Toward Sustainability: An Overview of the Use of Green Hydrogen in the Agriculture and Livestock Sector
Abstract
:Simple Summary
Abstract
1. Introduction
2. Agro-Livestock Sector: Greenhouse Gas Emissions and Energy Consumption
3. Hydrogen: A Future Energy Solution?
4. Green Hydrogen as a Key Investment for the Energy Transition
5. Hydrogen from Biomass Electrolysis: Another Possible Green Solution?
6. Hydrogen Applications in the Agro-Livestock Sector
6.1. Literature Search
6.2. Agricultural Sector
6.3. Livestock Sector
6.3.1. Polygastric and Monogastric Animals
6.3.2. Poultry and Rabbits
6.3.3. Aquaculture and Aquaponic Systems
7. Remote Area Applications
8. Outlook and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thuiller, W. Climate change and the ecologist. Nature 2007, 448, 550–552. [Google Scholar] [CrossRef] [PubMed]
- Gitz, V.; Meybeck, A.; Lipper, L.; Young, C.D.; Braatz, S. Climate Change and Food Security: Risks and Responses; FAO: Rome, Italy, 2016. [Google Scholar]
- Wheeler, T.; Von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Pörtner, H.O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R. Climate Change 2014: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Pörtner, H.O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R. Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Colglazier, W. Sustainable development agenda: 2030. Science 2015, 349, 1048–1050. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Available online: https://sdgs.un.org/2030agenda (accessed on 31 May 2023).
- China’s Climate Change Policies State of Play Ahead of COP27. BRIEFING International Progress on Climate Action. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/738186/EPRS_BRI(2022)738186_EN.pdf (accessed on 31 May 2023).
- Gallagher, K.S.; Xuan, X.W. Titans of the Climate: Explaining Policy Process in the United States and China; The MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Wang, P.; Liu, L.; Tan, X.; Liu, Z. Key challenges for China’s carbon emissions trading program. WIREs Clim. Chang. 2019, 10, e599. [Google Scholar] [CrossRef]
- Teng, F.; Wang, P. The evolution of climate governance in China: Drivers, features, and effectiveness. Environ. Politics 2021, 30 (Suppl. S1), 141–161. [Google Scholar] [CrossRef]
- Yu, B. Bureaucratic Deliberation and China’s Engagement with International Ideas: A Case Study on China’s Adoption of Carbon Emissions Trading. J. Contemp. China 2021, 31, 558–573. [Google Scholar] [CrossRef]
- The NOAA Annual Greenhouse Gas Index (AGGI). Available online: https://gml.noaa.gov/aggi/ (accessed on 31 May 2023).
- United Nations Framework Convention on Climate Change. Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1; United Nations Framework Convention on Climate Change: Rio de Janeiro, Brazil; New York, NY, USA, 2015. [Google Scholar]
- Potrč, S.; Čuček, L.; Martin, M.; Kravanja, Z. Sustainable renewable energy supply networks optimization—The gradual transition to a renewable energy system within the European Union by 2050. Renew. Sustain. Energy Rev. 2021, 146, 111186. [Google Scholar] [CrossRef]
- Barton, B.; Campion, J. Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions; Zillman, D., Roggenkamp, M., Paddock, L., Godden, L., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 23–37. [Google Scholar]
- Fankhauser, S.; Averchenkova, A.; Finnegan, J.J. 10 Years of the UK Climate Change Act; Grantham Research Institute on Climate Change and the Environment and Centre for Climate Change Economics and Policy: London, UK, 2018; Available online: https://www.lse.ac.uk/GranthamInstitute/publication/10-years-climate-change-act/ (accessed on 28 May 2023).
- Abraham-Dukuma, M.C.; Dioha, M.O.; Bogado, N.; Butu, H.M.; Okpaleke, F.N.; Hasan, Q.M.; Epe, S.B.; Emodi, N.V. Multidisciplinary Composition of Climate Change Commissions: Transnational Trends and Expert Perspectives. Sustainability 2020, 12, 10280. [Google Scholar] [CrossRef]
- Averchenkova, A.; Fankhauser, S.; Finnegan, J.J. The impact of strategic climate legislation: Evidence from expert interviews on the UK Climate Change Act. Clim. Policy 2021, 21, 251–263. [Google Scholar] [CrossRef]
- Gorjian, S.; Fakhraei, O.; Gorjian, A.; Sharafkhani, A.; Aziznejad, A. Sustainable Food and Agriculture: Employment of Renewable Energy Technologies. Curr. Robot. Rep. 2022, 3, 153–163. [Google Scholar] [CrossRef]
- Parker, R.W.R.; Blanchard, J.L.; Gardner, C.; Green, B.S.; Hartmann, K.; Tyedmers, P.H.; Watson, R.A. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Chang. 2018, 4, 333–337. [Google Scholar] [CrossRef]
- Clark, M.A.; Domingo, N.G.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global food system emissions could preclude achieving the 1.5° and 2 °C climate change targets. Science 2020, 6517, 705–708. [Google Scholar] [CrossRef]
- Sid, S.; Mor, R.S.; Panghal, A.; Kumar, D.; Gahlawat, V.K. Agri-food supply chain and disruptions due to COVID-19: Effects and Strategies. Braz. J. Oper. Prod. Manag. 2021, 18, 1–14. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- FAO. Greenhouse gas emissions from agrifood systems. In Global, Regional and Country Trends, 2000–2020; FAOSTAT Analytical Brief Series No. 50; FAO: Rome, Italy, 2022. [Google Scholar]
- Tubiello, F.N.; Karl, K.; Flammini, A.; Gütschow, J.; Obli-Laryea, G.; Conchedda, G.; Pan, X.; Qi, S.Y.; Heiðarsdóttir, H.H.; Wanner, N.; et al. Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth Syst. Sci. Data 2022, 14, 1795–1809. [Google Scholar] [CrossRef]
- Eriksson, E.; Gray, E. Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems—A critical review. Appl. Energy 2017, 202, 348–364. [Google Scholar] [CrossRef]
- Global Hydrogen Review 2022. Available online: https://www.iea.org/reports/global-hydrogen-review-2022 (accessed on 31 May 2023).
- Global Hydrogen Review 2021. Available online: https://www.iea.org/reports/global-hydrogen-review-2021 (accessed on 31 May 2023).
- Green Hydrogen: A Guide to Policy Making 2020. Available online: https://www.irena.org/publications/2020/Nov/Green-hydrogen (accessed on 31 May 2023).
- Panigrahy, B.; Narayan, K.; Rao, B.R. Green hydrogen production by water electrolysis: A renewable energy perspective. Mater. Today Proc. 2022, 67, 1310–1314. [Google Scholar] [CrossRef]
- van Renssen, S. The hydrogen solution? Nat. Clim. Chang. 2020, 10, 799–801. [Google Scholar] [CrossRef]
- International Energy Agency. The Future of Hydrogen: Seizing Today’s Opportunities. 2019. Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 23 May 2023).
- Buffi, M.; Prussi, M.; Scarlat, N. Energy and environmental assessment of hydrogen from biomass sources: Challenges and perspectives. Biomass-Bioenergy 2022, 165, 106556. [Google Scholar] [CrossRef]
- Kakoulaki, G.; Kougias, I.; Taylor, N.; Dolci, F.; Moya, J.; Jäger-Waldau, A. Green hydrogen in Europe—A regional assessment: Substituting existing production with electrolysis powered by renewables. Energy Convers. Manag. 2021, 228, 113649. [Google Scholar] [CrossRef]
- Turner, J.; Sverdrup, G.; Mann, M.K.; Maness, P.C.; Kroposki, B.; Ghirardi, M.; Evans, R.J.; Blake, D. Renewable hydrogen production. Int. J. Energy Res. 2008, 32, 379–407. [Google Scholar] [CrossRef] [Green Version]
- Hydrogen Council. Available online: https://hydrogencouncil.com/en/hydrogen-insights-2021/ (accessed on 31 May 2023).
- Kumar, S.S.; Himabindu, V. Hydrogen production by PEM water electrolysis–A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar]
- Kato, T.; Kubota, M.; Kobayashi, N.; Suzuoki, Y. Effective utilization of by-product oxygen from electrolysis hydrogen production. Energy 2005, 30, 2580–2595. [Google Scholar] [CrossRef]
- Janke, L.; McDonagh, S.; Weinrich, S.; Nilsson, D.; Hansson, P.-A.; Nordberg, Å. Techno-Economic Assessment of Demand-Driven Small-Scale Green Hydrogen Production for Low Carbon Agriculture in Sweden. Front. Energy Res. 2020, 8, 595224. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Matsuhashi, R. An Optimal Design on Sustainable Energy Systems for Shrimp Farms. IEEE Access 2019, 7, 165543–165558. [Google Scholar] [CrossRef]
- Mohammadpour, H.; Cord-Ruwisch, R.; Pivrikas, A.; Ho, G. Utilisation of oxygen from water electrolysis—Assessment for wastewater treatment and aquaculture. Chem. Eng. Sci. 2021, 246, 117008. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Matsuhashi, R.; Vo, T.T.B.C. A design on sustainable hybrid energy systems by multi-objective optimization for aquaculture industry. Renew. Energy 2021, 163, 1878–1894. [Google Scholar] [CrossRef]
- Fu, T.; Shangguan, H.; Wei, J.; Wu, J.; Tang, J.; Zeng, R.J.; Zhou, S. In-situ electrolytic oxygen is a feasible replacement for conventional aeration during aerobic composting. J. Hazard. Mater. 2022, 426, 127846. [Google Scholar] [CrossRef]
- Temiz, M.; Dincer, I. A unique ocean and solar based multigenerational system with hydrogen production and thermal energy storage for Arctic communities. Energy 2022, 239, 122126. [Google Scholar] [CrossRef]
- Madeira, J.G.F.; Oliveira, E.M.; Springer, M.V.; Cabral, H.L.; Barbeito, D.F.D.C.; Souza, A.P.G.; Moura, D.A.d.S.; Delgado, A.R.S. Hydrogen production from swine manure biogas via steam reforming of methane (SRM) and water gas shift (WGS): A ecological, technical, and economic analysis. Int. J. Hydrogen Energy 2021, 46, 8961–8971. [Google Scholar] [CrossRef]
- Kadier, A.; Simayi, Y.; Abdeshahian, P.; Azman, N.F.; Chandrasekhar, K.; Kalil, M.S. A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alex. Eng. J. 2016, 55, 427–443. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Cao, C.; Guo, L.; Jin, H.; Dargusch, M.; Bernhardt, D.; Yao, X. Hydrogen production from supercritical water gasification of chicken manure. Int. J. Hydrogen Energy 2016, 41, 22722–22731. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Y.; Wu, X.; Miller, C.; Chen, P.; Ruan, R. Swine manure fermentation for hydrogen production. Bioresour. Technol. 2009, 100, 5472–5477. [Google Scholar] [CrossRef]
- Karlsson, A.; Vallin, L.; Ejlertsson, J. Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. Int. J. Hydrogen Energy 2008, 33, 953–962. [Google Scholar] [CrossRef]
- Cheong, D.-Y.; Hansen, C.L. Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge. Appl. Microbiol. Biotechnol. 2006, 72, 635–643. [Google Scholar] [CrossRef]
- Taipabu, M.I.; Viswanathan, K.; Wu, W.; Hattu, N.; Atabani, A. A critical review of the hydrogen production from biomass-based feedstocks: Challenge, solution, and future prospect. Process. Saf. Environ. Prot. 2022, 164, 384–407. [Google Scholar] [CrossRef]
- Lepage, T.; Kammoun, M.; Schmetz, Q.; Richel, A. Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass-Bioenergy 2021, 144, 105920. [Google Scholar] [CrossRef]
- Yang, E.; Mohamed, H.O.; Park, S.-G.; Obaid, M.; Al-Qaradawi, S.Y.; Castaño, P.; Chon, K.; Chae, K.-J. A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies. Bioresour. Technol. 2021, 320, 124363. [Google Scholar] [CrossRef]
- Barthels, H.; Brocke, W.A.; Bonhoff, K.; Groehn, H.G.; Heuts, G.; Lennartz, M.; Mai, H.; Mergel, J.; Schmid, L.; Ritzenhoff, P. Phoebus-Jülich: An autonomous energy supply system comprising photovoltaics, electrolytic hydrogen, fuel cell. Int. J. Hydrogen Energy 1998, 23, 295–301. [Google Scholar] [CrossRef]
- Vosen, S.; Keller, J. Hybrid energy storage systems for stand-alone electric power systems: Optimization of system performance and cost through control strategies. Int. J. Hydrogen Energy 1999, 24, 1139–1156. [Google Scholar] [CrossRef]
- Agbossou, K.; Chahine, R.; Hamelin, J.; Laurencelle, F.; Anouar, A.; St-Arnaud, J.-M.; Bose, T. Renewable energy systems based on hydrogen for remote applications. J. Power Sources 2001, 96, 168–172. [Google Scholar] [CrossRef]
- Shapiro, D.; Duffy, J.; Kimble, M.; Pien, M. Solar-powered regenerative PEM electrolyzer/fuel cell system. Sol. Energy 2005, 79, 544–550. [Google Scholar] [CrossRef]
- Carroquino, J.; Bernal-Agustín, J.-L.; Dufo-López, R. Standalone Renewable Energy and Hydrogen in an Agricultural Context: A Demonstrative Case. Sustainability 2019, 11, 951. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, A.; Misra, D.; Ghosh, S. Modeling and analysis of solar photovoltaic-electrolyzer-fuel cell hybrid power system integrated with a floriculture greenhouse. Energy Build. 2010, 42, 2036–2043. [Google Scholar] [CrossRef]
- Pascuzzi, S.; Anifantis, A.S.; Blanco, I.; Mugnozza, G.S. Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study. Sustainability 2016, 8, 629. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, S.; Takahashi, Y.; Hayashi, T. Small indoor hydroponic system with renewable energy. In Proceedings of the 18th International Conference on Control, Automation and Systems (ICCAS), PyeongChang, Republic of Korea, 17–20 October 2018; pp. 313–318. [Google Scholar]
- Swaminathan, G.; Saurav, G. Development of Sustainable Hydroponics Technique for Urban Agrobusiness. Evergreen 2022, 9, 629–635. [Google Scholar] [CrossRef]
- Baldoin, C.; Balsari, P.; Cerruto, E.; Pascuzzi, S.; Raffaelli, M. Improvement in pesticide application on greenhouse crops: Results of a survey about greenhouse structures in Italy. Acta Hortic. 2008, 801, 609–614. [Google Scholar] [CrossRef]
- Rosa, L.; Mazzotti, M. Potential for hydrogen production from sustainable biomass with carbon capture and storage. Renew. Sustain. Energy Rev. 2022, 157, 112123. [Google Scholar] [CrossRef]
- Nahar, G.; Mote, D.; Dupont, V. Hydrogen production from reforming of biogas: Review of technological advances and an Indian perspective. Renew. Sustain. Energy Rev. 2017, 76, 1032–1052. [Google Scholar] [CrossRef]
- Guo, X.M.; Trably, E.; Latrille, E.; Carrère, H.; Steyer, J.-P. Hydrogen production from agricultural waste by dark fermentation: A review. Int. J. Hydrogen Energy 2010, 35, 10660–10673. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Ducey, T.; Ro, K.S.; Hunt, P.G. Livestock waste-to-bioenergy generation opportunities. Bioresour. Technol. 2008, 99, 7941–7953. [Google Scholar] [CrossRef] [PubMed]
- Levin, D.B.; Zhu, H.; Beland, M.; Cicek, N.; Holbein, B.E. Potential for hydrogen and methane production from biomass residues in Canada. Bioresour. Technol. 2007, 98, 654–660. [Google Scholar] [CrossRef] [PubMed]
- HydroGlen Project. The James Hutton Institute 2021. Available online: https://glensaugh.hutton.ac.uk (accessed on 31 May 2023).
- Hughes, H.A. Alternative Energy Sources for Brooding Poultry. Poult. Sci. 1981, 60, 907–910. [Google Scholar] [CrossRef]
- Genç, G.; Çelik, M.; Serdar Genç, M. Cost analysis of wind-electrolyzer-fuel cell system for energy demand in Pınarbaşı-Kayseri. Int. J. Hydrogen Energy 2012, 37, 12158–12166. [Google Scholar] [CrossRef]
- Kumar, S.; Baalisampang, T.; Arzaghi, E.; Garaniya, V.; Abbassi, R.; Salehi, F. Synergy of green hydrogen sector with offshore industries: Opportunities and challenges for a safe and sustainable hydrogen economy. J. Clean. Prod. 2023, 384, 135545. [Google Scholar] [CrossRef]
- AQUASEF Project 2017 (LIFE13 ENV/ES/000420). Available online: http://aquasef.com/ (accessed on 31 May 2023).
- Legrand, L.; van Vugt, P.; van der Velde, R. 20% Reduction of CO2-Emissions with Power-to-Gas in WWTP. In Proceedings of the REHVA Annual Conference “Advanced HVAC and Natural Gas Technologies”, Riga, Latvia, 8–9 May 2015; pp. 250–253. [Google Scholar]
- Barbir, F. PEM electrolysis for production of hydrogen from renewable energy sources. Sol. Energy 2005, 78, 661–669. [Google Scholar] [CrossRef]
- Røstbø, E.V.; Torgersen, K.J. Evaluation of Synergetic Effects of Integrated Recirculating Aquaculture Systems with Water Electrolysis Units. Master’s Thesis, University of Stavanger, Stavanger, Norway, 2022. Available online: https://uis.brage.unit.no/uis-xmlui/handle/11250/3013623 (accessed on 31 May 2023).
- H2Ocean Project 2014. Available online: https://cordis.europa.eu/project/id/288145 (accessed on 31 May 2023).
- Xie, H.; Zhao, Z.; Liu, T.; Wu, Y.; Lan, C.; Jiang, W.; Zhu, L.; Wang, Y.; Yang, D.; Shao, Z. A membrane-based seawater electrolyser for hydrogen generation. Nature 2022, 612, 673–678. [Google Scholar] [CrossRef]
- Tong, W.; Forster, M.; Dionigi, F.; Dresp, S.; Erami, R.S.; Strasser, P.; Cowan, A.J.; Farràs, P. Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367–377. [Google Scholar] [CrossRef]
- Sandøy, S. Zero-Emission Fish Farm Powered by Wind Power and Hydrogen—A Feasibility Study. Master’s Thesis, University of Bergen, Bergen, Norway, 2022. Available online: https://bora.uib.no/bora-xmlui/handle/11250/2999670 (accessed on 31 May 2023).
- Aristokleous, N.; Charalambides, M.; Menikou, M. Powering Aquaculture Operations at Sea: Can Hydrogen Be a Sustainable Solution? SSRN Elsevier: Amsterdam, The Netherlands, 2022; Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4118432 (accessed on 6 August 2023).
- Feldman, R.; Sanger, J. The Text Mining Handbook; Cambridge University Press: New York, NY, USA, 2007; p. 239. [Google Scholar]
- Marocco, P.; Ferrero, D.; Lanzini, A.; Santarelli, M. Optimal design of stand-alone solutions based on RES + hydrogen storage feeding off-grid communities. Energy Convers. Manag. 2021, 238, 114147. [Google Scholar] [CrossRef]
- Asgedom, H.; Kebreab, E. Beneficial management practices and mitigation of greenhouse gas emissions in the agriculture of the Canadian Prairie: A review. Agron. Sustain. Dev. 2011, 31, 433–451. [Google Scholar] [CrossRef] [Green Version]
- Pulina, G.; Francesconi, A.H.D.; Stefanon, B.; Sevi, A.; Calamari, L.; Lacetera, N.; Dell’orto, V.; Pilla, F.; Marsan, P.A.; Mele, M.; et al. Sustainable ruminant production to help feed the planet. Ital. J. Anim. Sci. 2017, 16, 140–171. [Google Scholar] [CrossRef] [Green Version]
- Sijpestijn, G.F.; Wezel, A.; Chrik, S. Can agroecology help in meeting our 2050 protein requirements? Livest. Sci. 2022, 256, 104822. [Google Scholar] [CrossRef]
- Pulina, G.; Lunesu, M.F.; Pirlo, G.; Ellies-Oury, M.-P.; Chriki, S.; Hocquette, J.-F. Sustainable production and consumption of animal products. Curr. Opin. Environ. Sci. Health 2022, 30, 100404. [Google Scholar] [CrossRef]
- Dash, S.K.; Chakraborty, S.; Elangovan, D. A Brief Review of Hydrogen Production Methods and Their Challenges. Energies 2023, 16, 1141. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, H.; Li, X.; Jiang, B.; Wei, T.; Sun, X.; Liang, D. Boosting hydrogen production from fermentation effluent of biomass wastes in cylindrical single-chamber microbial electrolysis cell. Environ. Sci. Pollut. Res. 2022, 29, 89727–89737. [Google Scholar] [CrossRef] [PubMed]
- Terlouw, T.; Bauer, C.; McKenna, R.; Mazzotti, M. Large-scale hydrogen production via water electrolysis: A techno-economic and environmental assessment. Energy Environ. Sci. 2022, 15, 3583–3602. [Google Scholar] [CrossRef]
Color | Grey Hydrogen | Blue Hydrogen | Turquoise Hydrogen * | Green Hydrogen |
---|---|---|---|---|
Process | SMR or gasification | SMR or gasification with carbon capture (85–95%) | Pyrolysis | Electrolysis |
Source | Methane or coal | Methane or coal | Methane | Renewable electricity |
CO2 emissions | 9–20 kg of CO2 generated per kg of product | 1.5–4.5 kg of CO2 generated per kg of product | 0 kg of CO2 generated per kg of product | 0 kg of CO2 generated per kg of product |
Benefits | Low production cost | Use of existing assets via carbon capture and storage, with lower GHG emissions | No CO2 produced | Consistent with net zero CO2 emissions |
Disadvantages | High CO2 emission makes these technologies unsuitable for a sustainable pathway (net zero emission) | Carbon capture can never be 100% efficient as it is subject to fossil fuel availability and price fluctuations and does not meet the criteria of a net zero future | Still at pilot stage, no industrial applications, the carbon in the methane turns into solid carbon black material | Infrastructure, policies, value recognition currently lacking; production cost is 2–3 time higher than gray hydrogen |
Estimated % of respect for the environment | 0% | 33% | 66% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maganza, A.; Gabetti, A.; Pastorino, P.; Zanoli, A.; Sicuro, B.; Barcelò, D.; Cesarani, A.; Dondo, A.; Prearo, M.; Esposito, G. Toward Sustainability: An Overview of the Use of Green Hydrogen in the Agriculture and Livestock Sector. Animals 2023, 13, 2561. https://doi.org/10.3390/ani13162561
Maganza A, Gabetti A, Pastorino P, Zanoli A, Sicuro B, Barcelò D, Cesarani A, Dondo A, Prearo M, Esposito G. Toward Sustainability: An Overview of the Use of Green Hydrogen in the Agriculture and Livestock Sector. Animals. 2023; 13(16):2561. https://doi.org/10.3390/ani13162561
Chicago/Turabian StyleMaganza, Alessandra, Alice Gabetti, Paolo Pastorino, Anna Zanoli, Benedetto Sicuro, Damià Barcelò, Alberto Cesarani, Alessandro Dondo, Marino Prearo, and Giuseppe Esposito. 2023. "Toward Sustainability: An Overview of the Use of Green Hydrogen in the Agriculture and Livestock Sector" Animals 13, no. 16: 2561. https://doi.org/10.3390/ani13162561
APA StyleMaganza, A., Gabetti, A., Pastorino, P., Zanoli, A., Sicuro, B., Barcelò, D., Cesarani, A., Dondo, A., Prearo, M., & Esposito, G. (2023). Toward Sustainability: An Overview of the Use of Green Hydrogen in the Agriculture and Livestock Sector. Animals, 13(16), 2561. https://doi.org/10.3390/ani13162561