The Effect of Cushioned Centrifugation, with and without Enzymatic Reduction of Viscosity, on the Motility Pattern and Kinematic Parameters of Dromedary Camel Bull Spermatozoa
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Experiment 1
2.2.1. Extenders and Seminal Plasma Preparation
2.2.2. Epididymal Semen Collection and Evaluation
2.2.3. Evaluation of the Sperms’ Motility and Kinematic Parameters
2.3. Experiment 2
2.3.1. Semen Collection and Evaluation
2.3.2. Semen Centrifugation
2.3.3. Evaluation of the Sperms’ Motility and Kinematic Parameters
2.4. Experiment 3
2.4.1. Semen Collection and Evaluation
2.4.2. Enzymatic Reduction of Viscosity
2.4.3. Semen Centrifugation
2.5. Statistical Analysis
3. Results
3.1. Experiment 1: Effect of SP Incubation on Motility and Kinematic Parameters of DC Epididymal Spermatozoa
3.2. Experiment 2: Effects of a Cushioned Centrifugation Procedure on Ejaculates’ Sperm Motility and Kinematic Parameters
3.3. Experiment 3: Effects of a Cushioned Centrifugation Procedure, with and without Enzymatic Reduction of the Ejaculates’ Viscosity, on Sperms’ Motility and Kinematic Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, B.W. A review on reproduction in South American camelids. Anim. Reprod. Sci. 2000, 58, 169–195. [Google Scholar] [CrossRef] [PubMed]
- Apichela, S.A.; Argañaraz, M.E.; Giuliano, S.; Zampini, R.; Carretero, I.; Miragaya, M.; Miceli, D.C. Llama oviductal sperm reservoirs: Involvement of bulbourethral glands. Andrologia 2014, 46, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Holden, S.A.; Fernandez-Fuertes, B.; Murphy, E.M.; Lonergan, P.; Fair, S. Effect of seminal plasma from high- and low-fertility bulls on cauda epididymal sperm function. Reprod. Fertil. Dev. 2017, 29, 2457–2465. [Google Scholar] [CrossRef]
- Toyonaga, M.; Tsutsui, T. The quality of cryopreserved sperm collected from feline caudal epididymides using seminal plasma. J. Vet. Med. Sci. 2012, 74, 1349–1353. [Google Scholar] [CrossRef]
- Thuwanut, P.; Chatdarong, K. Incubation of post-thaw epididymal cat spermatozoa with seminal plasma. Reprod. Domest. Anim. 2009, 44, 381–384. [Google Scholar] [CrossRef]
- Heise, A.; Thompson, P.N.; Gerber, D. Influence of seminal plasma on fresh and post-thaw parameters of stallion epididymal spermatozoa. Anim. Reprod. Sci. 2011, 123, 192–201. [Google Scholar] [CrossRef]
- Martínez-Pastor, F.; Anel, L.; Guerra, C.; Álvarez, M.; Soler, A.J.; Garde, J.J.; Chamorro, C.; de Paz, P. Seminal plasma improves cryopreservation of Iberian red deer epididymal sperm. Theriogenology 2006, 66, 1847–1856. [Google Scholar] [CrossRef]
- Neuhauser, S.; Dörfel, S.; Handler, J. Dose-dependent effects of homologous seminal plasma on motility and kinematic characteristics of post-thaw stallion epididymal spermatozoa. Andrology 2015, 3, 536–543. [Google Scholar] [CrossRef]
- Monaco, D.; Batista, M.; Amann, O.; Padalino, B.; Pieters, W.; Morelli, M.; Accogli, G.; Desantis, S.; Lacalandra, G.M. Retrograde flushing collection and freezing of dromedary camel epididymal spermatozoa with seminal plasma. Acta Vet. Hung. 2020, 68, 289–297. [Google Scholar] [CrossRef]
- Kershaw-Young, C.M.; Maxwell, W.M. The effect of seminal plasma on alpaca sperm function. Theriogenology 2011, 76, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Monaco, D.; Lacalandra, G.M. Considerations for the development of a dromedary camel (Camelus dromedarius) semen collection centre. Anim. Reprod. Sci. 2020, 212, 106239. [Google Scholar] [CrossRef]
- Bertuzzi, M.L.; Fumuso, F.G.; Giuliano, S.M.; Miragaya, M.H.; Gallelli, M.F.; Carretero, M.I. New protocol to separate llama sperm without enzymatic treatment using Androcoll-ETM. Reprod. Domest. Anim. 2020, 55, 1154–1162. [Google Scholar] [CrossRef]
- Malo, C.; Crichton, E.G.; Morrell, J.M.; Pukazhenthi, B.S.; Skidmore, J.A. Single layer centrifugation of fresh dromedary camel semen improves sperm quality and in vitro fertilization capacity compared with simple sperm washing. Reprod. Domest. Anim. 2017, 52, 1097–1103. [Google Scholar] [CrossRef]
- Skidmore, J.A. The use of some assisted reproductive technologies in old world camelids. Anim. Reprod. Sci. 2019, 207, 138–145. [Google Scholar] [CrossRef]
- Morton, K.M.; Billah, M.; Skidmore, J. Effect of sperm diluent and dose on the pregnancy rate in dromedary camels after artificial insemination with fresh and liquid-stored semen. J. Camelid Sci. 2013, 6, 49–62. [Google Scholar]
- Al-Bulushi, S.; Manjunatha, B.M.; Bathgate, R.; Rickard, J.P.; de Graaf, S.P. Artificial insemination with fresh, liquid stored and frozen thawed semen in dromedary camels. PLoS ONE 2019, 14, e0224992. [Google Scholar] [CrossRef]
- Malo, C.; Crichton, E.G.; Skidmore, J.A. Preservation of the spermatozoa of the dromedary camel (Camelus dromedarius) by chilling and freezing: The effects of cooling time, extender composition and catalase supplementation. Theriogenology 2020, 153, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Padilla, A.W.; Foote, R.H. Extender and centrifugation effects on the motility patterns of slow-cooled stallion spermatozoa. J. Anim. Sci. 1991, 69, 3308–3313. [Google Scholar] [CrossRef] [PubMed]
- Bliss, S.B.; Voge, J.L.; Hayden, S.S.; Teague, S.R.; Brinsko, S.P.; Love, C.C.; Blanchard, T.L.; Varner, D.D. The impact of cushioned centrifugation protocols on semen quality of stallions. Theriogenology 2012, 77, 1232–1239. [Google Scholar] [CrossRef]
- Monaco, D.; Fatnassi, M.; Padalino, B.; Hammadi, M.; Khorchani, T.; Lacalandra, G.M. Effect of α-Amylase, Papain, and Spermfluid® treatments on viscosity and semen parameters of dromedary camel ejaculates. Res. Vet. Sci. 2016, 105, 5–9. [Google Scholar] [CrossRef] [PubMed]
- El-Bahrawy, K.A. The influence of caffeine supplementation and concerted utilization of enzymatic and mechanical semen liquefaction on freezability of dromedary camel spermatozoa. Int. J. Vet. Sci. 2017, 5, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, C.M.; Evans, G.; Rodney, R.; Maxwell, W.M.C. Papain and its inhibitor E-64 reduce camelid semen viscosity without impairing sperm function and improve post-thaw motility rates. Reprod. Fertil. Dev. 2017, 29, 1107–1114. [Google Scholar] [CrossRef]
- Leahy, T.; Rickard, J.P.; Aitken, R.J.; De Graaf, S.P. D-penicillamine prevents ram sperm agglutination by reducing the disulphide bonds of a copper-binding sperm protein. Reproduction 2016, 151, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Desantis, S.; Lacalandra, G.M.; Batista, M.; Amann, O.; Antonelli, D.; Monaco, D. Seminal plasma Alters surface Glycoprofile of dromedary camel cryopreserved epididymal spermatozoa. Theriogenology 2021, 167, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Lorton, S.P. Evaluation of semen in the andrology laboratory. In Animal Andrology: Theories and Applications; Chenoweth, P., Lorton, S.P., Eds.; CAB International: Boston, MA, USA, 2014; pp. 100–143. [Google Scholar]
- Monaco, D.; Fatnassi, M.; Lamia, D.; Padalino, B.; Seddik, M.M.; Khorchani, T.; Hammadi, M.; Lacalandra, G.M. Mating behaviour and semen parameters in dromedary camel bulls (Camelus dromedarius): A comparison between two types of artificial vagina. Emir. J. Food Agric. 2018, 30, 326–334. [Google Scholar]
- Skidmore, J.A.; Morton, K.M.; Billah, M. Artificial insemination in dromedary camels. Anim. Reprod. Sci. 2013, 136, 178–186. [Google Scholar] [CrossRef]
- Dos Santos, F.C.C.; Morrell, J.M.; Curcio, B.D.R.; Nunes, M.M.; Malschitzky, E. Cushioned and single layer centrifugation improve epididymal stallion sperm motility postcentrifugation. J. Equine Vet. Sci. 2017, 57, 56–60. [Google Scholar] [CrossRef]
- Fumuso, F.G.; Giuliano, S.M.; Chaves, M.G.; Neild, D.M.; Miragaya, M.H.; Gambarotta, M.C.; Carretero, M.I. Seminal plasma affects the survival rate and motility pattern of raw llama spermatozoa. Anim. Reprod. Sci. 2018, 192, 99–106. [Google Scholar] [CrossRef]
- Hori, T.; Atago, T.; Kobayashi, M.; Kawakami, E. Influence of different methods of collection from the canine epididymides on post-thaw caudal epididymal sperm quality. J. Vet. Med. Sci. 2015, 77, 625–630. [Google Scholar] [CrossRef]
- Rijsselaere, T.; Van Soom, A.; Maes, D.; Verberckmoes, S.; De Kruif, A. Effect of blood admixture on in vitro survival of chilled and frozen-thawed canine spermatozoa. Theriogenology 2004, 61, 1589–1602. [Google Scholar] [CrossRef]
- Turri, F.; Madeddu, M.; Gliozzi, T.M.; Gandini, G.; Pizzi, F. Influence of recovery methods and extenders on bull epididymal spermatozoa quality. Reprod. Domest. Anim. 2012, 47, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Morton, K.M.; Gibb, Z.; Leahy, T.; Maxwell, W.M.C. Effect of enzyme treatment and mechanical removal of alpaca (Vicugna pacos) seminal plasma on sperm functional integrity. J. Camelid Sci. 2012, 5, 62–81. [Google Scholar]
- Cucho, H.; Ccoiso, R.; Gallegos, M.; Ccalta, R.; Meza, A.; Ampuero, E.; Ordóñez, C.; Soler, C. Effect of papain on the kinetics of llama sperm (Lama glama). Rev. Inv. Vet. Perú 2020, 31, 1–11. [Google Scholar] [CrossRef]
- Rickard, J.P.; Pool, K.; de Graaf, S.P.; Portas, T.; Rourke, N.; Wiesner, M.; Hildebrandt, T.B.; Göritz, F.; Hermes, R. Increasing the Yield and Cryosurvival of spermatozoa from Rhinoceros ejaculates using the enzyme Papain. Biology 2022, 11, 154. [Google Scholar] [CrossRef]
Control | Control Time | Seminal Plasma | F-Test | p-Value | Control vs. Con_Time | Control vs. S_Plasma | S_Plasma vs. Con_Time | |
---|---|---|---|---|---|---|---|---|
Mean ± St. Dev. | Mean ± St. Dev. | Mean ± St. Dev. | ||||||
Motile | 69.99 ± 18.85 | 70.62 ± 17.67 | 64.62 ± 22.29 | 3.22 | 0.096 | n.s. | n.s. | n.s. |
Progr Motile | 60.21 ± 21.77 | 59.26 ± 24.22 | 37.36 ± 22.01 | 17.41 | <0.0001 | 1 | 0.0047 | 0.0149 |
Rapid | 5.04 ± 3.08 | 4.38 ± 3.33 | 2.65 ± 1.94 | 2.74 | 0.1 | n.s. | n.s. | n.s. |
Medium | 55.17 ± 22.76 | 54.87 ± 22.55 | 34.64 ± 21.42 | 15.85 | 0.002 | 1 | 0.0064 | 0.0017 |
Non Progressive | 9.78 ± 4.58 | 11.37 ± 6.84 | 27.40 ± 10.03 | 13.95 | 0.005 | 1 | 0.005 | 0.041 |
Immotile | 30.01 ± 18.85 | 29.38 ± 17.67 | 35.31 ± 21.99 | 3.18 | 0.098 | n.s. | n.s. | n.s. |
Live | 88.50 ± 4.71 | 84.44 ± 5.35 | 85.03 ± 2.98 | 10.66 | 0.003 | 0.0077 | 0.0095 | 1 |
Pre_Centr | Centr_Con | Centr_Cush | p-Values | Pre_Centr vs. Centr_Con | Pre_Centr vs. Centr_Cush | Centr_Con vs. Centr_Cush | |
---|---|---|---|---|---|---|---|
Mean ± St. Dev. | Mean ± St. Dev. | Mean ± St. Dev. | |||||
Motile | 58.66 ± 8.72 | 62.09 ± 11.18 | 63.98 ± 11.25 | 0.123 | 0.631 | 1 | 0.1953 |
Progr Motile | 43.53 ± 13.04 | 43.76 ± 19.96 | 53.26 ± 15.89 | 0.002 | 1 | 0.009 | 0.0022 |
Rapid | 1.51 ± 1.06 | 1.49 ± 2.01 | 1.77 ± 1.81 | 0.704 | 1 | 0.9024 | 1 |
Medium | 42.03 ± 13.17 | 42.3 ± 19.49 | 51.48 ± 15.89 | 0.002 | 1 | 0.0081 | 0.0015 |
Non Progressive | 15.93 ± 8.06 | 18.26 ± 13.17 | 10.61 ± 6.63 | 0.014 | 0.9947 | 0.0937 | 0.0355 |
Immotile | 41.06 ± 8.51 | 37.94 ± 11.08 | 36.13 ± 11.39 | 0.191 | 0.8508 | 1 | 0.3151 |
Live | 75.73 ± 7.12 | 66.16 ± 9.42 | 68.55 ± 10.55 | <0.001 | 0.0002 | 0.0086 | 0.2096 |
HOST | 64.62 ± 10.04 | 53.24 ± 8.52 | 55.66 ± 5.49 | 0.001 | 0.0192 | 0.0327 | 0.3383 |
Pre_Centr | Centr_Con | Centr_Cush | Pre_Centr vs. Centr_Con | Pre_Centr vs. Centr_Cush | Centr_Con vs. Centr_Cush | ||
---|---|---|---|---|---|---|---|
Mean ± S.E. | Mean ± S.E. | Mean ± S.E. | |||||
VCL (µm/s) | Motile | 76.43 ± 10.56 | 92.58 ± 11.45 | 110.6 ± 12.56 | 0.0859 | <0.0001 | 0.0013 |
Progr Motile | 83.07 ± 10.77 | 106.42 ± 10.31 | 119.24 ± 11.63 | 0.6576 | 0.0007 | 0.5382 | |
VAP (µm/s) | Motile | 32.74 ± 4.44 | 38.04 ± 4.17 | 44.76 ± 4.66 | 0.9376 | <0.0001 | 0.0263 |
Progr Motile | 37.38 ± 3.97 | 43.37 ± 3.73 | 48.86 ± 4.34 | 0.9103 | 0.0045 | 0.3189 | |
VSL (µm/s) | Motile | 15.73 ± 2.15 | 18.73 ± 1.87 | 21.94 ± 1.80 | 0.9233 | <0.0001 | 0.2596 |
Progr Motile | 17.68 ± 2.19 | 21.42 ± 1.70 | 24.09 ± 1.65 | 0.8531 | <0.0001 | 0.5931 | |
STR (%) | Motile | 46.88 ± 1.32 | 49.93 ± 1.22 | 49.95 ± 1.88 | 0.4289 | 0.7746 | 1 |
Progr Motile | 47.29 ± 1.56 | 50.38 ± 1.23 | 50.78 ± 2.01 | 0.595 | 0.6658 | 1 | |
LIN (%) | Motile | 21.36 ± 0.70 | 21.96 ± 0.81 | 21.24 ± 1.04 | 1 | 1 | 0.9998 |
Progr Motile | 21.59 ± 0.57 | 21.84 ± 0.61 | 21.70 ± 1.06 | 1 | 1 | 1 | |
WOB (%) | Motile | 45.12 ± 0.79 | 43.85 ± 1.10 | 42.61 ± 0.79 | 0.9996 | 0.7754 | 0.8817 |
Progr Motile | 45.67 ± 0.62 | 43.22 ± 0.94 | 42.78 ± 0.77 | 0.8119 | 0.4008 | 1 | |
ALH (µm) | Motile | 2.07 ± 0.26 | 2.54 ± 0.29 | 2.93 ± 0.32 | 0.7809 | 0.001 | 0.0305 |
Progr Motile | 2.31 ± 0.24 | 2.87 ± 0.27 | 3.16 ± 0.30 | 0.6013 | 0.0054 | 0.4305 | |
BCF (Hz) | Motile | 8.68 ± 0.65 | 9.19 ± 0.49 | 10.41 ± 0.45 | 0.9993 | <0.0001 | 0.002 |
Progr Motile | 10.19 ± 0.41 | 10.69 ± 0.34 | 11.49 ± 0.29 | 0.9991 | <0.0001 | 0.3421 |
Con | Pap | Centr_Con | Centr_Pap | Con vs. Pap | Con vs. Centr_Con | Con vs. Centr_Pap | Centr_Con vs. Centr_Pap | Pap vs. Centr_Pap | |
---|---|---|---|---|---|---|---|---|---|
Mean ± St. Dev. | Mean ± St. Dev. | Mean ± St. Dev. | Mean ± St. Dev. | ||||||
Motile | 33.66 ± 3.03 | 41.72 ± 3.86 | 32.63 ± 3.42 | 41.39 ± 3.31 | 0.31 | 1.00 | 0.01 | 0.0249 | 1 |
Progr Motile | 12.54 ± 2.59 | 29.53 ± 4.81 | 17.67 ± 2.99 | 29.80 ± 4.20 | 0.0097 | 0.5065 | 0.0001 | 0.0023 | 1 |
Rapid | 1.77 ± 0.49 | 2.62 ± 0.52 | 2.33 ± 0.58 | 3.58 ± 0.90 | 0.9684 | 0.3454 | 0.8332 | 0.998 | 0.9951 |
Medium | 10.77 ± 2.37 | 26.91 ± 4.65 | 15.37 ± 2.76 | 26.22 ± 4.22 | 0.0099 | 0.6598 | 0.0013 | 0.0036 | 1 |
Non Progr | 21.12 ± 2.16 | 12.18 ± 2.41 | 14.94 ± 2.09 | 11.59 ± 2.10 | 0.0255 | 0.0239 | 0.0159 | 0.9648 | 1 |
Immotile | 66.34 ± 3.03 | 58.28 ± 3.86 | 67.37 ± 3.42 | 58.61 ± 3.31 | 0.3124 | 1 | 0.0114 | 0.0247 | 1 |
Con | Pap | Centr_Con | Centr_Pap | Con vs. Pap | Centr_Convs Centr_Pap | Con vs. Centr_Con | ||
---|---|---|---|---|---|---|---|---|
Mean ± S.E. | Mean ± S.E. | Mean ± S.E. | Mean ± S.E. | |||||
VCL (µm/s) | Motile | 66.82 ± 5.08 | 120.63 ± 12.23 | 86.08 ± 6.00 | 120.33 ± 10.16 | <0.0001 | 0.0011 | 0.0043 |
Progr Motile | 103.78 ± 3.98 | 142.51 ± 9.02 | 120.55 ± 4.32 | 141.30 ± 7.56 | 0.0002 | 0.0048 | 0.001 | |
VAP (µm/s) | Motile | 31.10 ± 2.33 | 52.75 ± 5.35 | 39.40 ± 3.02 | 51.22 ± 4.04 | <0.0001 | 0.0004 | 0.0064 |
Progr Motile | 47.57 ± 2.15 | 61.85 ± 4.00 | 53.75 ± 2.67 | 60.13 ± 2.99 | 0.0006 | 0.0898 | 0.0728 | |
VSL (µm/s) | Motile | 14.64 ± 1.37 | 22.98 ± 2.28 | 18.96 ± 1.67 | 24.10 ± 1.92 | 0.0001 | 0.0062 | <0.0001 |
Progr Motile | 23.80 ± 1.54 | 28.26 ± 1.80 | 26.37 ± 1.97 | 29.48 ± 1.72 | 0.0303 | 0.8115 | 0.9682 | |
STR (%) | Motile | 45.53 ± 1.54 | 43.49 ± 1.67 | 46.26 ± 1.49 | 46.73 ± 1.94 | 0.9903 | 1 | 1 |
Progr Motile | 49.29 ± 2.05 | 47.21 ± 2.17 | 49.37 ± 2.21 | 50.23 ± 2.50 | 1 | 1 | 1 | |
LIN (%) | Motile | 21.29 ± 0.94 | 19.22 ± 0.82 | 21.75 ± 0.83 | 20.36 ± 0.73 | 0.7859 | 0.9932 | 1 |
Progr Motile | 23.66 ± 1.27 | 20.91 ± 0.98 | 22.87 ± 1.35 | 21.77 ± 0.96 | 0.8767 | 1 | 1 | |
WOB (%) | Motile | 46.97 ± 1.34 | 44.17 ± 1.16 | 45.94 ± 1.04 | 43.86 ± 1.06 | 0.7644 | 0.9375 | 0.9919 |
Progr Motile | 46.59 ± 1.49 | 44.05 ± 1.00 | 45.37 ± 1.30 | 43.55 ± 0.99 | 0.812 | 0.9856 | 0.9997 | |
ALH (µm) | Motile | 1.92 ± 0.12 | 3.20 ± 0.29 | 2.39 ± 0.15 | 3.18 ± 0.25 | 0.0001 | 0.0015 | 0.0137 |
Progr Motile | 2.81 ± 0.10 | 3.72 ± 0.21 | 3.22 ± 0.11 | 3.68 ± 0.19 | 0.0002 | 0.019 | 0.001 | |
BCF (Hz) | Motile | 8.94 ± 0.51 | 11.63 ± 0.75 | 9.78 ± 0.55 | 11.63 ± 0.48 | <0.0001 | <0.0001 | 0.4974 |
Progr Motile | 12.04 ± 0.46 | 13.55 ± 0.56 | 12.18 ± 0.47 | 13.62 ± 0.39 | 0.3199 | 0.0001 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monaco, D.; Lacalandra, G.M.; Ansar, Z.; Trerotoli, P.; Mulligan, B.P.; Osman, T.K. The Effect of Cushioned Centrifugation, with and without Enzymatic Reduction of Viscosity, on the Motility Pattern and Kinematic Parameters of Dromedary Camel Bull Spermatozoa. Animals 2023, 13, 2685. https://doi.org/10.3390/ani13172685
Monaco D, Lacalandra GM, Ansar Z, Trerotoli P, Mulligan BP, Osman TK. The Effect of Cushioned Centrifugation, with and without Enzymatic Reduction of Viscosity, on the Motility Pattern and Kinematic Parameters of Dromedary Camel Bull Spermatozoa. Animals. 2023; 13(17):2685. https://doi.org/10.3390/ani13172685
Chicago/Turabian StyleMonaco, Davide, Giovanni Michele Lacalandra, Zeeshan Ansar, Paolo Trerotoli, Brendan Patrick Mulligan, and Taher Kamal Osman. 2023. "The Effect of Cushioned Centrifugation, with and without Enzymatic Reduction of Viscosity, on the Motility Pattern and Kinematic Parameters of Dromedary Camel Bull Spermatozoa" Animals 13, no. 17: 2685. https://doi.org/10.3390/ani13172685
APA StyleMonaco, D., Lacalandra, G. M., Ansar, Z., Trerotoli, P., Mulligan, B. P., & Osman, T. K. (2023). The Effect of Cushioned Centrifugation, with and without Enzymatic Reduction of Viscosity, on the Motility Pattern and Kinematic Parameters of Dromedary Camel Bull Spermatozoa. Animals, 13(17), 2685. https://doi.org/10.3390/ani13172685