Efficiency of Manchega Sheep Milk Intended for Cheesemaking and Determination of Factors Causing Inefficiency
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset and Sample Collection
2.2. Laboratory Analysis
2.3. Modeling Curd Yield Performance of Manchega Sheep Milk
2.4. Curd Yield Efficiency of Manchega Sheep Milk
2.5. Determinants of Curd Yield Efficiency of Manchega Sheep Milk
3. Results and Discussion
3.1. Efficiency of the Coagulation Process
3.2. Factors Affecting the Coagulation Process
3.2.1. Bivariate Associations
3.2.2. Multivariate Analysis of Covariance (MANCOVA)
3.2.3. Generalized Linear Models (GLM)
3.2.4. Causes of Inefficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bencini, R. Factors Affecting the Clotting Properties of Sheep Milk. J. Sci. Food Agric. 2002, 82, 705–719. [Google Scholar] [CrossRef]
- Arias, R. Recuento de Células Somáticas y Calidad de La Leche de Oveja En Castilla-La Mancha. Ph.D. Thesis, Universidad de Castilla-La Mancha, Ciudad Real, Spain, 2009. [Google Scholar]
- Bonfatti, V.; Tuzzato, M.; Chiarot, G.; Carnier, P. Variation in Milk Coagulation Properties Does Not Affect Cheese Yield and Composition of Model Cheese. Int. Dairy J. 2014, 39, 139–145. [Google Scholar] [CrossRef]
- Ng-Kwai-Hang, K.F.; Politis, I.; Cue, R.I.; Marziali, A.S. Correlations Between Coagulation Properties of Milk and Cheese Yielding Capacity and Cheese Composition. Can. Inst. Food Sci. Technol. J. 1989, 22, 291–294. [Google Scholar] [CrossRef]
- Ikonen, T.; Morri, S.; Tyrisevä, A.-M.; Ruottinen, O.; Ojala, M. Genetic and Phenotypic Correlations Between Milk Coagulation Properties, Milk Production Traits, Somatic Cell Count, Casein Content, and PH of Milk. J. Dairy Sci. 2004, 87, 458–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wedholm, A.; Larsen, L.B.; Lindmark-Månsson, H.; Karlsson, A.H.; Andrén, A. Effect of Protein Composition on the Cheese-Making Properties of Milk from Individual Dairy Cows. J. Dairy Sci. 2006, 89, 3296–3305. [Google Scholar] [CrossRef] [Green Version]
- Pazzola, M. Coagulation Traits of Sheep and Goat Milk. Animals 2019, 9, 540. [Google Scholar] [CrossRef] [Green Version]
- Caballero-Villalobos, J.; Perea, J.M.; Angón, E.; Arias, R.; Garzón, A. Coagulation Efficiency and Its Determinant Factors: A Case Study for Manchega Ewe Milk in the Region of Castilla-La Mancha, Spain. J. Dairy Sci. 2018, 101, 3878–3886. [Google Scholar] [CrossRef] [Green Version]
- Timmer, C.P. Using a Probabilistic Frontier Production Function to Measure Technical Efficiency. J. Political Econ. 1971, 79, 776–794. [Google Scholar] [CrossRef]
- Angón, E.; García, A.; Perea, J.; Acero, R.; Toro-Mújica, P.; Pacheco, H.; González, A. Eficiencia Técnica y Viabilidad de Los Sistemas de Pastoreo de Vacunos de Leche En La Pampa, Argentina. Agrociencia 2013, 47, 443–456. [Google Scholar]
- Toro-Mujica, P.; García, A.; Gómez-Castro, A.G.; Acero, R.; Perea, J.; Rodríguez-Estévez, V.; Aguilar, C.; Vera, R. Technical Efficiency and Viability of Organic Dairy Sheep Farming Systems in a Traditional Area for Sheep Production in Spain. Small Rumin. Res. 2011, 100, 89–95. [Google Scholar] [CrossRef]
- Garzón, A.; Figueroa, A.; Caballero-Villalobos, J.; Angón, E.; Arias, R.; Perea, J.M. Derivation of Multivariate Indices of Milk Composition, Coagulation Properties, and Curd Yield in Manchega Dairy Sheep. J. Dairy Sci. 2021, 104, 8618–8629. [Google Scholar] [CrossRef] [PubMed]
- Figueroa Sánchez, A.; Perea Muñoz, J.; Caballero-Villalobos, J.; Arias Sánchez, R.; Garzón, A.; Angón Sánchez de Pedro, E. Coagulation Process in Manchega Sheep Milk from Spain: A Path Analysis Approach. J. Dairy Sci. 2021, 104, 7544–7554. [Google Scholar] [CrossRef] [PubMed]
- Greene, W. Maximum Likelihood Estimation of Econometric Frontier Functions. J. Econom. 1980, 13, 27–56. [Google Scholar] [CrossRef]
- McDonald, J. Using Least Squares and Tobit in Second Stage DEA Efficiency Analyses. Eur. J. Oper. Res. 2009, 197, 792–798. [Google Scholar] [CrossRef]
- Iliyasu, A.; Mohamed, Z.A. Evaluating Contextual Factors Affecting the Technical Efficiency of Freshwater Pond Culture Systems in Peninsular Malaysia: A Two-Stage DEA Approach. Aquac. Rep. 2016, 3, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Stukalin, Y.; Einat, H. Analyzing Test Batteries in Animal Models of Psychopathology with Multivariate Analysis of Variance (MANOVA): One Possible Approach to Increase External Validity. Pharmacol. Biochem. Behav. 2019, 178, 51–55. [Google Scholar] [CrossRef]
- Carey, G. Multivariate Analysis of Variance (MANOVA) II: Practical Guide to ANOVA and MANOVA for SAS. 1998. Available online: http://ibgwww.colorado.edu/~carey/p7291dir/handouts/manova2.pdf (accessed on 28 November 2022).
- Wang, M.; Zhou, Y.; Tan, G.Z. Multivariate Analysis of Variance (MANOVA) on the Microstructure Gradient of Biomimetic Nanofiber Scaffolds Fabricated by Cone Electrospinning. J. Manuf. Process. 2019, 44, 55–61. [Google Scholar] [CrossRef]
- Roldan-Valadez, E.; Piña-Jimenez, C.; Favila, R.; Rios, C. Gender and Age Groups Interactions in the Quantification of Bone Marrow Fat Content in Lumbar Spine Using 3T MR Spectroscopy: A Multivariate Analysis of Covariance (Mancova). Eur. J. Radiol. 2013, 82, e697–e702. [Google Scholar] [CrossRef]
- Kiebel, S.J.; Mueller, K. The General Linear Model. In Brain Mapping; Elsevier: Amsterdam, The Netherlands, 2015; pp. 465–469. [Google Scholar]
- Quintana, Á.R.; Perea, J.M.; García-Béjar, B.; Jiménez, L.; Garzón, A.; Arias, R. Dominant Yeast Community in Raw Sheep’s Milk and Potential Transfers of Yeast Species in Relation to Farming Practices. Animals 2020, 10, 906. [Google Scholar] [CrossRef]
- Alin, A. Multicollinearity. Wiley InterdiScip. Rev. Comput. Stat. 2010, 2, 370–374. [Google Scholar] [CrossRef]
- Aiyar, S.; Dalgaard, C.-J. Accounting for Productivity: Is It OK to Assume That the World Is Cobb–Douglas? J. Macroecon. 2009, 31, 290–303. [Google Scholar] [CrossRef]
- Vacca, G.M.; Cipolat-Gotet, C.; Paschino, P.; Casu, S.; Usai, M.G.; Bittante, G.; Pazzola, M. Variation of Milk Technological Properties in Sheep Milk: Relationships among Composition, Coagulation and Cheese-Making Traits. Int. Dairy J. 2019, 97, 5–14. [Google Scholar] [CrossRef]
- Stocco, G.; Pazzola, M.; Dettori, M.L.; Paschino, P.; Summer, A.; Cipolat-Gotet, C.; Vacca, G.M. Effects of Indirect Indicators of Udder Health on Nutrient Recovery and Cheese Yield Traits in Goat Milk. J. Dairy Sci. 2019, 102, 8648–8657. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.E.; Chen, C.M.; Jaeggi, J.J. Effect of Rennet Coagulation Time on Composition, Yield, and Quality of Reduced-Fat Cheddar Cheese. J. Dairy Sci. 2001, 84, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Casati, M.R.; Cappa, V.; Calamari, L.; Calegari, F.; Folli, G. Effects of the Season on Milk Yield and on Some Milk Characteristics in Cows. Sci. Tec. Latt. -Casearia 1998, 49, 7–25. [Google Scholar]
- Tyrisevä, A.M.; Ikonen, T.; Ojala, M. Repeatability Estimates for Milk Coagulation Traits and Non-Coagulation of Milk in Finnish Ayrshire Cows. J. Dairy Res. 2003, 70, 91–98. [Google Scholar] [CrossRef]
- Cipolat-Gotet, C.; Cecchinato, A.; Pazzola, M.; Dettori, M.L.; Bittante, G.; Vacca, G.M. Potential Influence of Herd and Animal Factors on the Yield of Cheese and Recovery of Components from Sarda Sheep Milk, as Determined by a Laboratory Bench-Top Model Cheese-Making. Int. Dairy J. 2016, 63, 8–17. [Google Scholar] [CrossRef]
- Sevi, A.; Albenzio, M.; Marino, R.; Santillo, A.; Muscio, A. Effects of Lambing Season and Stage of Lactation on Ewe Milk Quality. Small Rumin. Res. 2004, 51, 251–259. [Google Scholar] [CrossRef]
- Novotná, L.; Kuchtík, J.; Šustová, K.; Zapletal, D.; Filipčík, R. Effects of Lactation Stage and Parity on Milk Yield, Composition and Properties of Organic Sheep Milk. J. Appl. Anim. Res. 2009, 36, 71–76. [Google Scholar] [CrossRef]
- Weber, F. El Desuerado Del Coágulo. In Proceedings of the El Queso; Eck, A., Ed.; Omega S.A.: Barcelona, Spain, 1990; pp. 21–33. [Google Scholar]
- Poulsen, N.A.; Buitenhuis, A.J.; Larsen, L.B. Phenotypic and Genetic Associations of Milk Traits with Milk Coagulation Properties. J. Dairy Sci. 2015, 98, 2079–2087. [Google Scholar] [CrossRef] [Green Version]
- Stocco, G.; Summer, A.; Cipolat-Gotet, C.; Malacarne, M.; Cecchinato, A.; Amalfitano, N.; Bittante, G. The Mineral Profile Affects the Coagulation Pattern and Cheese-Making Efficiency of Bovine Milk. J. Dairy Sci. 2021, 104, 8439–8453. [Google Scholar] [CrossRef] [PubMed]
- Cipolat-Gotet, C.; Cecchinato, A.; De Marchi, M.; Bittante, G. Factors Affecting Variation of Different Measures of Cheese Yield and Milk Nutrient Recovery from an Individual Model Cheese-Manufacturing Process. J. Dairy Sci. 2013, 96, 7952–7965. [Google Scholar] [CrossRef] [PubMed]
- Bittante, G.; Cipolat-Gotet, C.; Malchiodi, F.; Sturaro, E.; Tagliapietra, F.; Schiavon, S.; Cecchinato, A. Effect of Dairy Farming System, Herd, Season, Parity, and Days in Milk on Modeling of the Coagulation, Curd Firming, and Syneresis of Bovine Milk. J. Dairy Sci. 2015, 98, 2759–2774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Model | Parameter | Coefficient | S.E. |
---|---|---|---|
Curd yield (CY) | data | ||
α | 5.3885 | 0.2765 | |
β1 | 0.4833 | 0.0185 | |
β2 | 0.4106 | 0.0351 | |
White test | 0.831 | ||
Chow test | 0.948 | ||
Kolmogorov–Smirnov test | 0.432 | ||
Durbin–Watson test | 0.064 | ||
ANOVA | <0.001 | ||
Adjusted R2 | 61.97 | ||
Mean absolute error (MAE) | 2.93 | ||
Dry curd yield (DCY) | |||
α | 1.8721 | 0.0597 | |
β1 | 0.4804 | 0.0116 | |
β2 | 0.5171 | 0.0221 | |
White test | 0.949 | ||
Chow test | 0.567 | ||
Kolmogorov–Smirnov test | 0.231 | ||
Durbin–Watson test | 0.770 | ||
ANOVA | <0.001 | ||
Adjusted R2 | 82.98 | ||
Mean absolute error (MAE) | 0.65 |
Variable | Description | Units | Mean | S.D. |
---|---|---|---|---|
Yield efficiency | ||||
CY (Y1) | Curd yield | g/100 mL | 26.80 | 6.10 |
DCY (Y2) | Dried curd yield | g/100 mL | 11.18 | 2.34 |
WR (Y3) | Water retention (CY-DCY) | g/100 mL | 15.71 | 4.11 |
Fat (X1) | Fat content in milk | g/100 mL | 6.48 | 1.84 |
CP (X2) | Protein content in milk | g/100 mL | 5.69 | 0.81 |
Random factors | ||||
Flock (F1) | Flock of origin | 1 to 4 | - | - |
Fixed factors | ||||
SOL (F2) | Stage of lactation | 1 to 3 | - | - |
Syneresis (F3) | If A60 < Amax | Yes or no | - | - |
Prolificacy (F4) | Number of lambs | 1 to 3 | - | - |
Season (F5) | Season of lambing | Autumn or spring | - | - |
Parity (F6) | Lactation number | 2 to 5 or more | - | - |
Covariable factors | ||||
DMY (F7) | Daily milk yield | mL | 1.093 | 474.3 |
pH (F8) | pH | −log[H+] | 6.61 | 0.29 |
SCS (F9) | Somatic cell score | log10 (103 cells/mL) | 5.24 | 0.62 |
WTS (F10) | Whey total solids | % | 11.19 | 2.47 |
TS (F11) | Milk total solids | g/100 mL | 17.95 | 2.36 |
Lac (F12) | Lactose content in milk | g/100 mL | 4.88 | 0.38 |
Cas (F13) | Casein content in milk | g/100 mL | 4.51 | 0.69 |
RCT (F14) | Rennet clotting time | min | 21.39 | 11.48 |
A60 (F15) | Curd firmness at 60 min. | mm | 38.26 | 11.11 |
Amax (F16) | Maximum curd firmness | mm | 42.14 | 9.16 |
k20 (F17) | Rate of curd aggregation | min | 24.72 | 12.40 |
L* (F18) | Lightness | [0, 100] | 82.66 | 2.34 |
a* (F19) | Red/Green value | [−60, +60] | −2.55 | 0.81 |
b* (F20) | Blue/Yellow value | [−60, +60] | 5.51 | 1.65 |
C* (F21) | Chroma or saturation | (a*2 + b*2)1/2 | 4.67 | 2.05 |
h* (F22) | Hue | tan−1 (b*/a*) | −0.55 | 0.28 |
Variable | CE | DCE |
---|---|---|
CY (Y1) | 49.57 | 26.76 |
DCY (Y2) | 14.92 | 16.76 |
WR (Y3) | 34.65 | 10.00 |
Fat (X1) | 9.47 | 7.81 |
CP (X2) | 4.89 | 6.35 |
Flock (F1) | 4 | 1 |
SOL (F2) | 1 | 3 |
Syneresis (F3) | No | Yes |
Prolificacy (F4) | 1 | 1 |
Season (F5) | Spring | Autumn |
Parity (F6) | 3 | 3 |
DMY (F7) | 1.420 | 1.300 |
pH (F8) | 6.61 | 6.56 |
SCS (F9) | 5.95 | 6.12 |
WTS (F10) | 1.79 | 1.71 |
TS (F11) | 15.36 | 20.02 |
Lac (F12) | 4.88 | 4.94 |
Cas (F13) | 3.93 | 5.12 |
RCT (F14) | 19.45 | 5.30 |
A60 (F15) | 50.0 | 47.76 |
Amax (F16) | 50.0 | 54.26 |
k20 (F17) | 22.15 | 7.00 |
L* (F18) | 83.19 | 85.00 |
a* (F19) | −2.37 | −2.32 |
b* (F20) | 4.25 | 0.80 |
C* (F21) | 4.86 | 2.45 |
h* (F22) | 4.22 | 1.90 |
Variable | Wilks λ | F | p |
---|---|---|---|
Flock (F1) | 0.949 | 8.49 | <0.001 |
SOL (F2) | - | - | >0.05 |
Syneresis (F3) | - | - | >0.05 |
Prolificacy (F4) | - | - | >0.05 |
Season (F5) | 0.973 | 13.22 | <0.001 |
Parity (F6) | - | - | >0.05 |
DMY (F7) | - | - | >0.05 |
pH (F8) | 0.977 | 11.62 | <0.001 |
SCS (F9) | 0.981 | 9.22 | <0.001 |
WTS (F10) | - | - | >0.05 |
TS (F11) | - | - | >0.05 |
Lac (F12) | 0.935 | 33.71 | <0.001 |
Cas (F13) | 0.960 | 20.18 | <0.001 |
RCT (F14) | - | - | >0.05 |
A60 (F15) | - | - | >0.05 |
Amax (F16) | 0.964 | 18.12 | <0.001 |
k20 (F17) | 0.941 | 30.52 | <0.001 |
L* (F18) | - | - | >0.05 |
a* (F19) | - | - | >0.05 |
b* (F20) | - | - | >0.05 |
C* (F21) | - | - | >0.05 |
h* (F22) | - | - | >0.05 |
Factors | Coefficients | S.E. | F Value | p Value | FIV |
---|---|---|---|---|---|
Random factors | |||||
Flock (F1) | - | - | 8.99 | <0.001 | 1.7 |
Fixed factors | |||||
Season (F5) | - | - | 14.87 | <0.001 | 1.7 |
Spring | 0.012 | 0.0032 | - | - | - |
Autumn | −0.012 | 0.0032 | - | - | - |
Parity (F6) | - | - | 2.62 | 0.049 | 1.7 |
2 | 0.0074 | 0.0042 | - | - | - |
3 | 0.0068 | 0.0043 | - | - | - |
4 | −0.0069 | 0.0049 | - | - | - |
≥ 5 | −0.0073 | 0.0044 | - | - | - |
Covariable factors | |||||
pH (F8) | 0.0952 | 0.0174 | 29.85 | <0.001 | 1.3 |
Lac (F12) | 0.0763 | 0.0099 | 58.96 | <0.001 | 2.4 |
Cas (F13) | 0.0341 | 0.0052 | 42.88 | <0.001 | 2.1 |
Amax (F16) | −0.0017 | 0.0002 | 49.38 | <0.001 | 1.2 |
Factors | Coefficients | S.E. | F Value | p Value | FIV |
---|---|---|---|---|---|
Random factors | |||||
Flock (F1) | - | - | 9.00 | <0.001 | 1.7 |
Covariable factors | |||||
pH (F8) | 0.0756 | 0.0161 | 21.99 | <0.001 | 1.8 |
SCS (F9) | −0.0045 | 0.0014 | 9.56 | 0.002 | 1.2 |
Lac (F12) | 0.0541 | 0.0065 | 68.32 | <0.001 | 1.7 |
Cas (F13) | 0.0185 | 0.0033 | 31.27 | <0.001 | 1.5 |
k20 (F17) | −0.0007 | 0.0002 | 18.23 | <0.001 | 1.8 |
MANCOVA | CE (GLM) | DCE (GLM) | |||
---|---|---|---|---|---|
Variable | F | F | Effect | F | Effect |
Flock (F1) | 8.49 | 5.58 | - | 13.30 | - |
Season (F5) | 13.22 | 8.48 | Spring > Autumn | ns | - |
Parity (F6) | ns | 2.93 | 2 and 3 > 4 and 5 or more | ns | - |
pH (F8) | 11.62 | 25.92 | Positive | 21.99 | Positive |
SCS (F9) | 9.22 | ns | - | 9.56 | Negative |
Lac (F12) | 33.71 | 68.18 | Positive | 68.32 | Positive |
Cas (F13) | 20.18 | 30.01 | Positive | 31.27 | Positive |
Amax (F16) | 18.12 | 51.10 | Negative | ns | - |
k20 (F17) | 30.52 | ns | - | 18.23 | Negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garzón, A.; Perea, J.M.; Arias, R.; Angón, E.; Caballero-Villalobos, J. Efficiency of Manchega Sheep Milk Intended for Cheesemaking and Determination of Factors Causing Inefficiency. Animals 2023, 13, 255. https://doi.org/10.3390/ani13020255
Garzón A, Perea JM, Arias R, Angón E, Caballero-Villalobos J. Efficiency of Manchega Sheep Milk Intended for Cheesemaking and Determination of Factors Causing Inefficiency. Animals. 2023; 13(2):255. https://doi.org/10.3390/ani13020255
Chicago/Turabian StyleGarzón, Ana, José M. Perea, Ramón Arias, Elena Angón, and Javier Caballero-Villalobos. 2023. "Efficiency of Manchega Sheep Milk Intended for Cheesemaking and Determination of Factors Causing Inefficiency" Animals 13, no. 2: 255. https://doi.org/10.3390/ani13020255
APA StyleGarzón, A., Perea, J. M., Arias, R., Angón, E., & Caballero-Villalobos, J. (2023). Efficiency of Manchega Sheep Milk Intended for Cheesemaking and Determination of Factors Causing Inefficiency. Animals, 13(2), 255. https://doi.org/10.3390/ani13020255