Impact of Molasses on Ruminal Volatile Fatty Acid Production and Microbiota Composition In Vitro
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Incubations and VFAs
2.2. Microbial DNA Extraction and 16S rRNA Amplicon Sequencing
2.3. Bioinformatic and Statistical Analysis
3. Results
3.1. VFAs
3.2. Rumen Microbiota Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Broderick, G.A.; Luchini, N.D.; Reynal, S.M.; Varga, G.A.; Ishler, V.A. Effect on Production of Replacing Dietary Starch with Sucrose in Lactating Dairy Cows. J. Dairy Sci. 2008, 91, 4801–4810. [Google Scholar] [CrossRef] [PubMed]
- Palmonari, A.; Cavallini, D.; Sniffen, C.J.; Fernandes, L.; Holder, P.; Fagioli, L.; Fusaro, I.; Biagi, G.; Formigoni, A.; Mammi, L. Short communication: Characterization of molasses chemical composition. J. Dairy Sci. 2020, 103, 6244–6249. [Google Scholar] [CrossRef] [PubMed]
- Palmonari, A.; Cavallini, D.; Sniffen, C.J.; Fernandes, L.; Holder, P.; Fagioli, L.; Fusaro, I.; Giammarco, M.; Formigoni, A.; Mammi, L. In vitro evaluation of sugar digestibility in molasses. Ital. J. Anim. Sci. 2021, 20, 571–577. [Google Scholar] [CrossRef]
- Ferraro, S.M.; Mendoza, G.D.; Miranda, L.A.; Gutiérrez, C.G. In vitro gas production and ruminal fermentation of glycerol, propylene glycol and molasses. Anim. Feed. Sci. Technol. 2009, 154, 112–118. [Google Scholar] [CrossRef]
- Russell, J.B. Rumen Microbiology and Its Role in Ruminant Nutrition; JB Russell Publishing Co.: Ithaca, NY, USA, 2002. [Google Scholar]
- Mizrahi, I.; Jami, E. Review: The compositional variation of the rumen microbiome and its effect on host performance and methane emission. Animal 2018, 12, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Martel, C.A.; Titgemeyer, E.C.; Mamedova, L.K.; Bradford, B.J. Dietary molasses increases ruminal pH and enhances ruminal biohydrogenation during milk fat depression. J. Dairy Sci. 2011, 94, 3995–4004. [Google Scholar] [CrossRef] [Green Version]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analysis (Apparatus, Reagents, Procedures, and Some Applications); Agricultural Handbook No. 379; USDA Agricultural Research Service: Washington, DC, USA, 1970.
- Goetsch, A.L.; Galyean, M.L. Influence of Feeding Frequency on Passage of Fluid and Particulate Markers in Steers Fed a Concentrate Diet. Can. J. Anim. Sci. 1983, 63, 727–730. [Google Scholar] [CrossRef]
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 2007, 75, 165–174. [Google Scholar] [CrossRef]
- Turroni, S.; Fiori, J.; Rampelli, S.; Schnorr, S.L.; Consolandi, C.; Barone, M.; Biagi, E.; Fanelli, F.; Mezzullo, M.; Crittenden, A.N.; et al. Fecal metabolome of the Hadza hunter-gatherers: A host-microbiome integrative view. Sci. Rep. 2016, 6, 32826. [Google Scholar] [CrossRef]
- Masella, A.P.; Bartram, A.K.; Truszkowski, J.M.; Brown, D.G.; Neufeld, J.D. PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. 2012, 14, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, M.B.; Weimer, P.J. Sucrose concentration alters fermentation kinetics, products, and carbon fates during in vitro fermentation with mixed ruminal microbes. J. Anim. Sci. 2007, 85, 1467–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeFrain, J.M.; Hippen, A.R.; Kalscheur, K.F.; Schingoethe, D.J. Feeding lactose increases ruminal butyrate and plasma β-hydroxybutyrate in lactating dairy cows. J. Dairy Sci. 2004, 87, 2486–2494. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Xie, X.; Xue, M.; Valencak, T.G.; Liu, J.; Sun, H. The Effects of Non-Fiber Carbohydrate Content and Forage Type on Rumen Microbiome of Dairy Cows. Animals 2021, 11, 3519. [Google Scholar] [CrossRef] [PubMed]
- Pokusaeva, K.; Fitzgerald, G.F.; van Sinderen, D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 2011, 6, 285–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleen, J.L.; Hooijer, G.A.; Rehage, J.; Noordhuizen, J.P.T.M. Subacute ruminal acidosis (SARA): A review. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2003, 50, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.B.; Hino, T. Regulation of lactate production in Streptococcus bovis: A spiraling effect that contributes to rumen acidosis. J. Dairy Sci. 1985, 68, 1712–1721. [Google Scholar] [CrossRef]
- Khalili, H.; Huhtanen, P. Sucrose supplements in cattle given grass silage-based diet. 2. Digestion of cell wall carbohydrates. Anim. Feed. Sci. Technol. 1991, 33, 263–273. [Google Scholar] [CrossRef]
- Oba, M. Review: Effects of feeding sugars on productivity of lactating dairy cows. Can. J. Anim. Sci. 2011, 91, 37–46. [Google Scholar] [CrossRef]
- Schären, M.; Frahm, J.; Kersten, S.; Meyer, U.; Hummel, V.; Breves, G.; Dänicke, S. Interrelations between the rumen microbiota and production, behavioral, rumen fermentation, metabolic, and immunological attributes of dairy cows. J. Dairy Sci. 2018, 101, 4615–4637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Xie, B.; Gao, J.; Zhao, G. Dietary Supplementation with Sodium Sulfate Improves Rumen Fermentation, Fiber Digestibility, and the Plasma Metabolome through Modulation of Rumen Bacterial Communities in Steers. Appl. Environ. Microbiol. 2020, 86, e01412-20. [Google Scholar] [CrossRef] [PubMed]
- Bajic, D.; Sanchez, A. The ecology and evolution of microbial metabolic strategies. Curr. Opin. Biotechnol. Energy Biotechnol. Environ. Biotechnol. 2018, 62, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Børsting, C.F.; Brask, M.; Hellwing, A.L.F.; Weisbjerg, M.R.; Lund, P. Enteric methane emission and digestion in dairy cows fed wheat or molasses. J. Dairy Sci. 2020, 103, 1448–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betancur-Murillo, C.L.; Aguilar-Marin, S.B.; Jovel, J. Prevotella: A Key Player in Ruminal Metabolism. Microorganisms 2023, 11, 1. [Google Scholar] [CrossRef] [PubMed]
Beet | Cane | ||||||
---|---|---|---|---|---|---|---|
Measure | 1 | 2 | 3 | 1 | 2 | 3 | p-Value |
Dry Matter | 76.7 | 79.4 | 78.4 | 76.6 | 78.5 | 76.7 | 0.91 |
Moisture | 23.3 | 20.6 | 21.6 | 23.4 | 21.5 | 23.4 | 0.93 |
Sucrose | 66.1 | 60.3 | 60.4 | 49.3 | 55.2 | 43.5 | 0.11 |
Glucose | 0.02 | 0.05 | 0.15 | 5.97 | 1.99 | 5.74 | <0.01 |
Fructose | 0.05 | 0.12 | 0.28 | 10.02 | 5.03 | 7.9 | <0.01 |
Raffinose | 2.18 | 0.28 | 0.23 | 0.03 | 0.02 | 0.03 | <0.01 |
Galactose | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | 0.74 |
Arabinose | - | 0.02 | - | - | - | 0.01 | 0.96 |
Xylose | 0.01 | - | - | - | - | - | - |
Starch | 0.09 | 0.03 | 0.1 | 0.54 | 0.18 | 0.32 | <0.05 |
Levans | 0.5 | 0.67 | 0.41 | 0.81 | 0.83 | 1.21 | 0.09 |
Destrans | 0.07 | 0.09 | 0.06 | 0.63 | 1.42 | 0.31 | <0.05 |
Arabinans | 0.03 | 0.05 | 0.05 | 0.15 | 0.25 | 0.19 | <0.05 |
Aconitic Acid | - | - | - | 0.37 | 1.25 | 3.78 | <0.05 |
Lactic Acid | 3.34 | 3.67 | 6.91 | 3.34 | 6.43 | 12.8 | 0.13 |
Malic Acid | 0.02 | 0.11 | 0.13 | 0.03 | 0.11 | 0.21 | 0.72 |
Citric Acid | 0.39 | 0.38 | 0.15 | 0.08 | 0.13 | 0.19 | 0.81 |
Pyrocarbonic Acid | 3.1 | 2.96 | 2.59 | 0.18 | 0.29 | 0.2 | <0.01 |
Oxalic Acid | 0.04 | 0.04 | 0.03 | 0.05 | 0.05 | 0.04 | 0.96 |
Glycolic Acid | 0.22 | 0.26 | 0.23 | - | - | - | <0.05 |
Acetic Acid | 0.59 | 0.28 | 0.49 | 0.23 | 0.29 | 0.2 | 0.88 |
CP | 12.8 | 14.6 | 12.5 | 7.7 | 8.8 | 6.0 | <0.05 |
Ash | 10.3 | 11.9 | 13.3 | 12.9 | 12.8 | 12.2 | 0.79 |
Ca | 1.24 | 0.06 | 0.54 | 1.43 | 1.3 | 1.55 | 0.13 |
Mg | 0.03 | 0.02 | 0.02 | 0.57 | 0.33 | 0.58 | 0.08 |
Na | 0.32 | 1.06 | 0.36 | 0.01 | 0.02 | 0.03 | <0.05 |
K | 2.39 | 4.93 | 1.07 | 0.5 | 1.37 | 2.17 | 0.23 |
Sulfates | 0.17 | 0.4 | 0.38 | 1.69 | 2.89 | 1.93 | <0.05 |
Sulfur | 0.06 | 0.13 | 0.13 | 0.56 | 0.96 | 0.64 | <0.05 |
Phosphates | 0.58 | 1.23 | 1.33 | 2.72 | 2.55 | 2.45 | <0.05 |
Nitrates, mg/kg | 35 | 36 | 18 | 211 | 784 | 688 | <0.01 |
Chlorides, mg/kg | 4450 | 797 | 5610 | 14 | 39 | 0.5 | <0.01 |
DCAD 1, meq/100 g | 47 | 129 | 18 | −17 | −20 | 13 | <0.01 |
Treatment 1 | |||||
---|---|---|---|---|---|
Time | Beet | Cane | CTR | SEM | p-Value |
1 h | 2.3 | 2.5 | 2.7 | 0.11 | 0.98 |
2 h | 4.9 | 7.4 | 4.2 | 0.89 | 0.21 |
3 h | 6.3 | 8.5 | 4.7 | 1.21 | 0.13 |
4 h | 8.7 | 7.8 | 5.9 | 1.17 | <0.05 |
6 h | 13.7 | 13.6 | 8.7 | 1.58 | <0.01 |
8 h | 23.1 | 24.3 | 9.4 | 1.84 | <0.01 |
24 h | 33 | 34 | 24.8 | 2.31 | <0.01 |
Treatment 1 | |||||
---|---|---|---|---|---|
VFA, mol % | Beet | Cane | CTR | SEM | p-Value |
Acetic | |||||
0 h | 68.8 | 68.8 | 68.8 | - | - |
1 h | 61.8 b | 59.2 b | 70.7 a | 4.91 | <0.01 |
4 h | 63.5 b | 60.0 b | 71.8 a | 4.35 | <0.01 |
24 h | 58.2 b | 57.0 b | 73.5 a | 4.83 | <0.01 |
Propionic | |||||
0 h | 18.9 | 18.9 | 18.9 | - | - |
1 h | 23.2 a | 21.3 a | 17.8 b | 2.34 | <0.01 |
4 h | 22.2 a | 21.4 a | 17.5 b | 2.58 | <0.01 |
24 h | 19.6 a | 18.6 a | 14.2 b | 2.19 | <0.01 |
Iso-Butyric | |||||
0 h | 0.48 | 0.48 | 0.98 | - | - |
1 h | 0.40 | 0.72 | 0.84 | 0.47 | 0.91 |
4 h | 0.41 | 0.55 | 0.76 | 0.35 | 0.74 |
24 h | 0.73 | 0.57 | 0.93 | 0.33 | 0.86 |
Butyric | |||||
0 h | 8.51 | 8.51 | 8.51 | - | - |
1 h | 12.52 a | 15.71 a | 8.42 b | 2.21 | <0.01 |
4 h | 11.72 a | 15.75 a | 8.25 b | 2.43 | <0.01 |
24 h | 21.95 a | 23.26 a | 8.67 b | 2.54 | <0.01 |
Iso-Valeric | |||||
0 h | 1.1 | 1.1 | 1.1 | - | - |
1 h | 0.72 | 1.24 | 1.1 | 0.61 | 0.33 |
4 h | 0.73 | 1.07 | 1.2 | 0.62 | 0.42 |
24 h | 0.86 | 1.01 | 1.4 | 0.15 | 0.98 |
Valeric | |||||
0 h | 1.08 | 1.08 | 1.08 | - | - |
1 h | 1.58 | 1.84 | 1.12 | 0.48 | 0.73 |
4 h | 1.49 | 1.41 | 0.64 | 0.79 | 0.71 |
24 h | 1.83 | 1.62 | 1.56 | 0.74 | 0.42 |
Treatment 1 | |||||
---|---|---|---|---|---|
Family | Beet | Cane | CTR | SEM | p-Value |
Prevotellaceae | 37.13 AB | 28.88 B | 49.68 A | 1.51 | <0.01 |
Streptococcaceae | 19.62 B | 28.10 A | 6.23 C | 2.85 | <0.01 |
Ruminococcaceae | 12.76 | 12.04 | 15.19 | 1.20 | 0.48 |
Lachnospiraceae | 11.08 a | 9.05 b | 9.12 b | 0.12 | <0.05 |
Veillonellaceae | 6.48 ab | 8.67 a | 4.54 c | 0.89 | <0.05 |
unassigned | 1.48 | 1.23 | 1.46 | 0.31 | 0.80 |
Erysipelotrichaceae | 1.40 a | 0.80 b | 0.87 ab | 0.31 | <0.05 |
TM7 | 1.34 | 1.31 | 1.62 | 0.51 | 0.41 |
Clostridiaceae | 1.25 | 1.13 | 0.82 | 0.30 | 0.35 |
Fibrobacteriaceae | 0.90 a | 0.88 ab | 0.62 b | 0.63 | <0.05 |
Spirochaetaceae | 0.72 | 0.56 | 1.05 | 0.10 | 0.56 |
Succinivibrionaceae | 0.71 c | 2.02 a | 1.28 b | 0.63 | <0.05 |
Coriobacteriaceae | 0.61 | 0.31 | 0.28 | 0.80 | 0.26 |
Xanthomonadaceae | 0.54 | 0.48 | 0.41 | 0.11 | 0.81 |
Bifidobacteriaceae | 0.49 a | 0.16 b | 0.13 b | 0.86 | <0.05 |
Moraxellaceae | 0.40 | 0.32 | 0.57 | 0.22 | 0.86 |
Cyanobacteria | 0.38 | 0.68 | 0.65 | 0.28 | 0.82 |
Fusobacteriaceae | 0.32 a | 0.18 b | 0.06 c | 0.59 | <0.05 |
Pirellulaceae | 0.28 | 0.39 | 0.63 | 0.63 | 0.92 |
Vibrionaceae | 0.27 C | 0.85 B | 1.50 A | 0.17 | <0.01 |
Methanobacteriaceae | 0.26 B | 0.28 B | 0.43 A | 0.83 | <0.01 |
Anaeroplasmataceae | 0.24 | 0.14 | 0.29 | 0.74 | 0.31 |
Pasteurellaceae | 0.18 a | 0.03 b | 0.02 b | 0.73 | <0.05 |
Enterobacteriaceae | 0.14 ab | 0.21 a | 0.06 b | 0.32 | <0.05 |
Staphylococcaceae | 0.12 C | 0.29 B | 1.04 A | 0.40 | <0.01 |
Desulfovibrionaceae | 0.12 | 0.09 | 0.11 | 0.13 | 0.53 |
Victivallaceae | 0.11 | 0.26 | 0.21 | 0.50 | 0.94 |
Sphingomonadaceae | 0.09 | 0.20 | 0.13 | 0.56 | 0.20 |
Pseudomonadaceae | 0.06 ab | 0.01 b | 0.13 a | 0.43 | <0.05 |
Dethiosulfovibrionaceae | 0.04 | 0.05 | 0.05 | 0.09 | 0.29 |
Sphaerochaetaceae | 0.02 | 0.05 | 0.08 | 0.91 | 0.97 |
RF36 | 0.09 | 0.12 | 0.18 | 0.98 | 0.88 |
Treatment 1 | |||||
---|---|---|---|---|---|
Genus | Beet | Cane | CTR | SEM | p-Value |
Prevotella1 | 25.5 B | 16.8 B | 34.7 A | 1.22 | <0.01 |
Streptococcus | 16.2 A | 26.3 A | 5.4 B | 1.85 | <0.01 |
Ruminococcus | 4.77 B | 4.51 B | 7.38 A | 1.37 | <0.01 |
Succiniclasticum | 3.53 B | 2.81 B | 5.94 A | 1.12 | <0.01 |
Butyrivibrio | 2.99 A | 2.08 A | 1.63 B | 0.78 | <0.01 |
Selenomonas | 1.26 A | 1.01 A | 0.36 B | 0.11 | <0.01 |
Metanobrevibacter | 0.1 B | 0.19 B | 0.29 A | 0.08 | <0.01 |
Pearson’s Coefficients | ||
---|---|---|
VFA | Coefficient | p-Value |
Acetic | ||
Ruminococcus | 0.52 | <0.01 |
Succiniclasticum | 0.50 | <0.01 |
Fibrobacter | 0.36 | n.s. |
Streptococcus | −0.47 | <0.01 |
Clostridium | −0.31 | n.s. |
Butyrivibrio | −0.28 | n.s. |
Propionic | ||
Prevotellaceae | 0.41 | n.s. |
Selenomonas | 0.34 | n.s. |
Veilonellaceae | 0.31 | n.s. |
Acinetobacter | −0.47 | n.s. |
Pseudomonas | −0.41 | n.s. |
Ruminococcus | −0.33 | n.s. |
Iso-Butyric | ||
Pseudomonas | 0.37 | n.s. |
Succinivibrio | 0.37 | n.s. |
Acinetobacter | 0.28 | n.s. |
Butyrivibrio | −0.44 | <0.01 |
Streptococcus | −0.37 | n.s. |
Selenomonas | −0.29 | n.s. |
Butyric | ||
Butyrivibrio | 0.56 | <0.01 |
Streptococcus | 0.48 | <0.01 |
Clostridium | 0.36 | n.s. |
Prevotella1 | −0.53 | <0.01 |
Desulfovibrio | −0.50 | n.s. |
Ruminococcus | −0.44 | n.s. |
Iso-Valeric | ||
Pseudomonas | 0.42 | n.s. |
Sphaerochaeta | 0.34 | n.s. |
Mogibacterium | 0.34 | n.s. |
Selenomonas | −0.47 | n.s. |
Streptococcus | −0.35 | n.s. |
Anaerovibrio | −0.28 | n.s. |
Valeric | ||
Streptococcus | 0.31 | n.s. |
Pseudomonas | 0.26 | n.s. |
Clostridium | 0.25 | n.s. |
Succiniclasticum | −0.52 | <0.01 |
Treponema | −0.48 | <0.01 |
Ruminococcus | −0.42 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmonari, A.; Federiconi, A.; Cavallini, D.; Sniffen, C.J.; Mammi, L.; Turroni, S.; D’Amico, F.; Holder, P.; Formigoni, A. Impact of Molasses on Ruminal Volatile Fatty Acid Production and Microbiota Composition In Vitro. Animals 2023, 13, 728. https://doi.org/10.3390/ani13040728
Palmonari A, Federiconi A, Cavallini D, Sniffen CJ, Mammi L, Turroni S, D’Amico F, Holder P, Formigoni A. Impact of Molasses on Ruminal Volatile Fatty Acid Production and Microbiota Composition In Vitro. Animals. 2023; 13(4):728. https://doi.org/10.3390/ani13040728
Chicago/Turabian StylePalmonari, A., A. Federiconi, D. Cavallini, C. J. Sniffen, L. Mammi, S. Turroni, F. D’Amico, P. Holder, and A. Formigoni. 2023. "Impact of Molasses on Ruminal Volatile Fatty Acid Production and Microbiota Composition In Vitro" Animals 13, no. 4: 728. https://doi.org/10.3390/ani13040728
APA StylePalmonari, A., Federiconi, A., Cavallini, D., Sniffen, C. J., Mammi, L., Turroni, S., D’Amico, F., Holder, P., & Formigoni, A. (2023). Impact of Molasses on Ruminal Volatile Fatty Acid Production and Microbiota Composition In Vitro. Animals, 13(4), 728. https://doi.org/10.3390/ani13040728