Effect of Electroejaculation Protocols on Semen Quality and Concentrations of Testosterone, Cortisol, Malondialdehyde, and Creatine Kinase in Captive Bengal Tigers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals
2.3. Anesthesia for Semen Collection
2.4. Testicular Size Measurement
2.5. Electroejaculation Protocols
2.6. Semen Evaluation
2.7. Blood Collection
2.8. Cortisol Analyses
2.9. Testosterone Analyses
2.10. Malondialdehyde Analyses
2.11. Muscle Enzymes Analyses
2.12. Statistical Analyses
3. Results
3.1. Semen Quality and Testicular Size
3.2. Serum Testosterone, Cortisol, MDA, and CK Concentrations
3.3. MDA Concentrations and Semen Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodrich, J.; Lynam, A.; Miquelle, D.; Wibisono, H.; Kawanishi, K.; Pattanavibool, A.; Htun, S.; Tempa, T.; Karki, J.; Jhala, Y. Panthera tigris. The IUCN Red List of Threatened Species 2015: E. T15955A50659951; The IUCN Red List: Cambridge, UK, 2015. [Google Scholar]
- Smith, J.; Tunhikorn, S.; Tanhan, S.; Simcharoen, S.; Kanchanasaka, B. Metapopulation structure of tigers in Thailand. In Riding the Tiger: Tiger Conservation in Human-Dominated Landscapes; Cambridge University Press: Cambridge, UK, 1999; pp. 166–175. [Google Scholar]
- Kinnaird, M.F.; Sanderson, E.W.; O’Brien, T.G.; Wibisono, H.T.; Woolmer, G. Deforestation trends in a tropical landscape and implications for endangered large mammals. Conserv. Biol. 2003, 17, 245–257. [Google Scholar] [CrossRef]
- Lynam, A.J.; Khaing, S.T.; Zaw, K.M. Developing a national tiger action plan for the Union of Myanmar. Environ. Manag. 2006, 37, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Esty, A. Tiger bone and rhino horn: The destruction of wildlife for traditional Chinese medicine. Am. Sci. 2005, 93, 572–573. [Google Scholar]
- Mondol, S.; Bruford, M.W.; Ramakrishnan, U. Demographic loss, genetic structure and the conservation implications for Indian tigers. Proc. R. Soc. B Biol. Sci. 2013, 280, 20130496. [Google Scholar] [CrossRef] [Green Version]
- Pisdamkham, C.; Prayurasiddhi, T.; Kanchanasaka, B.; Maneesai, R.; Simcharoen, S.; Pattanavibool, A.; Duangchantrasiri, S.; Simcharoen, A.; Pattanavibool, R.; Maneerat, S. Thailand Tiger Action Plan, 2010–2022; Department of National Parks, Wildlife, and Plant Conservation: Bangkok, Thailand, 2010. [Google Scholar]
- Evans, C.; Evans, L. Bangkok & Beyond: Adventures in Thailand; Hunter Pub.: Hamilton, GA, Canada, 2009. [Google Scholar]
- Wildt, D.E. The role of reproductive technologies in zoos: Past, present and future. Int. Zoo Yearb. 2003, 38, 111–118. [Google Scholar] [CrossRef]
- Herrick, J.R. Assisted reproductive technologies for endangered species conservation: Developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol. Reprod. 2019, 100, 1158–1170. [Google Scholar] [CrossRef]
- Pukazhenthi, B.S.; Wildt, D.E. Which reproductive technologies are most relevant to studying, managing and conserving wildlife? Reprod. Fertil. Dev. 2004, 16, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.; Wildt, D.E. Approaches and efficacy of artificial insemination in felids and mustelids. Theriogenology 2009, 71, 130–148. [Google Scholar] [CrossRef]
- Wildt, D.E.; Bush, M.; Goodrowe, K.; Packer, C.; Pusey, A.; Brown, J.; Joslin, P.; O’Brien, S.J. Reproductive and genetic consequences of founding isolated lion populations. Nature 1987, 329, 328–331. [Google Scholar] [CrossRef]
- Wildt, D.E.; Phillips, L.G.; Simmons, L.G.; Chakraborty, P.K.; Brown, J.L.; Howard, J.G.; Teare, A.; Bush, M. A Comparative Analysis of Ejaculate and Hormonal Characteristics of the Captive Male Cheetah, Tiger, Leopard, and Puma1. Biol. Reprod. 1988, 38, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Fukui, D.; Nagano, M.; Nakamura, R.; Bando, G.; Nakata, S.; Kosuge, M.; Sakamoto, H.; Matsui, M.; Yanagawa, Y.; Takahashi, Y. The Effects of Frequent Electroejaculation on the Semen Characteristics of a Captive Siberian Tiger (Panthera tigris altaica). J. Reprod. Dev. 2013, 59, 491–495. [Google Scholar] [CrossRef] [Green Version]
- Wildt, D.E.; Bush, M.; Howard, J.G.; O’Brien, S.J.; Meltzer, D.; Van Dyk, A.; Ebedes, H.; Brand, D.J. Unique Seminal Quality in the South African Cheetah and a Comparative Evaluation in the Domestic Cat. Biol. Reprod. 1983, 29, 1019–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zambelli, D.; Cunto, M. Semen collection in cats: Techniques and analysis. Theriogenology 2006, 66, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Lueders, I.; Luther, I.; Scheepers, G.; van der Horst, G. Improved semen collection method for wild felids: Urethral catheterization yields high sperm quality in African lions (Panthera leo). Theriogenology 2012, 78, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Howard, J. Semen collection and analysis in carnivores. In Zoo and Wild Animal Medicine Current Therapy; W.B. Saunders Co.: Philadelphia, PA, USA, 1993. [Google Scholar]
- Donoghue, A.M.; Johnston, L.A.; Seal, U.S.; Armstrong, D.L.; Simmons, L.G.; Gross, T.; Tilson, R.L.; Wildt, D.E. Ability of thawed tiger (Panthera tigris) spermatozoa to fertilize conspecific eggs and bind and penetrate domestic cat eggs in vitro. Reproduction 1992, 96, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Donoghue, A.M.; Byers, A.P.; Johnston, L.A.; Armstrong, D.L.; Wildt, D.E. Timing of ovulation after gonadotrophin induction and its importance to successful intrauterine insemination in the tiger (Panthera tigris). Reproduction 1996, 107, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Chagas e Silva, J.N.; Leitão, R.M.; Lapão, N.E.; da Cunha, M.B.; da Cunha, T.P.; da Silva, J.P.; Paisana, F.C. Birth of siberian tiger (Panthera tigris altaica) cubs after transvaginal artificial insemination. J. Zoo Wildl. Med. 2000, 31, 566–569. [Google Scholar]
- Shivaji, S.; Kholkute, S.; Verma, S.; Gaur, A.; Umapathy, G.; Singh, A.; Sontakke, S.; Shailaja, K.; Reddy, A.; Monika, S. Conservation of wild animals by assisted reproduction and molecular marker technology. Indian J. Exp. Biol. 2003, 41, 710–723. [Google Scholar]
- Stafford, K.J.; Spoorenberg, J.; West, D.M.; Vermunt, J.J.; Petrie, N.; Lawoko, C.R.O. The effect of electro-ejaculation on aversive behaviour and plasma cortisol concentration in rams. Vet. J. 1996, 44, 95–98. [Google Scholar] [CrossRef]
- Orihuela, A.; Aguirre, V.; Hernandez, C.; Flores-Perez, I.; Vázquez, R. Breaking down the effect of electro-ejaculation on the serum cortisol response, heart and respiratory rates in hair sheep (Ovis aries). J. Anim. Vet. Adv. 2009, 8, 1968–1972. [Google Scholar]
- Abril-Sánchez, S.; Freitas-de-Melo, A.; Giriboni, J.; Santiago-Moreno, J.; Ungerfeld, R. Sperm collection by electroejaculation in small ruminants: A review on welfare problems and alternative techniques. Anim. Reprod. Sci. 2019, 205, 1–9. [Google Scholar] [CrossRef]
- Kindermann, W. Creatine Kinase Levels After Exercise. Dtsch. Arztebl. Int. 2016, 113, 344. [Google Scholar] [CrossRef] [Green Version]
- Oakley, R.H.; Cidlowski, J.A. Cellular processing of the glucocorticoid receptor gene and protein: New mechanisms for generating tissue-specific actions of glucocorticoids. J. Biol. Chem. 2011, 286, 3177–3184. [Google Scholar] [CrossRef] [Green Version]
- Ramaley, J.A. Stress and fertility. In Environmental Factors in Mammal Reproduction; Palgrave Macmillan London: London, UK, 1981; pp. 127–141. [Google Scholar]
- Moberg, G. Adrenal-pituitary interactions: Effects on reproduction. In Proceedings of the 10 International Congress an Animal Reproduction and Artificial Insemination, University of Illinois at Urbana-Champaign (USA), Champaign, IL, USA, 10–14 June 1984. [Google Scholar]
- Collu, R.; Gibb, W.; Ducharme, J.R. Effects of stress on the gonadal function. J. Endocrinol. Investig. 1984, 7, 529–537. [Google Scholar] [CrossRef]
- Weinbauer, G.F.; Nieschlag, E. The role of testosterone in spermatogenesis. In Testosterone: Action Deficiency·Substitution; Springer: Berlin/Heidelberg, Germany, 1990; pp. 23–50. [Google Scholar]
- Alvarez, J.G.; Touchstone, J.C.; Blasco, L.; Storey, B.T. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa Superoxide dismutase as major enzyme protectant against oxygen toxicity. J. Androl. 1987, 8, 338–348. [Google Scholar] [CrossRef]
- Aitken, R.; Harkiss, D.; Buckingham, D. Analysis of lipid peroxidation mechanisms in human spermatozoa. Mol. Reprod. Dev. 1993, 35, 302–315. [Google Scholar] [CrossRef]
- Sikka, S.C. Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front. Biosci. A J. Virtual Libr. 1996, 1, e78–e86. [Google Scholar] [CrossRef] [Green Version]
- Aitken, R.J.; Clarkson, J.S.; Fishel, S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol. Reprod. 1989, 41, 183–197. [Google Scholar] [CrossRef]
- Das, P.; Choudhari, A.; Singh, A.; Singh, R. Correlation among routine semen parameters, sperm viabilty and malondialdehyde levels in human subjects with different fertility potential. Indian. J. Physiol. Pharmacol. 2009, 53, 253–258. [Google Scholar]
- Cassani, P.; Beconi, M.T.; O’Flaherty, C. Relationship between total superoxide dismutase activity with lipid peroxidation, dynamics and morphological parameters in canine semen. Anim. Reprod. Sci. 2005, 86, 163–173. [Google Scholar] [CrossRef]
- Andreea, A.; Stela, Z. Role of antioxidant additives in the protection of the cryopreserved semen against free radicals. Rom. Biotechnol. Lett. 2010, 15, 33–41. [Google Scholar]
- Thongtipsiridech, S.; Imrat, P.; Srihawong, T.; Mahasawangkul, S.; Tirawattanawanich, C.; Saikhun, K. Seminal plasma MDA concentrations correlating negatively with semen quality in Asian elephants. Thai J. Vet. Med. 2011, 41, 199–204. [Google Scholar]
- Ahmad, M.; Nasrullah, R.; Ahmad, N. Effect of cooling rate and equilibration time on pre-freeze and post-thaw survival of buck sperm. Cryobiology 2015, 70, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Suwanpugdee, A.; Kornkeawrat, K.; Saikhun, K.; Siriaroonrat, B.; Tipkantha, W.; Doungsa-Ard, K.; Sa-Ardrit, M.; Suthunmapinatha, P.; Pinyopummin, A. Semen characteristics and sperm morphology of serow (Capricornis sumatraensis). Theriogenology 2009, 71, 576–585. [Google Scholar] [CrossRef]
- Organisation, W.H. WHO Laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Satitmanwiwat, S.; Promthep, K.; Buranaamnuay, K.; Mahasawangkul, S.; Saikhun, K. Lipid and protein oxidation levels in spermatozoa and seminal plasma of Asian Elephants (Elephas maximus) and their relationship with semen parameters. Reprod. Domest. Anim. 2017, 52, 283–288. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Team, R.C. Linear and nonlinear mixed effects models. R Package Version 2007, 3, 1–89. [Google Scholar]
- Schmehl, M.; Graham, E.; Byers, A.; Hunter, A. Characteristics of fresh and cryopreserved Siberian tiger (Panthera tigris altaica) semen and its seminal plasma chemical constituents. Zoo Biol. 1990, 9, 431–436. [Google Scholar] [CrossRef]
- Kurniani Karja, N.W.; Fahrudin, M.; Agus Setiadi, M.; Tumbelaka, L.I.; Sudarwati, R.; Hastuti, Y.T.; Mulia, B.H.; Widianti, A.; Sultan, K.; Terazono, T. Characteristics and fertility of Sumatran tiger spermatozoa cryopreserved with different sugars. Cryoletters 2016, 37, 264–271. [Google Scholar]
- Swanson, W.F.; Brown, J.L.; Wildt, D.E. Influence of seasonality on reproductive traits of the male Pallas’ cat (Felis manul) and implications for captive management. J. Zoo Wildl. Med. 1996, 27, 234–240. [Google Scholar]
- Crosier, A.E.; Marker, L.; Howard, J.; Pukazhenthi, B.S.; Henghali, J.N.; Wildt, D.E. Ejaculate traits in the Namibian cheetah (Acinonyx jubatus): Influence of age, season and captivity. Reprod. Fertil. Dev. 2007, 19, 370–382. [Google Scholar] [CrossRef] [Green Version]
- Taaffe, P.; O’Meara, C.; Stiavnicka, M.; Byrne, C.; Eivers, B.; Lonergan, P.; Fair, S. Increasing the frequency of ejaculate collection in young dairy bulls increases semen production and field fertility. Theriogenology 2022, 182, 45–52. [Google Scholar] [CrossRef]
- Pineda, M.; Dooley, M.P.; Martin, P. Long-term study on the effects of electroejaculation on seminal characteristics of the domestic cat. Am. J. Vet. Res. 1984, 45, 1038–1041. [Google Scholar]
- Byers, A.; Hunter, A.; Seal, U.; Binczik, G.; Graham, E.; Reindl, N.; Tilson, R. In-vitro induction of capacitation of fresh and frozen spermatozoa of the Siberian tiger (Panthera tigris). Reproduction 1989, 86, 599–607. [Google Scholar] [CrossRef]
- Baqir, S.; Al-Zeheimi, N.; Orabah, A.; Al-Shakaili, Y.; Al-Rasbi, K.; Gartley, C.; Mastromonaco, G. Semen evaluation in an aged critically endangered captive Arabian leopard (Panthera pardus nimr): A case study. Rev. Med. Vet. 2015, 166, 244–252. [Google Scholar]
- Byers, A.; Hunter, A.; Seal, U.; Graham, E.; Tilson, R. Effect of season on seminal traits and serum hormone concentrations in captive male Siberian tigers (Panthera tigris). Reproduction 1990, 90, 119–125. [Google Scholar] [CrossRef]
- Howard, J.; Allen, M.E. Nutritional factors affecting semen quality in felids. In Zoo and Wild Animal Medicine: Current Therapy VI; Elsevier Health Sciences: Philadelphia, PA, USA, 2007. [Google Scholar]
- Griggers, S.; Paccamonti, D.; Thompson, R.; Eilts, B. The effects of pH, osmolarity and urine contamination on equine spermatozoal motility. Theriogenology 2001, 56, 613–622. [Google Scholar] [CrossRef]
- Swanson, W.; Bateman, H.; Vansandt, L. Urethral catheterization and sperm vitrification for simplified semen banking in felids. Reprod. Domest. Anim. 2017, 52, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Mehrotra, A.; Katiyar, D.; Agarwal, A.; Das, V.; Pant, K. Role of total antioxidant capacity and lipid peroxidation in fertile and infertile men. Biomed. Res. 2013, 24, 347–352. [Google Scholar]
- Agarwal, A.; Virk, G.; Ong, C.; Du Plessis, S.S. Effect of oxidative stress on male reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ben Abdallah, F.; Dammak, I.; Attia, H.; Hentati, B.; Ammar-Keskes, L. Lipid peroxidation and antioxidant enzyme activities in infertile men: Correlation with semen parameter. J. Clin. Lab. Anal. 2009, 23, 99–104. [Google Scholar] [CrossRef]
- Colagar, A.H.; Pouramir, M.; Marzony, E.T.; Jorsaraei, S.G.A. Relationship between seminal malondialdehyde levels and sperm quality in fertile and infertile men. Braz. Arch. Biol. Technol. 2009, 52, 1387–1392. [Google Scholar] [CrossRef] [Green Version]
- Eid Hammadeh, M.; Filippos A, A.; Faiz Hamad, M. Reactive oxygen species and antioxidant in seminal plasma and their impact on male fertility. Int. J. Fertil. Steril. 2009, 3, 87–110. [Google Scholar]
- Fumagalli, F.; Damián, J.; Ungerfeld, R. Vocalizations during electroejaculation in anaesthetized adult and young pampas deer (Ozotoceros bezoarticus) males. Reprod. Domest. Anim. 2015, 50, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Ungerfeld, R.; López-Sebastián, A.; Esteso, M.; Pradiee, J.; Toledano-Díaz, A.; Castaño, C.; Labrador, B.; Santiago-Moreno, J. Physiological responses and characteristics of sperm collected after electroejaculation or transrectal ultrasound-guided massage of the accessory sex glands in anesthetized mouflons (Ovis musimon) and Iberian ibexes (Capra pyrenaica). Theriogenology 2015, 84, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Swagat, P.; Patra, B.; Sahu, S.; Sahoo, N.; Sudarsan, P.; Mohanty, D.; Nahak, A. Quantification of faecal testosterone hormone in captive Bengal tigers. Indian Vet. J. 2017, 94, 38–40. [Google Scholar]
- Ortiz-de-Montellano, M.; Galindo-Maldonado, F.; Cavazos-Arizpe, E.; Aguayo-Arceo, A.; Torres-Acosta, J.; Orihuela, A. Effect of electro-ejaculation on the serum cortisol response of Criollo goats (Capra hircus). Small Rumin. Res. 2007, 69, 228–231. [Google Scholar] [CrossRef]
- Abril-Sánchez, S.; Freitas-de-Melo, A.; Beracochea, F.; Damián, J.P.; Giriboni, J.; Santiago-Moreno, J.; Ungerfeld, R. Sperm collection by transrectal ultrasound-guided massage of the accessory sex glands is less stressful than electroejaculation without altering sperm characteristics in conscious goat bucks. Theriogenology 2017, 98, 82–87. [Google Scholar] [CrossRef]
- Damián, J.; Ungerfeld, R. The stress response of frequently electroejaculated rams to electroejaculation: Hormonal, physiological, biochemical, haematological and behavioural parameters. Reprod. Domest. Anim. 2011, 46, 646–650. [Google Scholar] [CrossRef]
Parameters | Low | Medium | High |
---|---|---|---|
Volume (mL) | 2.31 ± 0.43 | 2.06 ± 0.51 | 1.88 ± 0.54 |
Concentration (×106/mL) | 80.00 ± 31.22 | 49.75 ± 15.59 | 125.41± 33.06 |
Total sperm (×106) | 133.51± 73.65 | 125.02 ± 56.19 | 184.99 ± 53.04 |
Motility (%) | 42.88 ± 9.61 | 62.93 ± 5.39 | 63.54 ± 6.43 |
Viability (%) | 58.56 ± 5.42 | 71.94 ± 2.57 | 68.97 ± 3.53 |
pH | 8.61 ± 0.09 | 8.77± 0.07 | 8.70 ± 0.09 |
Sperm morphology | |||
Normal (%) | 62.11 ± 3.43 | 66.66 ± 7.40 | 79.47 ± 2.84 |
Primary abnormality (%) | 28.36 ± 2.72 a | 16.68 ± 2.91 b | 13.57 ± 1.72 b |
Secondary abnormality (%) | 9.49 ± 1.13 | 6.48 ± 0.78 | 8.52 ± 1.65 |
MDA | |||
Pellet (nmol × 106 sperm) | 1.99 ± 0.31 | 1.53 ± 0.24 | 1.59 ± 0.25 |
Seminal plasma (nmol/L) | 2.30 ± 0.31 a | 1.27 ± 0.29 b | 0.71 ± 0.32 b |
Serum (nmol/L) | 3.36 ± 0.14 | 2.99 ± 0.14 | 3.20 ± 0.14 |
Group | Right Testicle | Left Testicle | ||||||
---|---|---|---|---|---|---|---|---|
Width (cm) | Length (cm) | Height (cm) | Volume (cm3) | Width (cm) | Length (cm) | Height (cm) | Volume (cm3) | |
Low | 3.20 ± 0.08 | 4.03 ± 0.15 | 3.72 ± 0.21 | 34.02 ± 1.83 | 3.28 ± 0.12 | 4.18 ± 0.18 | 3.54 ± 0.22 | 34.39 ± 3.09 |
Medium | 3.11 ± 0.11 | 4.25 ± 0.19 | 3.45 ± 0.17 | 32.93 ± 2.56 | 3.00 ± 0.08 | 4.36 ± 0.14 | 3.38 ± 0.15 | 31.38 ± 1.13 |
High | 3.25 ± 0.12 | 4.33 ± 0.13 | 3.59 ± 0.12 | 35.88 ± 1.83 | 3.23 ± 0.09 | 4.40 ± 0.10 | 3.44 ± 0.13 | 34.71 ± 0.85 |
Parameters | Low | Medium | High |
---|---|---|---|
Serum testosterone (ng/mL) | |||
Before | 0.89 ± 0.19 | 0.83 ± 0.20 | 1.19 ± 0.24 |
Series 1 | 0.99 ± 0.18 | 0.83 ± 0.18 | 1.22 ± 0.24 |
Series 2 | 1.02 ± 0.19 | 0.91 ± 0.19 | 1.34 ± 0.28 |
Series 3 | 0.86 ± 0.15 | 0.76 ± 0.20 | 1.62 ± 0.07 |
After | 0.78 ± 0.40 | 0.82 ± 0.16 | 1.05 ± 0.18 |
Total | 0.99 ± 0.17 ab | 0.88 ± 0.17 a | 1.17 ± 0.17 b |
Serum cortisol (ng/mL) | |||
Before | 1.78 ± 0.09 | 1.86 ± 0.09 | 1.82 ± 0.09 |
Series 1 | 1.62 ± 0.11 | 1.45 ± 0.12 | 1.68 ± 0.12 |
Series 2 | 1.05 ± 0.12 | 1.49 ± 0.09 | 1.53 ± 0.09 |
Series 3 | 1.47 ± 0.08 | 1.62 ± 0.10 | 1.62 ± 0.07 |
After | 1.54 ± 0.12 | 1.43 ± 0.08 | 1.53 ± 0.08 |
Total | 1.59 ± 0.06 | 1.57 ± 0.06 | 1.64 ± 0.06 |
Serum malondialdehyde (µmol/L) | |||
Before | 3.50 ± 0.37 | 3.33 ± 0.23 | 3.39 ± 0.29 |
Series 1 | 3.31 ± 0.26 | 3.08 ± 0.14 | 3.43 ± 0.26 |
Series 2 | 3.16 ± 0.30 | 3.12 ± 0.12 | 3.38 ± 0.35 |
Series 3 | 3.45 ± 0.31 | 2.52 ± 0.27 | 2.98 ± 0.44 |
After | 3.39 ± 0.25 | 2.99 ± 0.28 | 2.84 ± 0.19 |
Total | 3.36 ± 0.14 | 2.99 ± 0.14 | 3.20 ± 0.14 |
Serum CK (ng/mL) | |||
Before | 92.33 ± 9.35 | 96.90 ± 7.89 | 71.92 ± 4.18 C |
Series 1 | 93.50 ± 7.27 | 104.91 ± 8.92 | 78.92 ± 5.36 C |
Series 2 | 105.00 ± 11.00 | 103.83 ± 10.10 | 106.78 ± 17.10 BC |
Series 3 | 111.09 ± 9.56 | 115.00 ± 12.6 | 109.85 ± 9.45 AB |
After | 118.67 ± 10.1 | 127.85 ± 11.7 | 118.46 ± 11.10 A |
Total | 104.00 ± 4.32 | 110.44 ± 4.72 | 97.33 ± 4.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khonmee, J.; Brown, J.L.; Pérez, A.L.; Lertwichaikul, T.; Sathanawongs, A.; Pornnimitra, P.; Areewong, C.; Supanta, J.; Punyapornwithaya, V.; Buddhasiri, S.; et al. Effect of Electroejaculation Protocols on Semen Quality and Concentrations of Testosterone, Cortisol, Malondialdehyde, and Creatine Kinase in Captive Bengal Tigers. Animals 2023, 13, 1893. https://doi.org/10.3390/ani13121893
Khonmee J, Brown JL, Pérez AL, Lertwichaikul T, Sathanawongs A, Pornnimitra P, Areewong C, Supanta J, Punyapornwithaya V, Buddhasiri S, et al. Effect of Electroejaculation Protocols on Semen Quality and Concentrations of Testosterone, Cortisol, Malondialdehyde, and Creatine Kinase in Captive Bengal Tigers. Animals. 2023; 13(12):1893. https://doi.org/10.3390/ani13121893
Chicago/Turabian StyleKhonmee, Jaruwan, Janine L. Brown, Anabel López Pérez, Teepakorn Lertwichaikul, Anucha Sathanawongs, Patchara Pornnimitra, Chanakan Areewong, Jarawee Supanta, Veerasak Punyapornwithaya, Songphon Buddhasiri, and et al. 2023. "Effect of Electroejaculation Protocols on Semen Quality and Concentrations of Testosterone, Cortisol, Malondialdehyde, and Creatine Kinase in Captive Bengal Tigers" Animals 13, no. 12: 1893. https://doi.org/10.3390/ani13121893
APA StyleKhonmee, J., Brown, J. L., Pérez, A. L., Lertwichaikul, T., Sathanawongs, A., Pornnimitra, P., Areewong, C., Supanta, J., Punyapornwithaya, V., Buddhasiri, S., & Punturee, K. (2023). Effect of Electroejaculation Protocols on Semen Quality and Concentrations of Testosterone, Cortisol, Malondialdehyde, and Creatine Kinase in Captive Bengal Tigers. Animals, 13(12), 1893. https://doi.org/10.3390/ani13121893