Prediction Equations for In Vitro Ileal Disappearance of Dry Matter and Crude Protein Based on Chemical Composition in Dog Diets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Commercial Dog Diets
2.2. Two-Step In Vitro Procedures
2.3. Chemical Analyses
2.4. Calculations
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biagi, G.; Cipollini, I.; Grandi, M.; Pinna, C.; Vecchiato, C.G.; Zaghini, G. A new in vitro method to evaluate digestibility of commercial diets for dogs. Ital. J. Anim. Sci. 2016, 15, 617–625. [Google Scholar] [CrossRef] [Green Version]
- Faber, T.A.; Bechtel, P.J.; Hernot, D.C.; Parsons, C.M.; Swanson, K.S.; Smiley, S.; Fahey, G.C., Jr. Protein digestibility evaluations of meat and fish substrates using laboratory, avian, and ileally cannulated dog assays. J. Anim. Sci. 2010, 88, 1421–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Case, L.P.; Daristotle, L.; Hayek, M.G.; Raasch, M. Canine and Feline Nutrition: A Resource for Companion Animal Professionals, 3rd ed.; Elsevier Mosby: Saint Louis, MO, USA, 2010. [Google Scholar]
- FEDIAF. Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs; European Pet Food Industry Federation: Brussels, Belgium, 2019. [Google Scholar]
- Dust, J.M.; Grieshop, C.M.; Parsons, C.M.; Karr-Lilienthal, L.K.; Schasteen, C.S.; Quigley, J.D., III; Merchen, N.R.; Fahey, G.C., Jr. Chemical composition, protein quality, palatability, and digestibility of alternative protein sources for dogs. J. Anim. Sci. 2005, 83, 2414–2422. [Google Scholar] [CrossRef] [PubMed]
- Zentek, J.; Fricke, S.; Hewicker-Trautwein, M.; Ehinger, B.; Amtsberg, G.; Baums, C. Dietary protein source and manufacturing processes affect macronutrient digestibility, fecal consistency, and presence of fecal Clostridium perfringens in adult dogs. J. Nutr. 2004, 134, 2158S–2161S. [Google Scholar] [CrossRef] [Green Version]
- Kawauchi, I.M.; Sakomura, N.K.; Pontieri, C.F.; Rebelato, A.; Putarov, T.C.; Malheiros, E.B.; de OS Gomes, M.; Castrillo, C.; Carciofi, A.C. Prediction of crude protein digestibility of animal by-product meals for dogs by the protein solubility in pepsin method. J. Nutr. Sci. 2014, 3, e36. [Google Scholar] [CrossRef] [Green Version]
- González-Vega, J.C.; Kim, B.G.; Htoo, J.K.; Lemme, A.; Stein, H.H. Amino acid digestibility in heated soybean meal fed to growing pigs. J. Anim. Sci. 2011, 89, 3617–3625. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.G.; Kil, D.Y.; Zhang, Y.; Stein, H.H. Concentrations of analyzed or reactive lysine, but not crude protein, may predict the concentration of digestible lysine in distillers dried grains with solubles fed to pigs. J. Anim. Sci. 2012, 90, 3798–3808. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, W.H.; Thomas, D.G.; Bosch, G.; Fahey, G.C., Jr. Comparison of ileal and total tract nutrient digestibility of dry dog foods. J. Anim. Sci. 2013, 91, 3807–3814. [Google Scholar] [CrossRef] [PubMed]
- EU. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. 2010. Available online: https://www.legislation.gov.uk/eudr/2010/63/contents (accessed on 17 March 2023).
- Do, S.; Koutsos, L.; Utterback, P.L.; Parsons, C.M.; De Godoy, M.R.; Swanson, K.S. Nutrient and AA digestibility of black soldier fly larvae differing in age using the precision-fed cecectomized rooster assay. J. Anim. Sci. 2020, 98, skz363. [Google Scholar] [CrossRef]
- Deng, P.; Utterback, P.; Parsons, C.M.; Hancock, L.; Swanson, K.S. Chemical composition, true nutrient digestibility, and true metabolizable energy of novel pet food protein sources using the precision-fed cecectomized rooster assay. J. Anim. Sci. 2016, 94, 3335–3342. [Google Scholar] [CrossRef]
- Kim, H.; Jung, A.H.; Park, S.H.; Yoon, Y.; Kim, B.G. In vitro protein disappearance of raw chicken as dog foods decreased by thermal processing, but was unaffected by non-thermal processing. Animals 2021, 11, 1256. [Google Scholar] [CrossRef] [PubMed]
- Hervera, M.; Baucells, M.; González, G.; Pérez, E.; Castrillo, C. Prediction of digestible protein content of dry extruded dog foods: Comparison of methods. J. Anim. Physiol. Anim. Nutr. 2009, 93, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Hervera, M.; Baucells, M.; Blanch, F.; Castrillo, C. Prediction of digestible energy content of extruded dog food by in vitro analyses. J. Anim. Physiol. Anim. Nutr. 2007, 91, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Penazzi, L.; Schiavone, A.; Russo, N.; Nery, J.; Valle, E.; Madrid, J.; Martinez, S.; Hernandez, F.; Pagani, E.; Ala, U. In vivo and in vitro digestibility of an extruded complete dog food containing black soldier fly (Hermetia illucens) larvae meal as protein source. Front. Vet. Sci. 2021, 8, 653411. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- NRC. Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Jewell, D.E.; Jackson, M.I.; Cochrane, C.-Y.; Badri, D.V. Feeding fiber-bound polyphenol ingredients at different levels modulates colonic postbiotics to improve gut health in dogs. Animals 2022, 12, 627. [Google Scholar] [CrossRef] [PubMed]
- Olivindo, R.F.; Zafalon, R.V.; Teixeira, F.A.; Vendramini, T.H.A.; Pedrinelli, V.; Brunetto, M.A. Evaluation of the nutrients supplied by veterinary diets commercialized in Brazil for obese dogs undergoing a weight loss program. J. Anim. Physiol. Anim. Nutr. 2022, 106, 355–367. [Google Scholar] [CrossRef]
- De-Oliveira, L.D.; de Carvalho Picinato, M.A.; Kawauchi, I.M.; Sakomura, N.K.; Carciofi, A.C. Digestibility for dogs and cats of meat and bone meal processed at two different temperature and pressure levels. J. Anim. Physiol. Anim. Nutr. 2012, 96, 1136–1146. [Google Scholar] [CrossRef]
- AAFCO. Official Publication; Association of American Feed Control Officials: Atlanta, GA, USA, 2019. [Google Scholar]
- Kröger, S.; Vahjen, W.; Zentek, J. Influence of lignocellulose and low or high levels of sugar beet pulp on nutrient digestibility and the fecal microbiota in dogs. J. Anim. Sci. 2017, 95, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
- De Godoy, M.R.; Kerr, K.R.; Fahey, G.C., Jr. Alternative dietary fiber sources in companion animal nutrition. Nutrients 2013, 5, 3099–3117. [Google Scholar] [CrossRef] [Green Version]
- Boisen, S.; Fernández, J. Prediction of the apparent ileal digestibility of protein and amino acids in feedstuffs and feed mixtures for pigs by in vitro analyses. Anim. Feed Sci. Technol. 1995, 51, 29–43. [Google Scholar] [CrossRef]
- Jo, H.; Sung, J.Y.; Kim, B.G. Effects of supplemental xylanase on in vitro disappearance of dry matter in feed ingredients for swine. Rev. Colomb. Cienc. Pecu. 2021, 34, 316–323. [Google Scholar] [CrossRef]
- Kara, K. Determination of the in vitro digestibility and nutrient content of commercial premium extruded foods with different types of protein content for adult dogs. Vet. Med. 2020, 65, 233–249. [Google Scholar] [CrossRef]
- Just, A.; Jørgensen, H.; Fernandez, J. Prediction of metabolizable energy for pigs on the basis of crude nutrients in the feeds. Livest. Prod. Sci. 1984, 11, 105–128. [Google Scholar] [CrossRef]
- Choi, H.; Sung, J.Y.; Kim, B.G. Neutral detergent fiber rather than other dietary fiber types as an independent variable increases the accuracy of prediction equation for digestible energy in feeds for growing pigs. Asian-Australas. J. Anim. Sci. 2020, 33, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.Y.; Kim, B.G. Prediction equations for digestible and metabolizable energy concentrations in feed ingredients and diets for pigs based on chemical composition. Anim. Biosci. 2021, 34, 306. [Google Scholar] [CrossRef]
- Weber, M.; Bissot, T.; Servet, E.; Sergheraert, R.; Biourge, V.; German, A.J. A high-protein, high-fiber diet designed for weight loss improves satiety in dogs. J. Vet. Intern. Med. 2007, 21, 1203–1208. [Google Scholar] [CrossRef]
- German, A.J.; Holden, S.L.; Bissot, T.; Morris, P.J.; Biourge, V. A high protein high fibre diet improves weight loss in obese dogs. Vet. J. 2010, 183, 294–297. [Google Scholar] [CrossRef]
- Bierer, T.L.; Bui, L.M. High-protein low-carbohydrate diets enhance weight loss in dogs. J. Nutr. 2004, 134, 2087S–2089S. [Google Scholar] [CrossRef] [Green Version]
- Zanatta, C.; Félix, A.; Brito, C.; Murakami, F.; Sabchuk, T.; Oliveira, S.; Maiorka, A. Digestibility of dry extruded food in adult dogs and puppies. Arq. Bras. Med. Vet. Zootec. 2011, 63, 784–787. [Google Scholar] [CrossRef]
- Whittemore, C.; Green, D. Growth of the young weaned pig. In The Weaner Pig: Nutrition and Management. Proceedings of a British Society of Animal Science Occasional Meeting, University of Nottingham, UK, September 2000; CABI Publishing: Wallingford, UK, 2000; pp. 1–15. [Google Scholar]
- Castrillo, C.; Vicente, F.; Guada, J. The effect of crude fibre on apparent digestibility and digestible energy content of extruded dog foods. J. Anim. Physiol. Anim. Nutr. 2001, 85, 231–236. [Google Scholar] [CrossRef]
- Kienzle, E.; Biourge, V.; Schönmeier, A. Prediction of energy digestibility in complete dry foods for dogs and cats by total dietary fiber. J. Nutr. 2006, 136, 2041S–2044S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marx, F.R.; Machado, G.S.; Kessler, A.d.M.; Trevizan, L. Dietary fibre type influences protein and fat digestibility in dogs. Ital. J. Anim. Sci. 2022, 21, 1411–1418. [Google Scholar] [CrossRef]
- Burrows, C.; Kronfeld, D.; Banta, C.; Merritt, A.M. Effects of fiber on digestibility and transit time in dogs. J. Nutr. 1982, 112, 1726–1732. [Google Scholar] [CrossRef] [PubMed]
- Fahey, G.C., Jr.; Merchen, N.R.; Corbin, J.E.; Hamilton, A.K.; Serbe, K.A.; Lewis, S.M.; Hirakawa, D.A. Dietary fiber for dogs: I. Effects of graded levels of dietary beet pulp on nutrient intake, digestibility, metabolizable energy and digesta mean retention time. J. Anim. Sci. 1990, 68, 4221–4228. [Google Scholar] [CrossRef]
- Pereira, A.M.; Guedes, M.; Matos, E.; Pinto, E.; Almeida, A.A.; Segundo, M.A.; Correia, A.; Vilanova, M.; Fonseca, A.J.; Cabrita, A.R.J. Effect of zinc source and exogenous enzymes supplementation on zinc status in dogs fed high phytate diets. Animals 2020, 10, 400. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Jo, Y.Y.; Kim, B.G. Energy Concentrations and Nutrient Digestibility of High-fiber Ingredients for Pigs Based on in vitro and in vivo Assays. Anim. Feed Sci. Technol. 2022, 294, 115507. [Google Scholar] [CrossRef]
- Sheikhhasan, B.S.; Moravej, H.; Ghaziani, F.; Esteve-Garcia, E.; Kim, W.K. Relationship between chemical composition and standardized ileal digestible amino acid contents of corn grain in broiler chickens. Poult. Sci. 2020, 99, 4496–4504. [Google Scholar] [CrossRef]
- Zeng, Z.K.; Shurson, G.C.; Urriola, P.E. Prediction of the concentration of standardized ileal digestible amino acids and safety margins among sources of distillers dried grains with solubles for growing pigs: A meta-analysis approach. Anim. Feed Sci. Technol. 2017, 231, 150–159. [Google Scholar] [CrossRef]
- Li, Q.; Piao, X.; Liu, J.; Zeng, Z.; Zhang, S.; Lei, X. Determination and prediction of the energy content and amino acid digestibility of peanut meals fed to growing pigs. Arch. Anim. Nutr. 2014, 68, 196–210. [Google Scholar] [CrossRef]
- Tjernsbekk, M.; Tauson, A.H.; Kraugerud, O.; Ahlstrøm, Ø. Raw mechanically separated chicken meat and salmon protein hydrolysate as protein sources in extruded dog food: Effect on protein and amino acid digestibility. J. Anim. Physiol. Anim. Nutr. 2017, 101, e323–e331. [Google Scholar] [CrossRef]
- Kendall, P.T.; Holme, D.W. Studies on the digestibility of soya bean products, cereals, cereal and plant by-products in diets of dogs. J. Sci. Food. Agric. 1982, 33, 813–822. [Google Scholar] [CrossRef]
- Bednar, G.E.; Murray, S.M.; Patil, A.R.; Flickinger, E.A.; Merchen, N.R.; Fahey, G.C., Jr. Selected animal and plant protein sources affect nutrient digestibility and fecal characteristics of ileally cannulated dogs. Arch. Anim. Nutr. 2000, 53, 127–140. [Google Scholar] [CrossRef]
- Yamka, R.M.; Harmon, D.L.; Schoenherr, W.D.; Khoo, C.; Gross, K.L.; Davidson, S.J.; Joshi, D.K. In vivo measurement of flatulence and nutrient digestibility in dogs fed poultry by-product meal, conventional soybean meal, and low-oligosaccharide low-phytate soybean meal. Am. J. Vet. Res. 2006, 67, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Murray, S.M.; Patil, A.R.; Fahey, G.C., Jr.; Merchen, N.R.; Hughes, D.M. Raw and rendered animal by-products as ingredients in dog diets. J. Anim. Sci. 1997, 75, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
Diet | Age | Dry Matter | Crude Protein | Ether Extract | NDF | Ash |
---|---|---|---|---|---|---|
A | All life stages | 92.1 | 14.4 | 4.7 | 20.0 | 7.1 |
B | Adult | 90.8 | 14.8 | 5.2 | 9.6 | 6.1 |
C | All life stages | 91.4 | 16.6 | 5.3 | 18.8 | 5.9 |
D | Young adult (>12 months) | 91.3 | 18.5 | 6.5 | 19.9 | 9.6 |
E | Adult | 91.4 | 20.3 | 10.4 | 6.4 | 6.3 |
F | All life stages | 91.5 | 20.9 | 9.1 | 21.6 | 7.5 |
G | All life stages | 92.2 | 21.2 | 3.5 | 17.6 | 6.2 |
H | All life stages | 76.7 | 22.0 | 12.4 | 9.6 | 5.9 |
I | Adult | 91.1 | 23.5 | 12.1 | 17.7 | 4.9 |
J | All life stages | 93.0 | 26.1 | 14.0 | 21.3 | 9.3 |
K | Senior | 91.6 | 27.6 | 13.3 | 7.1 | 5.8 |
L | Puppy (<12 months) | 91.2 | 27.7 | 9.7 | 25.7 | 8.0 |
M | Late pregnancy-lactate | 92.9 | 29.1 | 19.4 | 8.4 | 8.0 |
N | Puppy (<12 months) | 92.6 | 34.8 | 18.8 | 25.8 | 8.2 |
O | Puppy (<12 months) | 96.0 | 36.0 | 23.5 | 30.1 | 9.5 |
P | All life stages | 93.9 | 36.6 | 15.8 | 32.2 | 8.7 |
Q | All life stages | 92.9 | 40.8 | 15.7 | 34.3 | 9.1 |
R | All life stages | 96.4 | 42.5 | 13.8 | 34.6 | 10.0 |
Mean | 91.6 | 26.3 | 11.8 | 20.0 | 7.6 | |
Minimum | 76.7 | 14.4 | 3.5 | 6.4 | 4.9 | |
Maximum | 96.4 | 42.5 | 23.5 | 34.6 | 10.0 | |
Standard deviation | 4.4 | 8.8 | 5.6 | 9.2 | 1.6 | |
CV, % | 4.9 | 33.3 | 47.4 | 46.1 | 20.8 |
Diet | Age | Dry Matter | Crude Protein |
---|---|---|---|
A | All life stages | 70.9 | 72.2 |
B | Adult | 79.0 | 78.3 |
C | All life stages | 72.7 | 79.6 |
D | Young adult (>12 months) | 75.4 | 77.3 |
E | Adult | 88.1 | 87.1 |
F | All life stages | 70.8 | 80.7 |
G | All life stages | 80.8 | 79.7 |
H | All life stages | 83.8 | 79.9 |
I | Adult | 86.1 | 85.6 |
J | All life stages | 78.0 | 77.9 |
K | Senior | 85.7 | 85.3 |
L | Puppy (<12 months) | 74.3 | 79.5 |
M | Late pregnancy-lactate | 86.7 | 88.7 |
N | Puppy (<12 months) | 78.7 | 79.2 |
O | Puppy (<12 months) | 73.9 | 76.1 |
P | All life stages | 75.3 | 78.3 |
Q | All life stages | 69.7 | 77.1 |
R | All life stages | 76.3 | 77.3 |
Mean | 78.1 | 80.0 | |
Minimum | 69.7 | 72.2 | |
Maximum | 88.1 | 88.7 | |
Standard deviation | 5.9 | 4.2 | |
CV, % | 7.6 | 5.2 |
Item | EE | NDF | Ash | IVID of DM | IVID of CP |
---|---|---|---|---|---|
CP | 0.78 *** | 0.69 ** | 0.63 ** | −0.14 | −0.06 |
EE | - | 0.32 | 0.46 | 0.13 | 0.18 |
NDF | - | 0.72 *** | −0.73 *** | −0.62 ** | |
Ash | - | −0.51 * | −0.47 * | ||
IVID of DM | - | 0.81 *** |
Item | Regression Coefficient Parameter, % as-is | Statistical Parameter | ||||
---|---|---|---|---|---|---|
Intercept | CP | NDF | RMSE | R2 | p-Value | |
In vitro ileal dry matter disappearance, % | ||||||
Equation 1 | 87.45 | - | −0.47 | 4.19 | 0.53 | <0.001 |
Standard error | 2.4 | - | 0.11 | - | - | - |
p-value | <0.001 | - | <0.001 | - | - | - |
Equation 2 | 81.33 | 0.46 | –0.77 | 2.99 | 0.78 | <0.001 |
standard error | 2.29 | 0.11 | 0.11 | - | - | - |
p-value | <0.001 | 0.001 | <0.001 | - | - | - |
In vitro ileal CP disappearance, % | ||||||
Equation 3 | 85.59 | - | −0.28 | 3.36 | 0.39 | 0.006 |
standard error | 1.94 | - | 0.09 | - | - | - |
p-value | <0.001 | - | 0.006 | - | - | - |
Equation 4 | 81.25 | 0.33 | −0.49 | 2.67 | 0.64 | <0.001 |
standard error | 2.04 | 0.10 | 0.10 | - | - | - |
p-value | <0.001 | 0.006 | <0.001 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.S.; Kim, B.G. Prediction Equations for In Vitro Ileal Disappearance of Dry Matter and Crude Protein Based on Chemical Composition in Dog Diets. Animals 2023, 13, 1937. https://doi.org/10.3390/ani13121937
Song YS, Kim BG. Prediction Equations for In Vitro Ileal Disappearance of Dry Matter and Crude Protein Based on Chemical Composition in Dog Diets. Animals. 2023; 13(12):1937. https://doi.org/10.3390/ani13121937
Chicago/Turabian StyleSong, Yoon Soo, and Beob Gyun Kim. 2023. "Prediction Equations for In Vitro Ileal Disappearance of Dry Matter and Crude Protein Based on Chemical Composition in Dog Diets" Animals 13, no. 12: 1937. https://doi.org/10.3390/ani13121937
APA StyleSong, Y. S., & Kim, B. G. (2023). Prediction Equations for In Vitro Ileal Disappearance of Dry Matter and Crude Protein Based on Chemical Composition in Dog Diets. Animals, 13(12), 1937. https://doi.org/10.3390/ani13121937