Comparison of Nutritional Components, Ruminal Degradation Characteristics and Feed Value from Different Cultivars of Alfalfa Hay
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Alfalfa Cultivars and Grown Regions
2.2. Nutritional Components and Feed Value
2.3. In Situ Rumen Degradation
2.4. Statistical Analysis
3. Results
3.1. Difference in Nutritional Components of Various Cultivars of Alfalfa Hay
3.2. Difference in CP Rumen Degradation of Various Cultivars of Alfalfa Hay
3.3. Difference in DM Rumen Degradation of Various Cultivars of Alfalfa Hay
3.4. Difference in NDF Rumen Degradation of Various Cultivars of Alfalfa Hay
3.5. Difference in ADF Rumen Degradation of Various Cultivars of Alfalfa Hay
3.6. Difference in Feed Value of Various Cultivars of Alfalfa Hay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Wang, B.; Mao, S.Y.; Yang, H.J.; Wu, Y.M.; Wang, J.K.; Li, S.L.; Shen, Z.M.; Liu, J.X. Effects of alfalfa and cereal straw as a forage source on nutrient digestibility and lactation performance in lactating dairy cows. J. Dairy Sci. 2014, 97, 7706–7715. [Google Scholar] [CrossRef] [Green Version]
- Haselmann, A.; Wenter, M.; Knaus, W.F.; Fuerst-Waltl, B.; Zebeli, Q.; Winckler, C. Forage particle size and forage preservation method modulate lying behaviour in dairy cows. Appl. Anim. Behav. Sci. 2022, 254, 105711. [Google Scholar] [CrossRef]
- Razzaghi, A.; Leskinen, H.; Ahvenjärvi, S.; Aro, H.; Bayat, A.R. Energy utilization and milk fat responses to rapeseed oil when fed to lactating dairy cows receiving different dietary forage to concentrate ratio. Anim. Feed Sci. Tech. 2022, 293, 115454. [Google Scholar] [CrossRef]
- Cremilleux, M.; Coppa, M.; Bouchon, M.; Delaby, L.; Beaure, G.; Constant, I.; Natalello, A.; Martin, B.; Michaud, A. Effects of forage quantity and access-time restriction on feeding behaviour, feed efficiency, nutritional status, and dairy performance of dairy cows fed indoors. Animal 2022, 16, 100608. [Google Scholar] [CrossRef]
- Yari, M.; Valizadeh, R.; Naserian, A.A.; Ghorbani, G.R.; Moghaddam, P.R.; Jonker, A.; Yu, P. Botanical traits, protein and carbohydrate fractions, ruminal degradability and energy contents of alfalfa hay harvested at three stages of maturity and in the afternoon and morning. Anim. Feed Sci. Technol. 2012, 172, 162–170. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; NRC: Washington, DC, USA, 2001.
- Kulkarni, K.P.; Tayade, R.; Asekova, S.; Song, J.T.; Shannon, J.G.; Lee, J.D. Harnessing the potential of forage legumes, alfalfa, soybean, and cowpea for sustainable agriculture and global food security. Front. Plant Sci. 2018, 9, 1314. [Google Scholar] [CrossRef]
- Zhang, G.J.; Wang, Y.; Yan, Y.H.; Hall, M.H.; Undersander, D.J.; Combs, D.K. Comparison of two in situ reference methods to estimate indigestible NDF by near infrared reflectance spectroscopy in alfalfa. Heliyon 2021, 7, e07313. [Google Scholar] [CrossRef]
- Zhu, W.; Fu, Y.; Wang, B.; Wang, C.; Ye, J.A.; Wu, Y.M.; Liu, J.X. Effects of dietary forage sources on rumen microbial protein synthesis and milk performance in early lactating dairy cows. J. Dairy Sci. 2013, 96, 1727–1734. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.Y.; Wan, Y.; Yao, X.H.; Zhao, W.G.; Hu, R.Z.; Chen, C.; Li, L.; Zhang, D.Y.; Wu, G.H. Effect of different planting areas on the chemical compositions and hypoglycemic and antioxidant activities of mulberry leaf extracts in Southern China. PLoS ONE 2018, 13, e0198072. [Google Scholar] [CrossRef]
- Available online: https://www.chyxx.com/industry/1123206.html (accessed on 24 August 2022).
- Tharangani, R.M.H.; Yakun, C.; Zhao, L.S.; Shen, Y.F.; Ma, L.; Bu, D.P. Proposal and validation of integrated alfalfa silage quality index (ASQI) method for the quality assessment of alfalfa silage for lactating dairy cows. Anim. Feed Sci. Technol. 2022, 289, 115339. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Q.; Nie, Y.; Li, F.; Yang, G.; Tao, Y.; Lv, S.; Wu, X.; Ye, L. A multi-site evaluation of winter hardiness in indigenous alfalfa cultivars in northern China. Atmosphere 2021, 12, 1538. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists; Official Methods of Analysis, 20th ed.; AOAC: Arlington, VA, USA, 2016. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Ørskov, E.R.; Mcdonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Kung, L., Jr. Understanding the biology of silage preservation to maximize quality and protect the environment. In Proceedings of the 2010 California Alfalfa & Forage Symposium and Corn/Cereal Silage Conference, Visalia, CA, USA, 1–2 December 2010. [Google Scholar]
- Xiong, Y.; Xu, Q.f.; Yu, Z.; Ji, G.; Ou, X.; Ma, L.Y.; Liang, Q.; Shi, Y.; Li, J.L. Evaluation of nutritional composition and feeding value of different alfalfa hay. Acta Grassl. 2018, 26, 1262–1266. [Google Scholar]
- Schwab, C.G.; Broderick, G.A. A 100-Year Review: Protein and amino acid nutrition in dairy cows. J. Dairy Sci. 2017, 100, 10094–10112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, Y. Effects of different roughages on rumen degradability and nutrient digestibility of Horqin beef cattle. Feed Res. 2019, 42, 15–19. [Google Scholar]
- Wang, Q.H.; Guo, H.R.; Zheng, A.R.; He, Y.H.; Niu, Y.; Wang, Y.X. Nutritional composition analysis and quality classification of imported alfalfa hay. China Dairy Cattle 2019, 352, 60–63. [Google Scholar]
- Huxman, T.E.; Smith, M.D.; Fay, P.A.; Knapp, A.K.; Shaw, M.R.; Loik, M.E.; Smith, S.D.; Tissue, D.T.; Zak, J.C.; Weltzin, J.F.; et al. Convergence across biomes to a common rain-use efficiency. Nature 2004, 429, 651–654. [Google Scholar] [CrossRef]
- Wang, N.; Wang, E.; Wang, J.; Zhang, J.P.; Zheng, B.Y.; Huang, Y.; Tan, M.X. Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agric. For. Meteorol. 2018, 250, 319–329. [Google Scholar] [CrossRef]
- Lv, Y.L.; He, Y.; Zhao, L.R. A study on production performance of different alfalfa varieties. Acta Grassl. 2010, 18, 365–371. [Google Scholar]
- Song, Y.; Song, C.C.; Meng, H.N.; Swarzenski, C.M.; Wang, X.W.; Tan, W.W. Nitrogen additions affect litter quality and soil biochemical properties in a peatland of Northeast China. Ecol. Eng. 2017, 100, 175–185. [Google Scholar] [CrossRef]
- Pirondini, M.; Colombini, S.; Mele, M.; Malagutti, L.; Rapetti, L.; Galassi, G.; Crovetto, G.M. Effect of dietary starch concentration and fish oil supplementation on milk yield and composition, diet digestibility, and methane emissions in lactating dairy cows. J. Dairy Sci. 2015, 98, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.Y.; Jie, X.L.; Hua, D.L.; Liu, S.L.; Liu, F.; Ma, C.; Gao, C.M. Effects of combined application of boron, manganese and molybdenum on the yield and mineral element absorption of alfalfa. Chin. Agric. Sci. Bull. 2009, 25, 182–185. [Google Scholar]
- Balgees, A.; Elmnan, A.; Elseed, A.F.; Mahala, A.G.; Amasiab, E.O. In situ degradability and in vitro gas production of selected multipurpose tree leaves and alfalfa as ruminant feeds. World’s Vet. J. 2013, 3, 46–50. [Google Scholar] [CrossRef]
- Jonker, A.; Yu, P. The occurrence, biosynthesis, and molecular structure of proanthocyanins and their effects on legume forage protein precipitation, digestion and absorption in the ruminant digestive tract. Int. J. Mol. Sci. 2017, 18, 1105. [Google Scholar] [CrossRef] [Green Version]
- Jonker, A.; Yu, P. The role of proanthocyanins complex in structure and nutrition interaction in alfalfa forage. Int. J. Mol. Sci. 2016, 17, 793. [Google Scholar] [CrossRef] [Green Version]
- Mould, F.L.; Ørskov, E.R.; Mann, S.O. Associative effects of mixed feeds. I. Effects of type and level of supplementation and the influence of the rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Anim. Feed Sci. Tech. 1983, 10, 15–30. [Google Scholar] [CrossRef]
- Saleem, A.M.; Ribeiro, G.O.; Sanderson, H.; Alipour, D.; Brand, T.; Hünerberg, M.; Yang, W.Z.; Santos, L.V.; McAllister, T.A. Effect of exogenous fibrolytic enzymes and ammonia fiber expansion on the fermentation of wheat straw in an artificial rumen system (RUSITEC)1. J. Anim. Sci. 2019, 97, 3535–3549. [Google Scholar] [CrossRef] [Green Version]
- Xia, K.; Yao, Q.; Li, F.G.; Li, M.; Duan, C.Y.; Xi, W.B.; Zhang, Y.G. Rumen degradation of common roughage for dairy cows. J. Anim. Nutr. 2012, 24, 769–777. [Google Scholar]
- Sharma, K.; Dutta, N.; Pattanaik, A.K.; Hasan, Q.Z. Replacement value of undecorticated sunflower meal as a supplement for milk production by crossbred cows and buffaloes in the northern plains of India. Trop. Anim. Health. Prod. 2003, 35, 131–145. [Google Scholar] [CrossRef]
- Eun, J.S.; Beauchemin, K.A. Effects of a proteolytic feed enzyme on intake, digestion, ruminal fermentation, and milk production. J. Dairy Sci. 2005, 88, 2140–2153. [Google Scholar] [CrossRef] [Green Version]
- Fekadu, D.; Walelegn, M.; Terefe, G. Indexing ethiopian feed stuffs using relative feed value: Dry forages and roughages, energy supplements, and protein supplements. J. Biol. Agric. Healthc. 2017, 7, 2224–3208. [Google Scholar]
- Hassan, H.H.M.; El-Sobky, E.S.E.A.; Mansour, E.; El-Kholy, A.S.M.; Awad, M.F. Influence of preceding crop and tillage system on forage yield and quality of selected summer grass and legume forage crops under arid conditions. J. Integr. Agric. 2022, 21, 3329–3344. [Google Scholar] [CrossRef]
- Wang, F.; He, Z.; He, C. Effects of different densities and varieties on nutrients content and yield of photoperiod-Sensitive sorghum-Sudan hybrids in summer sowing. China Feed. 2018, 1, 21–26. [Google Scholar]
- Chen, Y.; Wang, Z.S.; Zhang, X.M.; Wu, F.L.; Zou, H.W. Analysis of nutrient composition and feeding value of common roughage feed. Acta Prataculturae Sin. 2015, 24, 117–125. [Google Scholar]
- Ma, Y.; Khan, M.Z.; Liu, Y.; Xiao, J.; Chen, X.; Ji, S.; Cao, Z.; Li, S. Analysis of nutrient composition, rumen degradation characteristics, and feeding value of Chinese rye grass, barley grass, and naked oat straw. Animals 2021, 11, 2486. [Google Scholar] [CrossRef]
- Liu, J.X.; Han, J.; Pan, Z.L.; Hou, Z.P.; Chen, L.B.; Wang, W.J. Nutritional value analysis of alfalfa hay from several different sources. China Dairy Cow. 2012, 6, 17–18. [Google Scholar]
Items | Sample Description | Growing Area | Sampling Time | Longitude | Latitude |
---|---|---|---|---|---|
AA | Anderson, budding stage | Wisconsin, USA | 2016.09.18 | 86°49′~92°54′ W | 42°30′~47°30′ N |
GE | Golden empress, first flowering | Ohio, USA | 2016.10.04 | 80°32′~84°49′ W | 38°27′~41°58′ N |
ZM1 | Zhongmu No. 1, first flowering | Zhangjiakou, China | 2016.10.04 | 113°50′~116°30′ E | 39°30′~42°10′ N |
GN1 | Gongnong No. 1, first flowering | Fujin, China | 2016.09.24 | 131°25′~133°26′ E | 46°45′~47°45′ N |
Ingredients | Contents % |
---|---|
Chinese wildrye | 6.38 |
Alfalfa hay | 20.31 |
Oat hay | 5.58 |
Wheat | 1.76 |
Corn silage | 24.48 |
Corn | 3.66 |
Steam-flaked corn | 13.52 |
Soybean meal | 6.55 |
Extruded soybean | 3.76 |
Soybean hull | 3.00 |
Cottonseed | 3.41 |
Molasses | 3.80 |
Rumen-pass fatty acid | 1.20 |
Yeast powder | 0.20 |
Mycotoxin removement agent | 0.06 |
NaCl | 0.31 |
Limestone | 0.32 |
Ca(HCO3)2 | 0.34 |
NaHPO3 | 0.67 |
KHCO3 | 0.26 |
Premix (1) | 0.31 |
MgO | 0.12 |
NEL (MJ/kg) (2) | 5.68 |
CP | 15.01 |
EE | 3.40 |
NDF | 41.03 |
ADF | 26.69 |
Ca | 0.55 |
P | 0.39 |
Items 1 | DM | CP | NDF | ADF | EE | Ash | Starch | Ca | P |
---|---|---|---|---|---|---|---|---|---|
AA | 91.11 c | 19.02 a | 43.76 c | 32.99 c | 2.30 bc | 8.52 c | 4.25 a | 1.34 a | 0.34 b |
GE | 92.10 a | 18.29 b | 43.18 c | 34.02 c | 2.18 c | 8.73 b | 4.10 a | 1.24 b | 0.36 a |
ZM1 | 91.17 b | 16.05 c | 53.63 a | 42.30 a | 2.38 b | 9.00 a | 3.91 b | 1.24 b | 0.23 d |
GN1 | 89.86 d | 18.41 ab | 49.08 b | 38.69 b | 2.57 a | 7.91 d | 3.78 b | 1.34 a | 0.25 c |
SEM | 0.014 | 0.205 | 0.331 | 0.361 | 0.065 | 0.063 | 0.052 | 0.011 | 0.002 |
p-value 2 | <0.01 | <0.01 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Items 1 | Real-Time Degradability Rate (%) | Degradation Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 h | 8 h | 12 h | 24 h | 30 h | 36 h | 48 h | 72 h | a (%) | b (%) | c (%/h) | a + b (%) | ED (%) | |
AA | 46.65 ab | 56.70 | 65.50 ab | 74.41 a | 77.47 a | 79.56 a | 80.41 a | 81.61 a | 31.21 | 50.20 | 0.09 | 81.40 a | 68.50 a |
GE | 48.05 a | 57.06 | 68.64 a | 72.05 ab | 75.32 a | 76.23 b | 77.94 b | 80.58 a | 32.14 | 46.40 | 0.11 | 78.54 b | 68.28 a |
ZM1 | 43.45 b | 52.84 | 61.49 b | 69.26 b | 70.38 b | 72.84 c | 74.37 c | 77.48 b | 31.18 | 44.50 | 0.08 | 75.68 c | 63.69 b |
GN1 | 45.24 ab | 55.92 | 65.51 ab | 72.02 ab | 75.56 a | 77.84 ab | 78.84 ab | 81.51 a | 30.42 | 49.95 | 0.09 | 80.37 a | 67.30 b |
SEM | 1.071 | 1.661 | 1.336 | 1.552 | 1.016 | 0.646 | 0.602 | 0.642 | 3.691 | 3.482 | 0.019 | 0.538 | 0.552 |
p-value 2 | 0.06 | 0.301 | 0.02 | 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | 0.99 | 0.60 | 0.40 | <0.01 | <0.01 |
Items 1 | Real-time Degradability Rate (%) | Degradation Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 h | 8 h | 12 h | 24 h | 30 h | 36 h | 48 h | 72 h | a (%) | b (%) | c (%/h) | a + b (%) | ED (%) | |
AA | 38.16 | 44.28 b | 49.94 b | 55.49 | 61.97 b | 64.93 b | 66.08 bc | 69.31 | 30.76 | 40.69 | 0.05 b | 71.45 a | 55.27 b |
GE | 40.32 | 52.81 a | 55.23 ab | 63.12 | 64.85 ab | 67.20 a | 68.71 a | 68.76 | 28.24 | 40.16 | 0.10 a | 68.39 b | 58.67 a |
ZM1 | 39.52 | 51.08 a | 59.17 a | 64.03 | 66.19 a | 67.42 a | 68.26 ab | 69.87 | 21.21 | 47.03 | 0.12 a | 68.24 b | 58.90 a |
GN1 | 38.04 | 43.44 b | 49.53 b | 56.18 | 63.74 b | 64.17 b | 64.61 c | 70.17 | 30.61 | 40.52 | 0.05 b | 71.12 ab | 55.01 b |
SEM | 1.361 | 1.221 | 1.939 | 2.676 | 1.055 | 0.688 | 0.781 | 0.732 | 2.892 | 2.773 | 0.012 | 0.924 | 0.891 |
p-value 2 | 0.60 | <0.01 | 0.01 | 0.08 | 0.03 | 0.01 | 0.01 | 0.55 | 0.12 | 0.29 | 0.01 | 0.05 | 0.01 |
Items 1 | Real-Time Degradability Rate (%) | Degradation Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 h | 8 h | 12 h | 24 h | 30 h | 36 h | 48 h | 72 h | a (%) | b (%) | c (%/h) | a + b (%) | ED (%) | |
AA | 11.85 b | 21.08 b | 21.08 a | 34.81 bc | 39.52 bc | 42.33 b | 44.65 b | 47.28 b | 2.73 b | 43.51 c | 0.07 a | 46.23 c | 32.67 a |
GE | 16.92 a | 25.93 a | 25.93 ab | 40.01 a | 41.12 ab | 42.59 b | 43.65 b | 44.43 c | 6.89 a | 37.94 d | 0.08 a | 44.83 c | 34.03 a |
ZM1 | 10.55 b | 15.28 c | 15.28 c | 32.55 c | 37.82 c | 39.33 c | 44.46 b | 47.44 b | 2.39 b | 47.66 b | 0.04 b | 50.05 b | 30.06 b |
GN1 | 11.22 b | 19.92 b | 24.93 bc | 36.41 b | 42.18 a | 46.29 a | 48.82 a | 51.25 a | 2.05 b | 51.11 a | 0.05 b | 53.16 a | 33.73 a |
SEM | 0.655 | 0.873 | 1.063 | 0.969 | 0.787 | 0.926 | 1.187 | 0.741 | 0.86 | 0.991 | 0.001 | 0.952 | 0.591 |
p-value 2 | <0.01 | <0.01 | <0.01 | 0.01 | 0.01 | 0.02 | 0.04 | <0.01 | 0.03 | <0.01 | <0.01 | <0.01 | 0.02 |
Items 1 | Real-Time Degradability Rate (%) | Degradation Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 h | 8 h | 12 h | 24 h | 30 h | 36 h | 48 h | 72 h | a (%) | b (%) | c (%/h) | a + b (%) | ED (%) | |
AA | 8.92 b | 13.34 c | 21.28 bc | 29.64 b | 32.81 c | 40.45 ab | 42.85 b | 44.99 b | 1.06 b | 47.46 a | 0.04 b | 0.04 a | 28.23 b |
GE | 15.56 a | 22.38 a | 25.44 a | 35.41 a | 37.27 ab | 38.26 bc | 39.55 c | 40.89 c | 7.28 a | 33.89 b | 0.07 a | 0.07 b | 30.73 a |
ZM1 | 8.11 b | 12.30 c | 19.25 c | 29.22 b | 35.08 bc | 35.69 c | 39.85 c | 44.78 b | 0.48 b | 46.66 a | 0.04 b | 0.04 a | 27.01 b |
GN1 | 8.68 b | 17.42 b | 22.68 b | 33.54 a | 39.03 a | 41.84 a | 45.44 a | 48.58 a | 0.44 b | 49.69 a | 0.05 b | 0.05 a | 30.84 a |
SEM | 0.512 | 1.054 | 0.723 | 0.729 | 1.018 | 0.909 | 0.814 | 0.923 | 0.623 | 1.092 | 0.003 | 1.213 | 0.537 |
p-value 2 | <0.01 | <0.01 | <0.01 | <0.01 | 0.05 | 0.02 | 0.01 | 0.01 | <0.01 | <0.01 | <0.01 | 0.01 | <0.01 |
Items 1 | TDN | DMI | DDM | RFV | RFQ |
---|---|---|---|---|---|
AA | 57.59 a | 2.74 a | 63.20 a | 134.38 a | 128.42 a |
GE | 56.81 a | 2.78 a | 62.40 a | 134.44 a | 128.38 a |
ZM1 | 50.59 c | 2.24 c | 55.95 c | 97.07 c | 92.06 c |
GN1 | 53.30 b | 2.44 b | 58.76 b | 111.37 b | 105.96 b |
SEM | 0.279 | 0.026 | 0.287 | 0.795 | 0.778 |
p-value 2 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Liu, Y.; Kong, F.; Wang, W.; Li, S. Comparison of Nutritional Components, Ruminal Degradation Characteristics and Feed Value from Different Cultivars of Alfalfa Hay. Animals 2023, 13, 734. https://doi.org/10.3390/ani13040734
Zhang X, Liu Y, Kong F, Wang W, Li S. Comparison of Nutritional Components, Ruminal Degradation Characteristics and Feed Value from Different Cultivars of Alfalfa Hay. Animals. 2023; 13(4):734. https://doi.org/10.3390/ani13040734
Chicago/Turabian StyleZhang, Xinyue, Yanfang Liu, Fanlin Kong, Wei Wang, and Shengli Li. 2023. "Comparison of Nutritional Components, Ruminal Degradation Characteristics and Feed Value from Different Cultivars of Alfalfa Hay" Animals 13, no. 4: 734. https://doi.org/10.3390/ani13040734
APA StyleZhang, X., Liu, Y., Kong, F., Wang, W., & Li, S. (2023). Comparison of Nutritional Components, Ruminal Degradation Characteristics and Feed Value from Different Cultivars of Alfalfa Hay. Animals, 13(4), 734. https://doi.org/10.3390/ani13040734