The Role of PRLR Gene Polymorphisms in Milk Production in European Wild Rabbit (Oryctolagus cuniculus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Test Animals
2.3. Housing
2.4. Feeding
2.5. Measuring Milk Yield
2.6. Sequencing PRLR
2.7. Statistical Analyses
3. Results
3.1. Identification of Point Mutations
3.2. The linkage between Point Mutations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bignon, L.; Bourin, M.; Galliot, P.; Souchet, C.; Travel, A. Impact dunombre de lapereaux laissés au nid sur la carrière des femelles et les performances des jeunes. In Proceedings of the Journées de la Recherche Cunicole, Le Mans, France, 19–20 November 2013; pp. 101–104. [Google Scholar]
- Poornima, K.; Gupta, B.R.; Rao, G.N.; Satyanarayana, A. Factors af-fecting genetic study on post-weaning body weights and growth rates of Californian White rabbits. Indian J. Anim. Res. 2002, 36, 39–42. [Google Scholar]
- Gyarmati, T.; Szendrő, Z.; Maertens, L.; Biró-Németh, E.; Radnai, I.; Milisits, G.; Matics, Z. Effect of suckling twice a day on the performance of suckling and growing rabbits. In Proceedings of the 7th World Rabbit Congress, Valencia, Spain, 4–7 July 2000; pp. 283–289. [Google Scholar]
- Maertens, L.; Falcão-e-Cunha, L.; Marounek, M. Feed additives to reduce the use of antibiotics. In Recent Advances in Rabbit Science, Institute for Agricultural and Fisheries Research (ILVO); Maertens, L., Coudert, P., Eds.; Animal Science Unit Melle: Belgium, Brussel, 2006; pp. 259–265. [Google Scholar]
- El-sabrout, K.; Aggag, S.; El-Raffa, A. Comparison of milk production and milk composition for an exotic and a local synthetic rabbit lines. Vet. World 2017, 10, 526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casado, C.; Piquer, O.; Cervera, C.; Pascual, J.J. Modelling the lactation curve of rabbit does: Towards a model including fit suitability and biological interpretation. Livest. Sci. 2006, 99, 39–49. [Google Scholar] [CrossRef]
- Taranto, S.; Di Meo, C.; Stanco, G.; Piccolo, G.; Gazaneo, M.P.; Nizza, A. Influence of age at weaning on caecal content characteristics and post-weaning performance and health of rabbits. Asian-Ausr. J. Anim. Sci. 2003, 16, 1540–1544. [Google Scholar] [CrossRef]
- Mcnitt, J.I.; Lukefahr, S.D. Effects of breed, parity, day of lactation and number of kits on milk production of rabbits. J. Anim. Sci. 1990, 68, 1505–1512. [Google Scholar] [CrossRef]
- Fernández-Carmona, J.; Alqedra, I.; Cervera, C.; Moya, J.; Pascual, J.J. Effect of lucerne-based diets on performance of reproductive rabbit does at two tempera-tures. Anim. Sci. 2003, 76, 283–295. [Google Scholar] [CrossRef]
- Fernández-Carmona, J.; Soriano, J.; Pascual, J.J.; Cervera, C. The prediction of nutritive value of rabbit diets from tables of feed composition. In Proceedings of the 8th World Rabbit Congress, Puebla, Mexico, 7–10 September 2004; pp. 818–823. [Google Scholar]
- Khalil, M.H.; Mehaia, M.A.; Al-Homidan, A.H.; Al-Sobayil, K.A. Genetic analysis for milk yield and components and milk conversion ratio in crossing of Saudi rabbits with V-line. In Proceedings of the 8th World Rabbit Congress, Puebla, Mexico, 7–10 September 2004; pp. 82–89. [Google Scholar]
- Jimoh, O.A.; Ewuola, E.O. Milk yield and kit development of four breeds of rabbit in Ibadan. Nigeria. J. Anim. Sci. Tech. 2017, 59, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hirschhorn, J.N.; Daly, M.J. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 2005, 6, 95. [Google Scholar] [CrossRef]
- Fontanesi, L.; Martelli, P.L.; Scotti, E.; Russo, V.; Rogel-Gaillard, C.; Casadio, R.; Vernesi, C. Exploring copy number variation in the rabbit (Oryctolagus cuniculus) genome by array comparative genome hybridization. Genomics 2012, 100, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Bertolini, F.; Schiavo, G.; Scotti, E.; Ribani, A.; Martelli, P.L.; Casadio, R.; Fontanesi, L. High throughput SNP discovery in the rabbit (Oryctolagus cuniculus) genome by next generation semiconductor based-sequencing. Anim. Genet. 2014, 45, 304–307. [Google Scholar] [CrossRef]
- Carneiro, M.; Rubin, C.J.; Di Palma, F.; Albert, F.W.; Alföldi, J.; Barrio, A.M.; Pielberg, G.; Rafati, N.; Sayyab, S.; Turner-Maier, J.; et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 2014, 345, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- González-Mariscal, G. Neuroendocrinology of maternal behavior in the rabbit. Horm. Behav. 2001, 40, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Bole-Feysot, C.; Goffin, V.; Edery, M.; Binart, N.; Kelly, P.A. Prolactin (PRL) and its receptor: Actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Nat. Rev. Endocrinol. 1998, 19, 225–268. [Google Scholar] [CrossRef]
- Brym, P.; Kamiński, S.; Wójcik, E. Nucleotide sequence polymorphism within exon 4 of the bovine prolactin gene and its associations with milk performance traits. J. Appl. Genet. 2005, 46, 179–185. [Google Scholar]
- Viitala, S.; Szyda, J.; Blott, S.; Schulman, N.; Lidauer, M.; MäKi-Tanila, A.; Vilkki, J. The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in Finnish Ayrshire dairy cattle. Genetics 2006, 173, 2151–2164. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zan, L.; Fang, P.; Zhang, F.; Shen, G.; Tian, W. Genetic variation of PRLR gene and association with milk performance traits in dairy cattle. Can. J. Anim. Sci. 2008, 88, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Neville, M.C.; Mcfadden, T.B.; Forsyth, I. Hormonal regulation of mam-mary differentiation and milk secretion. J. Mammary Gland Biol. 2002, 7, 49–66. [Google Scholar] [CrossRef]
- An, X.; Hou, J.; Gao, T.; Lei, Y.; Li, G.; Song, Y.; Cao, B. Single-nucleotide polymorphisms g. 151435C> T and g. 173057T> C in PRLR gene regulated by bta-miR-302a are associated with litter size in goats. Theriogenology 2015, 83, 1477–1483. [Google Scholar] [CrossRef]
- Ghasemi, N.; Zadehrahmani, M.; Rahimi, G.; Hafezian, S.H. Associations between prolactin gene polymorphism and milk production in montebeliard cows. Int. J. Gen. Mol. Biol. 2009, 1, 48–51. [Google Scholar]
- Lü, A.; Hu, X.; Chen, H.; Jiang, J.; Zhang, C.; Xu, H.; Gao, X. Single nucleotide polymorphisms in bovine PRL gene and their associations with milk production traits in Chinese Holsteins. Mol. Biol. Reports 2010, 37, 547–551. [Google Scholar] [CrossRef]
- Shi, D.S.; Wang, J.; Yang, Y.; Lu, F.H.; Li, X.P.; Liu, Q.Y. DGAT1, GH, GHR, PRL and PRLR polymorphism in water buffalo (Bubalus bubalis). Reprod. Domest. Anim. 2012, 47, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Cosenza, G.; Iannaccone, M.; Auzino, B.; Macciotta NP, P.; Kovitvadhi, A.; Nicolae, I.; Pauciullo, A. Remarkable genetic diversity detected at river buffalo prolactin receptor (PRLR) gene and association studies with milk fatty acid composition. Anim. Gen. 2018, 49, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.X.; An, X.P.; Song, Y.X.; Wang, J.G.; Ma, T.; Han, P.; Fanf, F.; Cao, B.Y. Combined effects of four SNPs within goat PRLR gene on milk production traits. Gene 2013, 529, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Jawasreh, K.; Amareen, A.A.; Aad, P. Effect and interaction of β-lactoglobulin, kappa casein, and prolactin genes on milk production and composition of awassi sheep. Animals 2019, 9, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Dybvig, K.; Panangala, V.S.; Van Santen, V.L.; French, C.T. GAA trinucleotide repeat region regulates M9/pMGA gene expression in Mycoplasma gallisepticum. Infect. Immun. 2000, 68, 871–876. [Google Scholar] [CrossRef] [Green Version]
- Kashi, Y.; King, D.G.; Soller, M. Simple sequence repeats as a source of quantitative genetic variation. Trends Genet. 1997, 13, 74–78. [Google Scholar] [CrossRef]
- King, D.G.; Soller, M.; Kashi, Y. Evolutionary tuning knobs. Endeavour 1997, 21, 36–40. [Google Scholar] [CrossRef]
- Li, Y.C.; Korol, A.B.; Fahima, T.; Beiles, A.; Nevo, E. Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review. Mol. Ecol. 2002, 11, 2453–2465. [Google Scholar] [CrossRef]
- Lukefahr, S.; Hohenboken, W.D.; Cheeke, P.R.; Patton, N.M. Characterization of straightbred and crossbred rabbits for milk production and associative traits. J. Anim. Sci. 1983, 57, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Nagar, E.; Sánchez, J.P.; Ragab, M.M.; Mínguez, C.B.; Izquierdo, M.B. Genetic comparison of milk production and composition in three maternal rabbit lines. World Rabbit Sci. 2014, 22, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Pongrácz, P.; Altbäcker, V. The effect of early handling is dependent upon the state of the rabbit (Oryctolagus cuniculus) pups around nursing. Dev. Psychobiol. 1999, 35, 241–251. [Google Scholar] [CrossRef]
- Bilkó, Á.; Altbäcker, V. Regular handling early in the nursing period eliminates fear responses toward human beings in wild and domestic rabbits. Dev. Psychobiol. 2000, 36, 78–87. [Google Scholar] [CrossRef]
- Drummond, H.; Vázquez, E.; Sánchez-Colón, S.; Martinez-Gómez, M.; Hudson, R. Competition for milk in the domestic rabbit: Survivors benefit from litter-mate deaths. J. Ethol. 2000, 106, 511–526. [Google Scholar] [CrossRef]
- Walsh, P.S.; Fildes, N.; Louie, A.S.; Higuchi, R. Report of the blind trial of the Cetus Amplitype HLA DQα forensic deoxyribonucleic acid (DNA) amplification and typing kit. J. Forensic. Sci. 1991, 36, 1551–1556. [Google Scholar] [CrossRef]
- Goujon, M.; Mcwilliam, H.; Li, W.; Valentin, F.; Squizzato, S.; Paern, J.; Lopez, R. A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res. 2010, 38, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.O.D.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314. [Google Scholar]
- El-Aksher, S.H.; Sherif, H.S.; Khalil, M.H.; El-Garhy, H.A.; Ramadan, S. Molecular analysis of a new synthetic rabbit line and their parental populations using microsatellite and SNP markers. Gene Rep. 2017, 8, 17–23. [Google Scholar] [CrossRef]
- Neville, M.C.; Daniels, C.W. (Eds.) The Mammary Gland: Development, Regulation, and Function; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Oppat, C.A.; Rillema, J.A. Characteristics of the early effect of prolactin on lactose biosynthesis in mouse mammary gland explants. Proc. Soc. Exp. Biol. Med. 1988, 188, 342–345. [Google Scholar] [CrossRef] [PubMed]
- Waters, S.B.; Rillema, J.A. Role of protein kinase C in the prolactin-induced responses in mouse mammary gland explants. Mol. Cell Endocrinol. 1989, 63, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Lü, A.; Chen, H.; Gao, X.; Xu, H.; Zhang, C.; Lei, C. Preliminary evidence for association of prolactin and prolactin receptor genes with milk production traits in Chinese Holsteins. J. Appl. Anim. Res. 2009, 36, 213–217. [Google Scholar] [CrossRef]
- Chen, Y.; Roxby, R. Identification of a functional CT-element in the Phytophthora infestans piypt1 gene promoter. Gene 1997, 198, 159–164. [Google Scholar] [CrossRef]
- Muhaghegh-Dolatabady, M.; Habibizad, J.; Bahreini Behzadi, M.R. Association of TG-repeats in the 5′-flanking region of bovine growth hormone receptor (GHR) gene with milk production traits and somatic cell count in Holstein cattle. J. Live Sci. Tech. 2013, 1, 29–34. [Google Scholar]
- Menon, R.K.; Stephan, D.A.; Manbir, S.; Morris, S.M.; Zou, L. Cloning the promoter-regulatory region on the murine growth hormone receptor. J. Biol. Chem. 1995, 270, 8851–8859. [Google Scholar] [CrossRef] [Green Version]
- Maj, A.; Korczak, M.; Bagnicka, E.; Zwierzchowski, L.; Pierzchała, M.A. TG-repeat polymorphism in the 5′-noncoding region of the goat growth hormone receptor gene and search for its association with milk production traits. Small Rumin Res. 2007, 67, 279–284. [Google Scholar] [CrossRef]
- Streelman, J.T.; Kocher, T.D. Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiol. Genom. 2002, 9, 1–4. [Google Scholar] [CrossRef]
SNP | Observed Genotype | Ho | He | HWE | Ne | PIC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | Prob. | |||||||||||
407G > A | GG | 28 | GA | 0 | AA | 12 | 0.000 | 0.425 | 40.000 | <0.001 | 1.724 | 0.332 |
496G > C | GG | 19 | GC | 0 | CC | 21 | 0.000 | 0.505 | 40.000 | <0.001 | 1.995 | 0.374 |
926T > C | TT | 21 | TC | 15 | CC | 4 | 0.375 | 0.415 | 0.287 | 0.592 | 1.694 | 0.326 |
973A > C | AA | 21 | AC | 15 | CC | 4 | 0.375 | 0.415 | 0.287 | 0.592 | 1.694 | 0.326 |
Allele Frequency | Haplotype Frequency | D’ | r | χ2 | p | |||
---|---|---|---|---|---|---|---|---|
SNP1-2 | G | 0.300 | GG | 0.3 | 0.323 | 0.688 | 18.947 | <0.001 |
A | 0.700 | GA | 0.175 | |||||
G | 0.475 | CG | 0 | |||||
C | 0.525 | CA | 0.525 | |||||
SNP1-3 | G | 0.300 | TG | 0.225 | 0.233 | 0.745 | 22.185 | <0.001 |
A | 0.700 | TA | 0.0875 | |||||
T | 0.288 | CG | 0.075 | |||||
C | 0.713 | CA | 0.6125 | |||||
SNP1-4 | G | 0.300 | AG | 0.225 | 0.233 | 0.745 | 22.185 | <0.001 |
A | 0.700 | AA | 0.0875 | |||||
A | 0.288 | CG | 0.075 | |||||
C | 0.713 | CA | 0.6125 | |||||
SNP2-3 | G | 0.475 | TG | 0.3125 | 0.310 | 0.907 | 32.894 | <0.001 |
C | 0.525 | TC | 0 | |||||
T | 0.288 | CG | 0.1625 | |||||
C | 0.713 | CC | 0.525 | |||||
SNP2-4 | G | 0.475 | AG | 0.3125 | 0.310 | 0.907 | 32.894 | <0.001 |
C | 0.525 | AC | 0 | |||||
A | 0.288 | CG | 0.1625 | |||||
C | 0.713 | CC | 0.525 | |||||
SNP3-4 | T | 0.288 | AT | 0.23125 | 0.228 | 1.000 | 40.000 | <0.001 |
C | 0.713 | AC | 0.08125 | |||||
A | 0.288 | CT | 0.08125 | |||||
C | 0.713 | CC | 0.60625 |
df | Milk Production | ||||
---|---|---|---|---|---|
Mean Square | F | p | Partial Eta Square | ||
Corrected model | 7 | 603,986.881 | 5.419 | 0.000 | 0.542 |
Intercept | 1 | 1,659,510.225 | 14.888 | 0.001 | 0.318 |
Number of kits | 1 | 1,239,088.433 | 11.116 | 0.002 | 0.258 |
Genotype | 3 | 487,348.278 | 4.372 | 0.011 | 0.291 |
MS574 | 2 | 758,532.337 | 6.805 | 0.003 | 0.298 |
MS574 × genotype | 1 | 2304.989 | 0.021 | 0.887 | 0.001 |
Error | 32 | 111,466.214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedek, I.; Altbäcker, V.; Zsolnai, A.; Nagy, I.; Mezőszentgyörgyi, D.; Molnár, T. The Role of PRLR Gene Polymorphisms in Milk Production in European Wild Rabbit (Oryctolagus cuniculus). Animals 2023, 13, 671. https://doi.org/10.3390/ani13040671
Benedek I, Altbäcker V, Zsolnai A, Nagy I, Mezőszentgyörgyi D, Molnár T. The Role of PRLR Gene Polymorphisms in Milk Production in European Wild Rabbit (Oryctolagus cuniculus). Animals. 2023; 13(4):671. https://doi.org/10.3390/ani13040671
Chicago/Turabian StyleBenedek, Ildikó, Vilmos Altbäcker, Attila Zsolnai, István Nagy, Dávid Mezőszentgyörgyi, and Tamás Molnár. 2023. "The Role of PRLR Gene Polymorphisms in Milk Production in European Wild Rabbit (Oryctolagus cuniculus)" Animals 13, no. 4: 671. https://doi.org/10.3390/ani13040671