Effects of 3-Hydroxy-3-methylglutaryl-CoA Reductase Inhibitors on Cholesterol Metabolism in Laying Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Laying Hens, Treatments, and Sample Collection
2.2. Determination of Egg Quality
2.3. Determination of Cholesterol Content
2.4. Liver Histology
2.5. Transcriptome Analysis
2.6. Real-Time q-PCR Analysis
2.7. Statistical Analysis
3. Results
3.1. Effect of HMGCR Inhibitors on Egg Quality
3.2. The Effect of HMGCR Inhibitors on the Content of TC and TG in Tissues
3.3. The Effect of HMGCR Inhibitors on Cholesterol Content in Eggs
3.4. Results of Liver Histology
3.5. Sequencing, De Novo Assembly, and Annotation Analysis
3.6. Differential Expression and Functional Analysis of Genes
3.7. Changes in the Expression of the Ovarian VLDLR Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, J.; Yang, H.; Song, B.L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 2020, 21, 225–245. [Google Scholar] [CrossRef] [PubMed]
- Spence, J.D. Diet for stroke prevention. Stroke Vasc. Neurol. 2018, 3, 44–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushi, L.H.; Lew, R.A.; Stare, F.J.; Ellison, C.R.; el Lozy, M.; Bourke, G.; Daly, L.; Graham, I.; Hickey, N.; Mulcahy, R.; et al. Diet and 20-year mortality from coronary heart disease. The Ireland-Boston Diet-Heart Study. N. Engl. J. Med. 1985, 312, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, C.; Zhou, X.; Li, L. Egg consumption and risk of cardiovascular diseases and diabetes: A meta-analysis. Atherosclerosis 2013, 229, 524–530. [Google Scholar] [CrossRef]
- Djousse, L.; Khawaja, O.A.; Gaziano, J.M. Egg consumption and risk of type 2 diabetes: A meta-analysis of prospective studies. Am. J. Clin. Nutr. 2016, 103, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Zazpe, I.; Beunza, J.J.; Bes-Rastrollo, M.; Warnberg, J.; de la Fuente-Arrillaga, C.; Benito, S.; Vázquez, Z.; A Martínez-González, M.; on behalf of the SUN Project Investigators. Egg consumption and risk of cardiovascular disease in the SUN Project. Eur. J. Clin. Nutr. 2011, 65, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e563–e595. [Google Scholar] [CrossRef]
- Naber, E.C. The cholesterol problem, the egg and lipid metabolism in the laying hen. Poult. Sci. 1976, 55, 14–30. [Google Scholar] [CrossRef]
- Illingworth, D.R. Lipoprotein metabolism. Am. J. Kidney Dis. 1993, 22, 90–97. [Google Scholar] [CrossRef]
- Sotowska-Brochocka, J.; Skwarło-Sońta, K.; Rosłowska-Huszcz, D.; Pawłowska-Wojewódka, E.; Sidorkiewicz, E. Lipid Metabolism Indices and Plasma Corticosterone Concentration in Chickens Treated with Prolactin at Different Time Points. Exp. Clin. Endocrinol. Diabetes 1986, 88, 316–324. [Google Scholar] [CrossRef]
- Griffin, H.; Grant, G.; Perry, M. Hydrolysis of plasma triacylglycerol-rich lipoproteins from immature and laying hens (Gallus domesticus) by lipoprotein lipase in vitro. Biochem. J. 1982, 206, 647–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, W.J.; Carroll, R.; Severson, D.L.; Nimpf, J. Apolipoprotein VLDL-II inhibits lipolysis of triglyceride-rich lipoproteins in the laying hen. J. Lipid Res. 1990, 31, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour, A.H.; Akhlaghi, F. Future of cholesteryl ester transfer protein (CETP) inhibitors: A pharmacological perspective. Clin. Pharmacokinet. 2013, 52, 615–626. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Hu, J.W.; He, X.R.; Jin, W.L.; He, X.Y. Statins: A repurposed drug to fight cancer. J. Exp. Clin. Cancer Res. 2021, 40, 241. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.P.; Tsang, M.; Wright, J.M. Lipid-lowering efficacy of atorvastatin. Cochrane Database Syst. Rev. 2015, 2015, D8226. [Google Scholar] [CrossRef]
- Adams, S.P.; Alaeiilkhchi, N.; Wright, J.M. Pitavastatin for lowering lipids. Cochrane Database Syst. Rev. 2020, 6, D12735. [Google Scholar] [CrossRef]
- Adams, S.P.; Sekhon, S.S.; Tsang, M.; Wright, J.M. Fluvastatin for lowering lipids. Cochrane Database Syst. Rev. 2018, 3, D12282. [Google Scholar] [CrossRef]
- Liu, Z.; Hao, H.; Yin, C.; Chu, Y.; Li, J.; Xu, D. Therapeutic effects of atorvastatin and ezetimibe compared with double-dose atorvastatin in very elderly patients with acute coronary syndrome. Oncotarget 2017, 8, 41582–41589. [Google Scholar] [CrossRef] [Green Version]
- de Haan, W.; van der Hoogt, C.C.; Westerterp, M.; Hoekstra, M.; Dallinga-Thie, G.M.; Princen, H.M.; Romijn, J.A.; Jukema, J.W.; Havekes, L.M.; Rensen, P.C. Atorvastatin increases HDL cholesterol by reducing CETP expression in cholesterol-fed APOE*3-Leiden.CETP mice. Atherosclerosis 2008, 197, 57–63. [Google Scholar] [CrossRef]
- Elkin, R.G.; Yan, Z.; Zhong, Y.; Donkin, S.S.; Buhman, K.K.; Story, J.A.; Turek, J.J.; Porter, R.E.; Anderson, M.; Homan, R.; et al. Select 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors vary in their ability to reduce egg yolk cholesterol levels in laying hens through alteration of hepatic cholesterol biosynthesis and plasma VLDL composition. J. Nutr. 1999, 129, 1010–1019. [Google Scholar] [CrossRef] [Green Version]
- Luhman, C.M.; Miller, B.G.; Beitz, D.C. The effect of feeding lovastatin and colestipol on production and cholesterol content of eggs. Poult. Sci. 1990, 69, 852–855. [Google Scholar] [CrossRef]
- Gurbuz, Y.; Salih, Y.G. Influence of sumac (Rhus coriaria L.) and ginger (Zingiber officinale) on egg yolk fatty acid, cholesterol and blood parameters in laying hens. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.H.; Gong, J.G.; Zhao, G.X.; Lin, X.; Liu, Y.C.; Ma, K.W. Effects of dietary supplementation of resveratrol on performance, egg quality, yolk cholesterol and antioxidant enzyme activity of laying hens. Br. Poult. Sci. 2017, 58, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.-J.; Zhang, Y.; Sun, H.; Wei, J.-T.; Khalil, M.M.; Wang, Y.-W.; Dai, J.-F.; Zhang, N.-Y.; Qi, D.-S.; Sun, L.-H. The response of glandular gastric transcriptome to T-2 toxin in chicks. Food Chem. Toxicol. 2019, 132, 110658. [Google Scholar] [CrossRef] [PubMed]
- Acimovic, J.; Rozman, D. Steroidal triterpenes of cholesterol synthesis. Molecules 2013, 18, 4002–4017. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.S.; Goldstein, J.L. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997, 89, 331–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, G.; Grandl, M. The molecular mechanisms of HDL and associated vesicular trafficking mechanisms to mediate cellular lipid homeostasis. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1718–1722. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.L.; Guo, Y.L.; Li, J.J. Apoprotein C-III: A review of its clinical implications. Clin. Chim. Acta 2016, 460, 50–54. [Google Scholar] [CrossRef]
- Qu, S.; Perdomo, G.; Su, D.; D’Souza, F.M.; Shachter, N.S.; Dong, H.H. Effects of apoA-V on HDL and VLDL metabolism in APOC3 transgenic mice. J. Lipid Res. 2007, 48, 1476–1487. [Google Scholar] [CrossRef] [Green Version]
- Walzem, R.L.; Hansen, R.J.; Williams, D.L.; Hamilton, R.L. Estrogen induction of VLDLy assembly in egg-laying hens. J. Nutr. 1999, 129 (Suppl. S2), 467S–472S. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, Y. An overview of bile acid synthesis and its physiological and pathological functions. Yi Chuan 2019, 41, 365–374. [Google Scholar] [CrossRef] [PubMed]
- McGlone, E.R.; Bloom, S.R. Bile acids and the metabolic syndrome. Ann. Clin. Biochem. 2019, 56, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Sjovall, J. Fifty years with bile acids and steroids in health and disease. Lipids 2004, 39, 703–722. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chiang, J.Y. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev. 2014, 66, 948–983. [Google Scholar] [CrossRef] [Green Version]
- Chiang, J.Y. Negative feedback regulation of bile acid metabolism: Impact on liver metabolism and diseases. Hepatology 2015, 62, 1315–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dullaart, R.P.; Sluiter, W.J. Common variation in the CETP gene and the implications for cardiovascular disease and its treatment: An updated analysis. Pharmacogenomics 2008, 9, 747–763. [Google Scholar] [CrossRef]
- Shinkai, H. Cholesteryl ester transfer-protein modulator and inhibitors and their potential for the treatment of cardiovascular diseases. Vasc. Health Risk Manag. 2012, 8, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Lorbek, G.; Perse, M.; Horvat, S.; Bjorkhem, I.; Rozman, D. Sex differences in the hepatic cholesterol sensing mechanisms in mice. Molecules 2013, 18, 11067–11085. [Google Scholar] [CrossRef] [Green Version]
Sample 1 | Raw Reads Number | Q30 Value 2 | Clean Reads Number | Total Mapped Reads Percentage |
---|---|---|---|---|
Control-1 | 59,376,004 | 94.26 | 57,428,878 | 92.44 |
Control-2 | 45,215,482 | 94.29 | 43,325,868 | 92.07 |
Control-3 | 46,066,730 | 93.96 | 44,298,418 | 92.52 |
Control-4 | 56,379,500 | 94.35 | 54,072,414 | 91.23 |
Control-5 | 53,838,578 | 94.09 | 52,314,524 | 92.71 |
Control-6 | 47,609,604 | 94.02 | 45,817,648 | 92.18 |
HI-150-1 | 49,822,070 | 94.07 | 48,155,306 | 92.12 |
HI-150-2 | 57,097,152 | 94.30 | 55,173,228 | 92.79 |
HI-150-3 | 51,455,312 | 94.39 | 49,677,616 | 91.70 |
HI-150-4 | 62,788,508 | 94.12 | 60,970,162 | 92.02 |
HI-150-5 | 52,293,100 | 94.56 | 51,003,728 | 92.22 |
HI-150-6 | 48,378,732 | 94.51 | 46,949,796 | 92.47 |
HI-300-1 | 48,598,154 | 94.32 | 47,124,918 | 91.84 |
HI-300-2 | 52,669,602 | 94.06 | 51,208,282 | 92.04 |
HI-300-3 | 47,767,574 | 93.98 | 46,138,424 | 92.11 |
HI-300-4 | 51,883,822 | 93.97 | 50,588,624 | 92.57 |
HI-300-5 | 47,296,884 | 93.55 | 45,502,646 | 92.14 |
HI-300-6 | 51,617,102 | 94.05 | 50,053,864 | 91.95 |
HMGCR Inhibitor Dosage | Control | 60 mg/kg | 150 mg/kg | 300 mg/kg | SEM | |
---|---|---|---|---|---|---|
Week 2 | Egg weight (g) | 54.30 ± 1.69 a | 49.97 ± 1.85 b | 47.59 ± 3.32 b | 48.40 ± 2.63 b | 3.46 |
Egg yolk weight (g) | 13.72 ± 0.76 a | 12.78 ± 0.44 b | 12.14 ± 0.85 bc | 11.89 ± 0.84 c | 0.99 | |
Proportion of egg yolk (%) | 25.27 ± 0.85 | 25.58 ± 0.79 | 25.53 ± 1.25 | 24.58 ± 1.57 | 1.14 | |
Haugh unit | 88.03 ± 11.84 | 88.58 ± 5.16 | 86.64 ± 11.43 | 85.21 ± 5.18 | 8.52 | |
Albumen height | 7.95 ± 1.81 | 7.89 ± 1.21 | 7.60 ± 2.13 | 7.39 ± 0.90 | 1.50 | |
Yolk colour | 12.62 ± 0.74 | 12.75 ± 0.89 | 13.00 ± 1.07 | 13.37 ± 0.91 | 0.90 | |
Week 4 | Egg weight (g) | 54.46 ± 2.22 a | 50.15 ± 2.10 b | 46.43 ± 2.18 c | 43.41 ± 3.13 d | 4.73 |
Egg yolk weight (g) | 13.48 ± 0.69 a | 12.23 ± 0.84 b | 10.46 ± 0.80 c | 9.60 ± 0.79 d | 1.68 | |
Proportion of egg yolk (%) | 24.77 ± 0.83 a | 24.37 ± 1.23 a | 22.57 ± 1.84 b | 22.20 ± 2.19 b | 1.98 | |
Haugh unit | 84.00 ± 9.25 | 86.09 ± 12.98 | 82.05 ± 20.23 | 82.18 ± 12.60 | 13.51 | |
Albumen height | 7.16 ± 1.86 | 7.78 ± 2.74 | 6.98 ± 3.34 | 6.79 ± 1.80 | 2.39 | |
Yolk colour | 13.63 ± 0.92 a | 13.63 ± 0.92 a | 13.50 ± 1.20 a | 11.75 ± 0.89 b | 1.22 |
HMGCR Inhibitor Dosage | Control | 60 mg/kg | 150 mg/kg | 300 mg/kg | SEM | |
---|---|---|---|---|---|---|
Week 2 | Serum TC (mmol/L) | 3.65 ± 0.37 a | 2.96 ± 0.27 b | 2.50 ± 0.12 c | 1.85 ± 0.21 d | 0.70 |
Serum TG (mmol/L) | 13.18 ± 1.45 a | 12.18 ± 1.15 a | 10.37 ± 0.98 b | 7.83 ± 1.55 c | 2.36 | |
Week 4 | Serum TC (mmol/L) | 3.42 ± 0.27 a | 3.05 ± 0.19 b | 2.64 ± 0.22 c | 1.92 ± 0.30 d | 0.60 |
Serum HDL-C (mmol/L) | 0.78 ± 0.15 a | 0.73 ± 0.14 ab | 0.61 ± 0.09 bc | 0.57 ± 0.15 c | 0.15 | |
Serum LDL-C (mmol/L) | 2.03 ± 0.75 a | 1.72 ± 0.79 a | 1.38 ± 0.59 ab | 0.97 ± 0.59 b | 0.75 | |
Serum VLDL-C (mmol/L) | 0.83 ± 0.37 a | 0.72 ± 0.26 ab | 0.59 ± 0.24 ab | 0.52 ± 0.19 b | 0.28 | |
Liver TC (mg/g) | 2.68 ± 0.39 a | 2.53 ± 0.43 a | 2.29 ± 0.53 ab | 1.91 ± 0.29 b | 0.49 | |
Pectoralis TC (mg/g) | 0.52 ± 0.02 a | 0.50 ± 0.03 b | 0.46 ± 0.02 c | 0.43 ± 0.02 d | 0.04 | |
Serum TG (mmol/L) | 13.65 ± 0.74 a | 12.72 ± 0.84 a | 10.49 ± 2.30 b | 6.83 ± 0.90 c | 2.90 |
HMGCR Inhibitor Dosage | Control | 60 mg/kg | 150 mg/kg | 300 mg/kg | SEM | |
---|---|---|---|---|---|---|
Week 2 | Yolk TC (mg/g) | 13.99 ± 0.49 a | 13.66 ± 0.56 a | 12.88 ± 0.40 b | 12.24 ± 0.53 c | 0.83 |
Eggs TC (mg) | 191.85 ± 9.19 a | 174.62 ± 10.78 b | 156.33 ± 12.89 c | 145.41 ± 10.51 c | 20.45 | |
Proportion of eggs cholesterol (mg/g) | 3.53 ± 0.14 a | 3.50 ± 0.22 a | 3.28 ± 0.12 b | 3.01 ± 0.20 c | 0.27 | |
Week 4 | Yolk TC (mg/g) | 13.85 ± 0.74 a | 13.33 ± 1.11 ab | 12.34 ± 1.09 bc | 11.53 ± 1.06 c | 1.30 |
Eggs TC (mg) | 186.93 ± 15.43 a | 162.62 ± 13.38 b | 129.44 ± 18.50 c | 110.41 ± 10.66 d | 32.59 | |
Proportion of eggs cholesterol (mg/g) | 3.43 ± 0.25 a | 3.25 ± 0.32 a | 2.79 ± 0.43 b | 2.55 ± 0.24 b | 0.46 |
Gene ID | Gene Symbol | Log2 (Fold Change) (150) 1 | Log2 (Fold Change) (300) 2 | Gene Description |
---|---|---|---|---|
Liver cholesterol synthesis | ||||
416811 | AACS | 1.269 | 2.034 | Acetoacetyl-CoA synthetase |
395145 | HMGCR | 1.396 | 1.400 | 3-Hydroxy-3-methylglutaryl-CoA reductase |
768555 | MVK | 1.294 | 1.328 | Mevalonate kinase |
425061 | FDPS | 1.861 | 1.839 | Farnesyl diphosphate synthase |
422423 | MSMO1 | 1.792 | 1.642 | Methylsterol monooxygenase 1 |
422038 | FDFT1 | 1.520 | 1.532 | Farnesyl-diphosphate farnesyltransferase 1 |
420335 | SQLE | 2.150 | 2.098 | Squalene epoxidase |
424037 | LSS | 1.351 | 1.287 | Lanosterol synthase |
420548 | CYP51A1 | 1.751 | 1.678 | Cytochrome P450 family 51 |
422302 | NSDHL | 1.649 | 1.482 | NAD(P) dependent steroid dehydrogenase-like |
422982 | DHCR7 | 1.553 | 1.673 | 7-Dehydrocholesterol reductase |
424661 | DHCR24 | 1.430 | 1.497 | 24-Dehydrocholesterol reductase |
Cholesterol transport | ||||
100859721 | APOC3 | / | −1.211 | Apolipoprotein C3 |
769889 | APOLD1 | −1.479 | −1.228 | Apolipoprotein L domain containing 1 |
Bile acid synthesis | ||||
414834 | CYP7A1 | / | 1.502 | Cytochrome P450 family 7 |
425055 | CYP8B1 | / | 2.384 | Cytochrome P450 family 8 |
Peripheral tissue reverse cholesterol transport | ||||
415645 | CETP | −2.639 | −3.321 | Cholesteryl ester transfer protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wu, K.; Mi, X.; Rajput, S.A.; Qi, D. Effects of 3-Hydroxy-3-methylglutaryl-CoA Reductase Inhibitors on Cholesterol Metabolism in Laying Hens. Animals 2023, 13, 1868. https://doi.org/10.3390/ani13111868
Wang H, Wu K, Mi X, Rajput SA, Qi D. Effects of 3-Hydroxy-3-methylglutaryl-CoA Reductase Inhibitors on Cholesterol Metabolism in Laying Hens. Animals. 2023; 13(11):1868. https://doi.org/10.3390/ani13111868
Chicago/Turabian StyleWang, Huanbin, Kuntan Wu, Xiaomei Mi, Shahid Ali Rajput, and Desheng Qi. 2023. "Effects of 3-Hydroxy-3-methylglutaryl-CoA Reductase Inhibitors on Cholesterol Metabolism in Laying Hens" Animals 13, no. 11: 1868. https://doi.org/10.3390/ani13111868
APA StyleWang, H., Wu, K., Mi, X., Rajput, S. A., & Qi, D. (2023). Effects of 3-Hydroxy-3-methylglutaryl-CoA Reductase Inhibitors on Cholesterol Metabolism in Laying Hens. Animals, 13(11), 1868. https://doi.org/10.3390/ani13111868