Nutritional Quality of Milk Fat from Cows Fed Full-Fat Corn Germ in Diets Containing Cactus Opuntia and Sugarcane Bagasse as Forage Sources
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Facilities
2.2. Experimental Diets
2.3. Milk Sampling and Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, M.A.; Silva, F.M.; Bispo, S.V.; Azevedo, M. Estratégias na suplementação de vacas leiteiras no semi-árido do Brasil. Rev. Bras. Zootec. 2009, 38, 322–329. [Google Scholar] [CrossRef]
- Canal Rural. Available online: https://www.canalrural.com.br/noticias/milho-preco-de-soja-soja-preco-de-boi/ (accessed on 10 January 2021).
- Netto, A.J.; Gama, M.A.S.; Guido, S.I.; Bessa, R.J.B.; Inácio, J.G.; Monteiro, C.C.F.; Melo, G.C.S.; Ribeiro, E.F.; Ferreira, M.A. Replacing corn with full-fat corn germ in a basal diet containing cactus (Opuntia stricta) cladodes and sugarcane as forage sources induces milk fat depression associated with the trans-10 shift in dairy cows. Anim. Feed Sci. Technol. 2022, 288, 115289. [Google Scholar] [CrossRef]
- Miller, W.F.; Shirley, J.E.; Titgemeyer, E.C.; Brouk, M.J. Comparison of full-fat corn germ, whole cottonseed, and tallow as fat sources for lactating dairy cattle. J. Dairy Sci. 2009, 92, 3386–3391. [Google Scholar] [CrossRef] [PubMed]
- Moallem, U.; Altmark, G.; Lehrer, H.; Arieli, A. Performance of high-yielding dairy cows supplemented with fat or concentrate under hot and humid climates. J. Dairy Sci. 2010, 93, 3192–3202. [Google Scholar] [CrossRef] [PubMed]
- Kliem, K.E.; Humphries, D.J.; Grandison, A.S.; Morgan, R.; Livingstone, K.M.; Givens, D.I.; Reynolds, C.K. Effect of a whey protein and rapeseed oil gel feed supplement on milk fatty acid composition of Holstein cows. J. Dairy Sci. 2019, 102, 288–300. [Google Scholar] [CrossRef] [PubMed]
- NRC, National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001; 401p. [Google Scholar]
- Chilliard, Y.; Ferlay, A.; Doreau, M. Effect of different types of forages, animal fat or marine oils in cow’s diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Livest. Prod. Sci. 2001, 70, 31–48. [Google Scholar] [CrossRef]
- Ruppert, L.D.; Drackley, J.K.; Bremmer, D.R.; Clark, J.H. Effects of tallow in diets based on corn silage or alfalfa silage on digestion and nutrient use by lactating dairy cows. J. Dairy Sci. 2003, 86, 593–609. [Google Scholar] [CrossRef]
- Sadeghi, M.; Ghorbani, G.R.; Ghasemi, E.; Kargar, S.; Leskinen, H.; Bayat, A.R.; Ghaffari, M.H. Source of supplemental dietary fat interacts with relative proportion of forage source in Holstein dairy cows: Production responses, milk fat composition, and rumen fermentation. Livest. Sci. 2019, 227, 143–152. [Google Scholar] [CrossRef]
- Gama, M.A.S.; De Paula, T.A.; Véras, A.S.C.; Guido, S.I.; Borges, C.A.V.; Antoniassi, R.; Lopes, F.C.F.; Neves, M.L.M.W.; Ferreira, M.A. Partially replacing sorghum silage with cactus (Opuntia stricta) cladodes in a soybean oil-supplemented diet markedly increases trans-11 18:1, cis-9, trans-11 CLA and 18:2 n-6 contents in cow milk. J. Anim. Physiol. Anim. Nutr. 2021, 105, 232–246. [Google Scholar] [CrossRef]
- Detmann, E.; Valadares Filho, S.C. On the estimation of non-fibrous carbohydrates in feeds and diets. Arq. Bras. Med. Vet. Zootec. 2010, 62, 980–984. [Google Scholar] [CrossRef]
- AOAC International. Official Method 989.05. Fat in milk. Modified Mojonnier ether extraction method. In Official Methods of Analysis of AOAC International, 19th ed; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Baldin, M.; Gama, M.A.S.; Dresch, R.; Harvatine, K.J.; Oliveira, D.E. A rumen unprotected conjugated linoleic acid supplement inhibits milk fat synthesis and improves energy balance in lactating goats. J. Anim. Sci. 2013, 91, 3305–3314. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Hernandez, C.; Kramer, J.K.G.; Kennelly, J.J.; Glimm, D.R.; Sorensen, B.M.; Okine, E.K.; Goonewardene, L.A.; Weselake, R.J. Evaluating the conjugated linoleic acid and trans 18:1 isomers in milk fat of dairy cows fed increasing amounts of sunflower oil and a constant level of fish oil. J. Dairy Sci. 2007, 90, 3786–3801. [Google Scholar] [CrossRef] [PubMed]
- Wolff, R.L.; Bayard, C.C.; Fabien, R.J. Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis on trans-18:1 acids. Application to the study of seasonal variations in French butters. JAOCS 1995, 72, 1471–1483. [Google Scholar] [CrossRef]
- Kelsey, J.A.; Corl, B.A.; Collier, R.J.; Bauman, D.E. The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. J. Dairy Sci. 2003, 86, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, A.R.; Breinhild, K.; Scott, W.; Golder, H.M.; Block, E.; Lean, I.J. Effect of fat additions to diets of dairy cattle on milk production and components: A meta-analysis and meta-regression. J. Dairy Sci. 2012, 95, 3225–3247. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, D.L. Use of fats in diets for lactating dairy cows. In Fats in Animal Nutrition; Wiseman, J., Ed.; Butterworths: London, UK, 1984; pp. 357–383. [Google Scholar]
- Abdelqader, M.M.; Hippen, A.R.; Kalscheur, K.F.; Schingoethe, D.J.; Karges, K.; Gibson, M.L. Evaluation of corn germ from ethanol production as an alternative fat source in dairy cow diets. J. Dairy Sci. 2009, 92, 1023–1037. [Google Scholar] [CrossRef] [PubMed]
- Kozloski, G.V. Metabolismo microbiano ruminal. In Bioquímica de Ruminantes, 3rd ed.; UFSM: Santa Maria, Brazil, 2016; pp. 15–105. [Google Scholar]
- Bauman, D.E.; Griinari, J.M. Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr. 2003, 23, 203–227. [Google Scholar] [CrossRef] [PubMed]
- Griinari, J.M.; Dwyer, D.A.; Mcguire, M.A.; Bauman, D.E.; Palmquist, D.L.; Nurmela, K.V.V. Trans-octadecenoic acids and milk fat depression in lactating dairy cows. J. Dairy Sci. 1998, 81, 1251–1261. [Google Scholar] [CrossRef]
- Pessoa, D.V.; Andrade, A.P.; Magalhães, A.L.R.; Teodoro, A.L.; Santos, D.C.; Araújo, G.G.L.; Medeiros, A.N.; Nascimento, D.B.; Valença, R.L.; Cardoso, D.B. Forage cactus of the genus Opuntia in different with the phenological phase: Nutritional value. J. Arid Environ. 2020, 181, 104243. [Google Scholar] [CrossRef]
- Oliveira, V.S.; Ferreira, M.A.; Guim, A.; Modesto, E.C.; Arnaud, B.L.; Silva, F.M. Substituição total do milho e parcial do feno do capim-tifton por palma forrageira em dietas para vacas em lactação. Produção, composição do leite e custos com alimentação. Rev. Bras. Zootec. 2007, 36, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Kliem, K.E.; Reynolds, C.K.; Humphries, D.J.; Kirkland, R.M.; Barratt, C.E.S.; Livingstone, K.M.; Givens, D.I. Incremental effect of a calcium salt of cis-monounsaturated fatty acids supplement on milk fatty acid composition in cows fed maize silage-based diets. J. Dairy Sci. 2013, 96, 3211–3221. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.; Batistel, F.; Santos, F.A.P. Effect of sources of calcium salts of fatty acids on production, nutrient digestibility, energy balance, and carryover effects of early lactation grazing dairy cows. J. Dairy Sci. 2017, 100, 1072–1085. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Huber, J.T. Relationship between dietary fat supplementation and milk protein concentration in lactating cows: A review. Livest. Prod. Sci. 1994, 39, 141–155. [Google Scholar] [CrossRef]
- Ylioja, C.M.; Abney-Schulte, C.; Stock, R.; Bradford, B.J. Effects of fat supplementation to diets high in nonforage fiber on production responses of midlactation dairy cows. J. Dairy Sci. 2018, 101, 6066–6073. [Google Scholar] [CrossRef] [PubMed]
- DePeters, E.J.; Cant, J.P. Nutritional factors influencing the nitrogen composition of bovine milk: A review. J. Dairy Sci. 1992, 75, 2043–2070. [Google Scholar] [CrossRef] [PubMed]
- Dunkley, W.L.; Smith, N.E.; Franke, A.A. Effects of feeding protected tallow on composition of milk and milk fat. J. Dairy Sci. 1977, 60, 1863–1869. [Google Scholar] [CrossRef] [PubMed]
- Leskinen, H.; Ventto, L.; Kairenius, P.; Shingfield, K.J.; Vilkki, J. Temporal changes in milk fatty acid composition during diet-induced milk fat depression in lactating cows. J. Dairy Sci. 2019, 102, 5148–5160. [Google Scholar] [CrossRef]
- Glasser, F.; Ferlay, A.; Doreau, M.; Schmidely, P.; Sauvant, D.; Chilliard, Y. Long-chain fatty acid metabolism in dairy cows: A meta-analysis of milk fatty acid yield in relation to duodenal flows and de novo synthesis. J. Dairy Sci. 2008, 91, 2771–2785. [Google Scholar] [CrossRef]
- Dorea, J.R.R.; Armentano, L.E. Effects of common dietary fatty acids on milk yield and concentrations of fat and fatty acids in dairy cattle. Anim. Prod. Sci. 2017, 57, 2224–2236. [Google Scholar] [CrossRef]
- Bas, P.; Archimède, H.; Rouzeau, A.; Sauvant, D. Fatty acid composition of mixed-rumen bacteria: Effect of concentration and type of forage. J. Dairy Sci. 2003, 86, 2940–2948. [Google Scholar] [CrossRef] [Green Version]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Techn. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Baumann, E.; Chouinard, P.Y.; Lebeuf, Y.; Rico, D.E.; Gervais, R. Effect of lipid supplementation on milk odd- and branched-chain fatty acids in dairy cows. J. Dairy Sci. 2016, 99, 6311–6323. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Bu, D.P.; Wang, J.Q.; Hu, Z.Y.; Li, D.; Wei, H.Y.; Zhou, L.Y.; Loor, J.J. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows. Animal 2009, 11, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Or-Rashid, M.M.; Odongo, N.E.; McBride, B.W. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd-chain and branched-chain fatty acids. J. Anim. Sci. 2007, 85, 1228–1234. [Google Scholar] [CrossRef]
- Stoffel, C.M.; Crump, P.M.; Armentano, L.E. Effect of dietary fatty acid supplements, varying in fatty acid composition, on milk fat secretion in dairy cattle fed diets supplemented to less than 3% total fatty acids. J. Dairy Sci. 2015, 98, 431–442. [Google Scholar] [CrossRef]
- Izuegbuna, O.; Otunola, G.; Bradley, G. Chemical composition, antioxidant, antiinflammatory, and cytotoxic activities of Opuntia stricta cladodes. PLoS ONE 2019, 14, e0209682. [Google Scholar] [CrossRef]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef]
- Loor, J.J.; Ferlay, A.; Ollier, A.; Ueda, K.; Doreau, M.; Chilliard, Y. High-concentrate diets and polyunsaturated oils alter trans and conjugated isomers in bovine rumen, blood, and milk. J. Dairy Sci. 2005, 88, 3986–3999. [Google Scholar] [CrossRef]
- Bernard, L.; Leroux, C.; Chilliard, Y. Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Adv. Exp. Med. Biol. 2008, 606, 67–108. [Google Scholar] [CrossRef]
- Zened, A.; Enjalbert, F.; Nicot, M.C.; Troegeler-Meynadier, A. Starch plus sunflower oil addition to the diet of dry dairy cows results in a trans-11 to trans-10 shift of biohydrogenation. J. Dairy Sci. 2013, 96, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Dewanckele, L.; Toral, P.G.; Vlaeminck, B.; Fievez, V. Invited review: Role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update. J. Dairy Sci. 2020, 103, 7655–7681. [Google Scholar] [CrossRef] [PubMed]
- Toral, P.G.; Hervás, G.; Leskinen, H.; Shingfield, K.J.; Frutos, P. In vitro ruminal biohydrogenation of eicosapentaenoic (EPA), docosapentaenoic (DPA), and docosahexaenoic acid (DHA) in cows and ewes: Intermediate metabolites and pathways. J. Dairy Sci. 2018, 101, 6109–6121. [Google Scholar] [CrossRef] [PubMed]
- Freitas, W.R.; Gama, M.A.S.; Silva, J.L.; Véras, A.S.C.; Chagas, J.C.C.; Conceição, M.G.; Almeida, G.A.P.; Calsavara, A.F.; Alves, A.M.S.V.; Ferreira, M.A. Milk fatty acid profile of dairy cows fed diets based on sugarcane bagasse in the Brazilian semiarid region. Chil. J. Agric. Res. 2019, 79, 464–472. [Google Scholar] [CrossRef]
- Lopes, F.C.F.; Silva, B.C.M.; Almeida, M.M.; Gama, M.A.S. Lácteos naturalmente enriquecidos com ácidos graxos benéficos à saúde. In Sustentabilidade Ambiental, Social e Econômica da Cadeia Produtiva do Leite: Desafios e Perspectivas; Martins, P.C., Piccinini, G.A., Krug, E.E.B., Martins, C.E., Lopes, F.C.F., Eds.; Embrapa: Brasília, Brazil, 2015; 434p. [Google Scholar]
- Ribeiro, C.G.S.; Lopes, F.C.F.; Gama, M.A.S.; Morenz, M.J.F.; Rodriguez, N.M. Desempenho produtivo e perfil de ácidos graxos do leite de vacas que receberam níveis crescentes de óleo de girassol em dietas à base de capim-elefante. Arq. Bras. Med. Vet. Zootec. 2014, 66, 1513–1521. [Google Scholar] [CrossRef] [Green Version]
Ingredient | Substitution Level of Corn for FFCG 1 | ||||
---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | |
Cactus cladodes | 415.0 | 415.0 | 415.0 | 415.0 | 415.0 |
Sugarcane bagasse | 318.8 | 319.1 | 319.2 | 319.4 | 319.5 |
Ground corn | 148.0 | 111.0 | 74.0 | 37.0 | 0.0 |
FFCG 1 | 0.0 | 37.0 | 74.0 | 111.0 | 148.0 |
Corn gluten meal | 83.0 | 83.0 | 83.0 | 83.0 | 83.0 |
Urea/Ammonium sulfate 2 | 18.2 | 17.9 | 17.8 | 17.6 | 17.5 |
Salt | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Mineral blend 3 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 |
Composition | |||||
Dry matter 4 | 431.4 | 434.3 | 437.1 | 439.8 | 442.7 |
Organic matter | 924.7 | 924.8 | 924.9 | 924.9 | 924.9 |
Ether extract | 16.6 | 30.9 | 45.2 | 59.5 | 73.8 |
Crude protein | 140.2 | 141.2 | 142.5 | 143.5 | 144.9 |
cNDF 5 | 380.4 | 385.7 | 390.8 | 396.0 | 401.1 |
Non-fiber carbohydrates 6 | 467.5 | 446.1 | 425.0 | 403.7 | 382.6 |
Total digestible nutrients | 686.8 | 715.3 | 718.3 | 744.3 | 753.4 |
Total fatty acids | 10.7 | 23.6 | 36.8 | 49.9 | 62.9 |
C16:0 | 2.17 | 3.89 | 5.62 | 7.34 | 9.06 |
C18:0 | 0.42 | 0.70 | 0.98 | 1.27 | 1.55 |
cis-9 C18:1 | 2.52 | 7.09 | 11.66 | 16.23 | 20.79 |
C18:2 n-6 | 4.83 | 11.12 | 17.41 | 23.69 | 29.98 |
C18:3 n-3 | 1.15 | 1.27 | 1.38 | 1.50 | 1.61 |
Item | Substitution Level of Corn for FFCG, % | SEM 1 | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | L | Q | ||
Milk production, kg/day | 13.37 | 13.97 | 14.61 | 14.93 | 14.08 | 1.123 | 0.0361 | 0.0183 |
Milk composition, % | ||||||||
Fat | 3.45 | 3.42 | 3.73 | 3.68 | 3.66 | 0.174 | 0.0387 | 0.4025 |
Protein | 3.06 | 2.96 | 2.97 | 2.88 | 2.97 | 0.075 | 0.0062 | 0.0106 |
Total solids | 11.80 | 11.59 | 12.03 | 11.91 | 11.88 | 0.206 | 0.1800 | 0.6387 |
Item | Substitution Level of Corn for FFCG, % | SEM 1 | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | L | Q | ||
C4:0 | 3.3087 | 3.4743 | 3.4119 | 3.2028 | 3.1524 | 0.1602 | 0.1198 | 0.1898 |
C5:0 | 0.0204 | 0.0201 | 0.0185 | 0.0183 | 0.0188 | 0.0010 | 0.0803 | 0.3653 |
C6:0 | 2.2513 | 2.1748 | 1.9073 | 1.7353 | 1.5770 | 0.1276 | <0.0001 | 0.7427 |
C7:0 | 0.0168 | 0.0140 | 0.0123 | 0.0113 | 0.0105 | 0.0010 | <0.0001 | 0.1172 |
C8:0 | 1.4713 | 1.3555 | 1.1163 | 0.9766 | 0.8857 | 0.0875 | <0.0001 | 0.3339 |
C9:0 | 0.0204 | 0.0156 | 0.0126 | 0.0127 | 0.0117 | 0.0012 | <0.0001 | 0.0076 |
C10:0 | 3.1593 | 2.6774 | 2.0533 | 1.8146 | 1.5848 | 0.2063 | <0.0001 | 0.0515 |
C11:0 | 0.0704 | 0.0546 | 0.0408 | 0.0369 | 0.0321 | 0.0059 | <0.0001 | 0.0136 |
C12:0 | 3.6389 | 2.8887 | 2.1906 | 1.9675 | 1.6890 | 0.2204 | <0.0001 | 0.0066 |
cis-9 C12:1 | 0.1009 | 0.0794 | 0.0507 | 0.0480 | 0.0364 | 0.0064 | <0.0001 | 0.0320 |
C14:0 | 11.0734 | 9.5893 | 7.9794 | 7.3498 | 6.5737 | 0.5637 | <0.0001 | 0.1069 |
iso C14:0 | 0.1160 | 0.1023 | 0.0890 | 0.0913 | 0.0745 | 0.0061 | <0.0001 | 0.5758 |
cis-9 C14:1 | 1.0400 | 0.8188 | 0.6518 | 0.5534 | 0.4878 | 0.0739 | <0.0001 | 0.0240 |
C15:0 | 1.0387 | 0.8699 | 0.7536 | 0.7121 | 0.6372 | 0.0304 | <0.0001 | 0.0112 |
iso C15:0 | 0.2718 | 0.2318 | 0.2023 | 0.1832 | 0.1520 | 0.0120 | <0.0001 | 0.4209 |
anteiso C15:0 | 0.5919 | 0.5183 | 0.4831 | 0.4400 | 0.3804 | 0.0236 | <0.0001 | 0.7079 |
C16:0 | 31.5946 | 26.2426 | 23.1183 | 23.0576 | 21.4286 | 1.1107 | <0.0001 | 0.0007 |
iso C16:0 | 0.2248 | 0.1887 | 0.1559 | 0.1496 | 0.1219 | 0.0105 | <0.0001 | 0.1858 |
trans-9 C16:1 | 0.0889 | 0.1520 | 0.2190 | 0.2691 | 0.3371 | 0.0291 | <0.0001 | 0.9202 |
cis-9 C16:1 | 1.5601 | 1.1298 | 0.9953 | 0.9084 | 0.8847 | 0.1175 | <0.0001 | 0.0147 |
C17:0 | 0.6489 | 0.5407 | 0.4830 | 0.4644 | 0.4005 | 0.0160 | <0.0001 | 0.0109 |
iso C17:0 | 0.4066 | 0.3674 | 0.3636 | 0.3451 | 0.3098 | 0.0171 | <0.0001 | 0.8657 |
anteiso C17:0 | 0.5592 | 0.4903 | 0.4840 | 0.4610 | 0.3442 | 0.0446 | 0.0016 | 0.4852 |
cis-9 C17:1 | 0.2496 | 0.1834 | 0.1719 | 0.1569 | 0.1329 | 0.0183 | <0.0001 | 0.0091 |
C18:0 | 6.8171 | 10.6160 | 11.7213 | 13.3583 | 13.1279 | 0.8195 | <0.0001 | 0.0027 |
C20:0 | 0.1308 | 0.1681 | 0.1753 | 0.1908 | 0.1836 | 0.0124 | <0.0001 | 0.0019 |
C20:1 | 0.1263 | 0.1414 | 0.1460 | 0.1383 | 0.1461 | 0.0086 | 0.0157 | 0.1204 |
C20:2 | 0.0284 | 0.0268 | 0.0236 | 0.0224 | 0.0198 | 0.0015 | <0.0001 | 1.0000 |
C20:3 | 0.0486 | 0.0492 | 0.0476 | 0.0477 | 0.0437 | 0.0031 | 0.0443 | 0.2475 |
C20:4 | 0.1947 | 0.1540 | 0.1273 | 0.1312 | 0.1048 | 0.0101 | <0.0001 | 0.0284 |
C20:5 | 0.0140 | 0.0136 | 0.0122 | 0.0121 | 0.0120 | 0.0007 | 0.0004 | 0.8858 |
C21:0 | 0.0203 | 0.0200 | 0.0168 | 0.0178 | 0.0157 | 0.0014 | 0.0004 | 0.8604 |
C22:0 | 0.1207 | 0.1096 | 0.0927 | 0.0810 | 0.0799 | 0.0100 | <0.0001 | 0.1267 |
C22:5 | 0.0331 | 0.0279 | 0.0246 | 0.0244 | 0.0201 | 0.0019 | <0.0001 | 0.2958 |
C23:0 | 0.0234 | 0.0227 | 0.0185 | 0.0206 | 0.0193 | 0.0015 | 0.0257 | 0.3348 |
C24:0 | 0.0460 | 0.0399 | 0.0313 | 0.0312 | 0.0286 | 0.0033 | <0.0001 | 0.0933 |
Item | Substitution Level of Corn for FFCG, % | SEM 1 | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | L | Q | ||
C18:0 | 6.8171 | 10.6160 | 11.7213 | 13.3583 | 13.1279 | 0.8195 | <0.0001 | 0.0027 |
trans-4 C18:1 | 0.0276 | 0.0448 | 0.0805 | 0.0883 | 0.1019 | 0.0091 | <0.0001 | 0.1928 |
trans-5 C18:1 | 0.0228 | 0.0354 | 0.0614 | 0.0654 | 0.0779 | 0.0080 | <0.0001 | 0.2399 |
trans-6/trans-8 C18:1 | 0.2269 | 0.4231 | 0.6045 | 0.6456 | 0.8283 | 0.0570 | <0.0001 | 0.2384 |
trans-9 C18:1 | 0.1734 | 0.3130 | 0.4415 | 0.5258 | 0.6511 | 0.0517 | <0.0001 | 0.6210 |
trans-10 C18:1 | 0.3365 | 0.7232 | 1.1874 | 1.3262 | 1.7667 | 0.1900 | <0.0001 | 0.7287 |
trans-11 C18:1 | 1.3372 | 2.3243 | 3.5807 | 4.2577 | 5.3995 | 0.5546 | <0.0001 | 0.8273 |
trans-12 C18:1 | 0.2138 | 0.4682 | 0.6863 | 0.7362 | 0.9160 | 0.0567 | <0.0001 | 0.0310 |
trans-13/trans-14 C18:1 | 0.5020 | 1.0286 | 1.1966 | 1.2566 | 1.3210 | 0.1690 | 0.0012 | 0.1103 |
trans-16 C18:1 | 0.1322 | 0.2573 | 0.3397 | 0.3700 | 0.3935 | 0.0319 | <0.0001 | 0.0041 |
cis-9 C18:1 | 17.0081 | 19.9223 | 22.5621 | 21.9779 | 22.9734 | 1.1373 | <0.0001 | 0.0079 |
cis-11 C18:1 | 0.7104 | 0.6519 | 0.7060 | 0.6928 | 0.6793 | 0.0472 | 0.7370 | 0.7622 |
cis-12 C18:1 | 0.1968 | 0.3647 | 0.4960 | 0.4331 | 0.4591 | 0.0394 | <0.0001 | 0.0004 |
cis-13 C18:1 | 0.0891 | 0.0869 | 0.1094 | 0.1011 | 0.1195 | 0.0107 | 0.0110 | 0.7519 |
cis-15 + 19:0 C18:1 | 0.0494 | 0.0600 | 0.0613 | 0.0629 | 0.0709 | 0.0061 | 0.0109 | 0.8088 |
trans-9, trans-12 C18:2 | 0.0213 | 0.0181 | 0.0246 | 0.0369 | 0.0297 | 0.0043 | 0.0041 | 0.8717 |
cis-9, trans-12 C18:2 | 0.0315 | 0.0530 | 0.0505 | 0.0487 | 0.0760 | 0.0080 | <0.0001 | 0.5459 |
C18:2 n-6 | 2.8782 | 2.8602 | 2.9992 | 3.0359 | 3.0295 | 0.1223 | 0.0350 | 0.7591 |
cis-9, trans-11 C18:2 | 0.7576 | 1.2476 | 1.9179 | 1.9106 | 2.6108 | 0.2649 | <0.0001 | 0.7088 |
trans-9, cis-11 C18:2 | 0.0200 | 0.0266 | 0.0351 | 0.0337 | 0.0403 | 0.0059 | 0.0028 | 0.5700 |
trans-10, cis-12 C18:2 | 0.0142 | 0.0192 | 0.0190 | 0.0197 | 0.0218 | 0.0021 | 0.0060 | 0.4464 |
C18:3 n-6 | 0.0492 | 0.0486 | 0.0419 | 0.0454 | 0.0442 | 0.0042 | 0.0900 | 0.3202 |
C18:3 n-3 | 0.1104 | 0.0952 | 0.0957 | 0.0877 | 0.0780 | 0.0073 | 0.0001 | 0.9021 |
Item | Substitution Level of Corn for FFCG, % | SEM 1 | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | L | Q | ||
∑ n-3 FA | 0.1577 | 0.1368 | 0.1325 | 0.1243 | 0.1096 | 0.0078 | <0.0001 | 0.7042 |
∑ n-6 FA | 3.1992 | 3.1387 | 2.2394 | 3.2822 | 3.2421 | 0.1265 | 0.3048 | 0.9479 |
∑ trans C18:1 | 2.9723 | 5.6185 | 8.1786 | 9.2714 | 11.4560 | 0.8666 | <0.0001 | 0.2944 |
∑ trans C18:1—(VA + RA) 3 | 0.8774 | 2.0466 | 2.6798 | 3.1034 | 3.4456 | 0.3297 | <0.0001 | 0.1104 |
∑ SCFA 3 | 10.1904 | 9.6823 | 8.4889 | 7.7291 | 7.2003 | 0.5379 | <0.0001 | 0.6466 |
∑ MCFA 3 | 46.3070 | 38.7203 | 33.2884 | 32.3748 | 29.6913 | 1.7512 | <0.0001 | 0.0019 |
∑ SFA 3 | 67.7875 | 62.9044 | 57.0342 | 56.8236 | 52.9263 | 1.8028 | <0.0001 | 0.0717 |
∑ MUFA 3 | 24.6638 | 29.5881 | 34.6628 | 34.9050 | 38.0316 | 1.5307 | <0.0001 | 0.0229 |
∑ cis MUFA | 21.3750 | 23.6150 | 26.0620 | 25.1550 | 26.0400 | 1.1212 | <0.0001 | 0.0160 |
∑ trans MUFA | 3.2900 | 5.9720 | 8.5980 | 9.7500 | 11.9930 | 0.8927 | <0.0001 | 0.3146 |
∑ PUFA 3 | 4.2270 | 4.6760 | 5.4560 | 5.4950 | 6.1690 | 0.3233 | <0.0001 | 0.6946 |
∑ OCFA 3 | 1.9463 | 1.6186 | 1.4122 | 1.3447 | 1.1938 | 0.0488 | <0.0001 | 0.0034 |
∑ BCFA 3 | 2.2287 | 1.9492 | 1.8241 | 1.7135 | 1.4212 | 0.0744 | <0.0001 | 0.9606 |
∑ OBCFA 4 | 4.1752 | 3.5681 | 3.2359 | 3.0584 | 2.6147 | 0.1142 | <0.0001 | 0.1662 |
FA Ratios | ||||||||
trans C18:1/C18:0 | 0.3848 | 0.5326 | 0.7070 | 0.6794 | 0.8989 | 0.0768 | <0.0001 | 0.7984 |
trans-11 C18:1/C18:0 | 0.1729 | 0.2180 | 0.3064 | 0.3134 | 0.4208 | 0.0448 | <0.0001 | 0.6996 |
n-6/n-3 | 20.5366 | 23.3382 | 24.8491 | 27.1740 | 29.7705 | 1.1662 | <0.0001 | 0.9052 |
SCD-1 Indices 5 | ||||||||
SCD14 | 0.0858 | 0.0788 | 0.0761 | 0.0679 | 0.0688 | 0.0052 | <0.0001 | 0.3058 |
SCD16 | 0.0457 | 0.0408 | 0.0414 | 0.0370 | 0.0392 | 0.0031 | 0.0177 | 0.2531 |
SCD18 | 0.7288 | 0.6520 | 0.6553 | 0.6247 | 0.6373 | 0.0199 | 0.0004 | 0.0254 |
SCDCLA | 0.3710 | 0.3553 | 0.3469 | 0.3194 | 0.3281 | 0.0157 | 0.0024 | 0.4959 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, C.S.d.; Gama, M.A.S.; Silva, E.A.M.; Ribeiro, E.F.; Souza, F.G.; Monteiro, C.C.F.; Mora-Luna, R.E.; Oliveira, J.C.V.; Santos, D.C.; Ferreira, M.d.A. Nutritional Quality of Milk Fat from Cows Fed Full-Fat Corn Germ in Diets Containing Cactus Opuntia and Sugarcane Bagasse as Forage Sources. Animals 2023, 13, 568. https://doi.org/10.3390/ani13040568
Silva CSd, Gama MAS, Silva EAM, Ribeiro EF, Souza FG, Monteiro CCF, Mora-Luna RE, Oliveira JCV, Santos DC, Ferreira MdA. Nutritional Quality of Milk Fat from Cows Fed Full-Fat Corn Germ in Diets Containing Cactus Opuntia and Sugarcane Bagasse as Forage Sources. Animals. 2023; 13(4):568. https://doi.org/10.3390/ani13040568
Chicago/Turabian StyleSilva, Camila S. da, Marco A. S. Gama, Erick A. M. Silva, Emília F. Ribeiro, Felipe G. Souza, Carolina C. F. Monteiro, Robert E. Mora-Luna, Júlio C. V. Oliveira, Djalma C. Santos, and Marcelo de A. Ferreira. 2023. "Nutritional Quality of Milk Fat from Cows Fed Full-Fat Corn Germ in Diets Containing Cactus Opuntia and Sugarcane Bagasse as Forage Sources" Animals 13, no. 4: 568. https://doi.org/10.3390/ani13040568
APA StyleSilva, C. S. d., Gama, M. A. S., Silva, E. A. M., Ribeiro, E. F., Souza, F. G., Monteiro, C. C. F., Mora-Luna, R. E., Oliveira, J. C. V., Santos, D. C., & Ferreira, M. d. A. (2023). Nutritional Quality of Milk Fat from Cows Fed Full-Fat Corn Germ in Diets Containing Cactus Opuntia and Sugarcane Bagasse as Forage Sources. Animals, 13(4), 568. https://doi.org/10.3390/ani13040568