniakemissie uit vleesvarkensstallen. Prakt. Varkenshoud. 1996, 10, 17–19. [Google Scholar]
- Guillou, D.; Dourmad, J.Y.; Noblet, J. Influence de l’alimentation, du Stade Physiologique et des Performances sur les Rejets Azote´s du Porc Al’engrais, de la Truie et du Porcelet. J. Rech. Porcine Fr. 1993, 25, 307–313. [Google Scholar]
- Everts, H. Nitrogen and Energy Metabolism of Sows during Several Reproductive Cycles in Relation to Nitrogen Intake. Available online: https://edepot.wur.nl/205958 (accessed on 16 September 2019).
- Dourmad, J.Y.; Guingand, N.; Latimier, P.; Sève, B. Nitrogen and phosphorus consumption, utilisation and losses in pig production: France. Livest. Prod. Sci. 1999, 58, 199–211. [Google Scholar] [CrossRef]
- Fernández, J.A.; Poulsen, H.D.; Boisen, S.; Rom, H.B. Nitrogen and phosphorus consumption, utilisation and losses in pig production: Denmark. Livest. Prod. Sci. 1999, 58, 225–242. [Google Scholar] [CrossRef]
- Smith, K.A.; Charles, D.R.; Moorhouse, D. Nitrogen excretion by farm livestock with respect to land spreading requirements and controlling nitrogen losses to ground and surface waters. Part 2: Pigs and poultry. Bioresour. Technol. 2000, 71, 183–194. [Google Scholar] [CrossRef]
- Sánchez, M.; González, J.L. The fertilizer value of pig slurry. I. Values depending on the type of operation. Bioresour. Technol. 2005, 96, 1117–1123. [Google Scholar] [CrossRef]
- Winnicki, S.; Pleskot, R.; Zając, G. Ekspertyza. Technika i Technologia Produkcji Trzody Chlewnej. Available online: http://www.agengpol.pl (accessed on 17 March 2018).
- Igoni, A.; Abowei, M.F.N.; Ayotamuno, M.J.; Chibuogwu, E. Effect of Total Solids Concentration of Municipal Solid Waste on the Biogas Produced in an Anaerobic Continuous Digester. Agric. Eng. Int. the CIGRE J. 2008, X, 7–10. [Google Scholar]
- Motte, J.-C.; Trably, E.; Escudié, R.; Hamelin, J.; Steyer, J.-P.; Bernet, N.; Delgenes, J.-P.; Dumas, C. Total solids content: A key parameter of metabolic pathways in dry anaerobic digestion. Biotechnol. Biofuels 2013, 6, 164. [Google Scholar] [CrossRef] [Green Version]
- Angelonidi, E.; Smith, S.A. Comparison of wet and dry anaerobic digestion processes for the treatment of municipal solid waste and food waste. Water Environ. J. 2015, 29, 549–557. [Google Scholar] [CrossRef]
- Holm-Nielsen, J.B.; Halberg, N.; Hutingford, S.; Al Seadi, T. Joint biogas plant. Agricultural advantages—Circulation of N, P and K. In Report Made for the Danish Energy Agency, 2nd ed.; Danish Energy Agency: Copenhagen, Denmark, 1997. [Google Scholar]
- Qi, G.; Pan, Z.; Sugawa, Y.; Andriamanohiarisoamanana, F.J.; Yamashiro, T.; Iwasaki, M.; Kawamoto, K.; Ihara, I.; Umetsu, K. Comparative fertilizer properties of digestates from mesophilic and thermophilic anaerobic digestion of dairy manure: Focusing on plant growth promoting bacteria (PGPB) and environmental risk. J. Mater. Cycles Waste Manag. 2018, 20, 1448–1457. [Google Scholar] [CrossRef]
- Gunaseelan, N.V. Effect of inoculum/substrate ratio and pretreatments on methane yield from Parthenium. Biomass Bioenerg. 1995, 8, 39–44. [Google Scholar] [CrossRef]
- Kawai, M.; Nagao, N.; Tajima, N.; Niwa, C.; Matsuyama, T.; Toda, T. The effect of the labile organic fraction in food waste and the substrate/inoculum ratio on anaerobic digestion for a reliable methane yield. Bioresour. Technol. 2014, 157, 174–180. [Google Scholar] [CrossRef]
- Tseu, R.J.; Perna Junior, F.; Carvalho, R.F.; Sene, G.A.; Peres, A.H.; Tropaldi, C.B.; Dos Anjos, F.; Rodrigues, P.H.M. Gas emission from waste of cows fed monensin and Acacia mearnsii tannins. Iran. J. Appl. Anim. Sci. 2021, 11, 443–456. [Google Scholar]
- Barlaz, M.A.; Schaefer, D.M.; Ham, R.K. Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Appl. Environ. Microbiol. 1989, 55, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Sträuber, H.; Lucas, R.; Kleinsteuber, S. Metabolic and microbial community dynamics during the anaerobic digestion of maize silage in a two-phase process. Appl. Microbiol. Biotechnol. 2016, 100, 479–491. [Google Scholar] [CrossRef]
- Møller, H.B. Separation efficiency and particle size distribution in relation to manure type and storage conditions. Bioresour. Technol. 2002, 85, 189–196. [Google Scholar] [CrossRef]
- Costa, A.; Gusmara, C.; Gardoni, D.; Zaninelli, M.; Tambone, F.; Sala, V.; Guarino, M. The Effect of Anaerobic Digestion and Storage on indicator microorganisms in swine and dairy manure. Environ. Sci. Pollut. Res. Int. 2017, 24, 24135–24146. [Google Scholar] [CrossRef]
- Kim, J.K.; Oh, B.R.; Chun, Y.N.; Wouk Kim, S.W. Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J. Biosci. Bioeng. 2006, 102, 328–332. [Google Scholar] [CrossRef]
- Termorshuizen, A.J.; Volker, D.; Blok, W.J.; ten Brummeler, E.; Hartog, B.J.; Janse, J.D.; Knol, W.; Wenneker, M. Survival of human and plant pathogens during anaerobic mesophilic digestion of vegetable, fruit, and garden waste. Eur. J. Soil Biol. 2003, 39, 165–171. [Google Scholar] [CrossRef]
- Horan, N.J.; Fletcher, L.; Betmal, S.M.; Wilks, S.A.; Keevil, C.W. Die-off of enteric bacterial pathogens during mesophilic anaerobic digestion. Water Res. 2004, 38, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Massé, D.I.; Talbot, G.; Gilbert, Y. A Scientific review of the agronomic, environmental and social benefits of anaerobic digestion. In Anaerobic Digestion: Processes, Products and Applications; Nova Science Publishers: Hauppauge, NY, USA, 2011. [Google Scholar]
- McCarthy, G.; Lawlor, P.G.; Harrington, C.; Gardiner, G.E. Microbial removal from the separated liquid fraction of anaerobically digested pig manure in meso-scale integrated constructed wetlands. Bioresour. Technol. 2011, 102, 9425–9431. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, G.; Lawlor, P.G.; Carney, K.N.; Zhan, X.; Gutierrez, M.; Gardiner, G.E. An investigation into the removal of Salmonella and enteric indicator bacteria from the separated liquid fraction of raw or anaerobically digested pig manure using novel on-farm woodchip biofilters. Sci. Total Environ. 2015, 514, 140–146. [Google Scholar] [CrossRef]
- Juris, P.; Tóth, F.; Lauková, A.; Plachý, P.; Dubinský, P.; Sokol, J. Survival of model bacterial strains and helminth eggs in the course of mesophilic anaerobic digestion of pig slurry. Vet. Med. 1996, 41, 149–153. [Google Scholar]
- Watcharasukarn, M.; Kaparaju, P.; Steyer, J.-P.; Krogfelt, K.A.; Angelidaki, I. Screening Escherichia coli, Enterococcus faecalis, and Clostridium perfringens as indicator organisms in evaluating pathogen-reducing capacity in biogas plants. Microb. Ecol. 2009, 58, 221–230. [Google Scholar] [CrossRef] [PubMed]
- De Luca, G.; Zanetti, F.; Fateh-Moghadm, P.; Stampi, S. Occurrence of Listeria monocytogenes in sewage sludge. Zentralbl. Hyg. Umw. 1998, 201, 269–277. [Google Scholar]
Total Protein Content [%] | Amino Acid Content [g/kg] | ||||
---|---|---|---|---|---|
Lysine | Methionine with Cystine | Threonine | Tryptophan | ||
Fattening farm | 15.5 | 8.31 | 4.83 | 5.46 | 1.61 |
17.6 | 9.50 | 5.33 | 6.12 | 1.93 | |
18.2 | 12.5 | 6.51 | 7.47 | 2.57 | |
Maternal farm | 13.5 | 5.01 | 3.82 | 3.61 | 1.20 |
13.7 | 6.46 | 4.18 | 4.32 | 1.23 | |
15.5 | 8.84 | 5.08 | 5.71 | 1.66 | |
18.2 | 12.5 | 6.51 | 7.47 | 2.57 | |
18.5 | 13.0 | 6.86 | 8.06 | 2.73 | |
19.4 | 14.1 | 6.86 | 8.48 | 2.75 |
Parameter | BP-M | BP-F |
---|---|---|
DM [%] | 2.25 A ± 1.92 | 5.32 B ± 1.66 |
DOM [%] | 66.0 A ± 11.24 | 74.4 B ± 3.51 |
CA [%] | 0.600 A ± 0.371 | 1.31 B ± 0.290 |
NH4-N [g/kg] | 1.91 A ± 0.290 | 3.44 B ± 0.390 |
Parameter | BP-M | BP-F |
---|---|---|
Slurry content [%] | 44.4 A ± 6.57 | 71.2 B ± 6.60 |
DM [%] | 5.39 A ± 1.33 | 9.44 B ± 1.46 |
DOM [%] | 80.8 A ± 4.22 | 85.2 B ± 1.53 |
CA [%] | 0.991 A ± 0.130 | 1.38 B ± 0.210 |
NH4-N [g/kg] | 2.01 A ± 0.260 | 3.12 B ± 0.272 |
Parameter | BP-M | BP-F |
---|---|---|
DM [%] | 4.50 A ± 1.17 | 4.36 A ± 1.11 |
DOM [%] | 75.6 A ± 4.06 | 71.7 B ± 2.32 |
CA [%] | 1.09 A ± 0.351 | 1.22 B ± 0.253 |
NH4-N [g/kg] | 2.17 A ± 0.212 | 3.53 B ± 0.271 |
Parameter | BP-M | BP-F |
---|---|---|
Temperature [°C] | 46.7 A ± 3.61 | 50.2 B ± 2.62 |
pH | 7.51 A ± 0.390 | 7.96 B ± 0.0301 |
VFA [mg/L] | 3716 A ± 1000 | 4542 A ± 1493 |
HRT [days] | 121 A ± 15.5 | 73.6 B ± 15.4 |
Group of Microorganisms | Slurry | Input Biomass | Fermentation Residues |
---|---|---|---|
Total number of microorganisms | 7.01 AB ± 0.924 | 7.72 A ± 0.424 | 6.63 B ± 0.840 |
Enterobacteriaceae | 4.89 A ± 0.454 | 4.68 A ± 1.04 | 2.26 B ± 1.86 |
E. coli | 4.20 A ± 0.635 | 3.67 A ± 0.802 | 0.410 B ± 1.06 |
H. alvei | 3.46 A ± 0.612 | 3.98 A ± 0.953 | 1.54 A ± 1.82 |
Enterococcus spp. | 5.61 A ± 0.901 | 5.16 A ± 1.51 | 2.93 B ± 2.18 |
Group of Microorganisms | Slurry | Input Biomass | Fermentation Residues |
---|---|---|---|
Total number of microorganisms | 8.35 A ± 0.601 | 8.40 A ± 0.501 | 6.40 B ± 0.891 |
Enterobacteriaceae | 4.93 A ± 0.492 | 5.44 B ± 0.512 | 2.45 C ± 1.26 |
E. coli | 4.34 A ± 0.483 | 4.47 A ± 0.643 | 0.00 B ± 0.00 |
H. alvei | 4.24 A ± 0.412 | 5.02 B ± 0.584 | 0.194 C ± 0.413 |
Enterococcus spp. | 7.29 A ± 0.851 | 7.08 A ± 0.753 | 3.94 C ± 2.03 |
Parameter | BP-M | BP-F |
---|---|---|
Rtotal [%] | 80.3 A ± 26.4 | 94.3 B ± 11.4 |
REnterobacteriaceae [%] | 92.9 A ± 18.2 | 99.3 B ± 1.39 |
RE. coli [%] | 97.3 A ± 7.70 | >99.9 A |
RH. alvei [%] | 90.1 A ± 21.7 | 99.9 B ± 0.041 |
REnterococcus [%] | 94.8 A ± 6.44 | 97.0 A ± 7.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietruszka, A.; Maślanko, M.; Ciecholewska-Juśko, D. Sanitization of Biomass in Agricultural Biogas Plants Depends on the Type of Substrates. Animals 2023, 13, 855. https://doi.org/10.3390/ani13050855
Pietruszka A, Maślanko M, Ciecholewska-Juśko D. Sanitization of Biomass in Agricultural Biogas Plants Depends on the Type of Substrates. Animals. 2023; 13(5):855. https://doi.org/10.3390/ani13050855
Chicago/Turabian StylePietruszka, Arkadiusz, Marta Maślanko, and Daria Ciecholewska-Juśko. 2023. "Sanitization of Biomass in Agricultural Biogas Plants Depends on the Type of Substrates" Animals 13, no. 5: 855. https://doi.org/10.3390/ani13050855
APA StylePietruszka, A., Maślanko, M., & Ciecholewska-Juśko, D. (2023). Sanitization of Biomass in Agricultural Biogas Plants Depends on the Type of Substrates. Animals, 13(5), 855. https://doi.org/10.3390/ani13050855