Effect of Cultivar, Plant Spacing and Harvesting Age on Yield, Characteristics, Chemical Composition, and Anthocyanin Composition of Purple Napier Grass
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Data Collection and Sampling
2.3. Yield and Chemical Composition
2.4. Anthocyanin Composition Analysis
2.5. Statistical Analysis
3. Results
3.1. Morphological Characteristics, Chemical Composition, and Yield
3.2. Anthocyanin Composition
4. Discussion
4.1. Morphological Characteristics, Chemical Composition, and Yield
4.2. Anthocyanin Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adjei, M.B.; Fianu, F.K. The effect of cutting interval on the yield and nutritive value of some tropical legumes on the coastal grassland of Ghana. Trop. Grassl. 1985, 19, 164–171. [Google Scholar]
- Purba, R.A.P.; Paengkoum, P. Bioanalytical HPLC method of Piper betle L. for quantifying phenolic compound, water-soluble vitamin, and essential oil in five different solvent extracts. J. Appl. Pharm. Sci. 2019, 9, 033–039. [Google Scholar] [CrossRef] [Green Version]
- Umer, A.T.; Usmane, I.A. Demonstration of improved elephant/Napier grass (Pennisetum purpureum) technologies for animal feed resources in Dire Dawa and Harari region rural areas. Glob. J. Ecol. 2020, 5, 14–17. [Google Scholar] [CrossRef]
- Tzin, V.; Galili, G. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant 2010, 3, 956–972. [Google Scholar] [CrossRef] [PubMed]
- Cid, M.S.; Ferri, C.M.; Brizuela, M.A.; Sala, O. Structural heterogeneity and productivity of a tall fescue pasture grazed rotationally by cattle at four stocking densities. Grassl. Sci. 2008, 54, 9–16. [Google Scholar] [CrossRef]
- Walaiphan, C.; Chittamart, N.; Tawornpruek, S.; Aramrak, S.; Fujii, K. Studies on microbial biomass carbon and nitrogen turnover derived from sugarcane residues incorporated into a sandy loam soil. In Proceedings of the 45th Congress on Science and Technology of Thailand (STT45) Seedling Innovation for Sustainable, Chiang Rai, Thailand, 7–9 October 2019; pp. 87–92. [Google Scholar]
- Ferreira, E.A.; Abreu, J.G.; Martinez, J.C.; Amorim, R.S.S.; Neto, A.B.; Cabral, C.E.A.; Braz, T.G.S.; Júnior, C.A.S.; Ferreira, D.P. Productivity and nutritional value of elephant grass BRS Canará forage. Semin Cienc Agrar 2019, 40, 2705. [Google Scholar] [CrossRef] [Green Version]
- Moran, J. (Ed.) Growing quality forages. In Tropical Dairy Farming: Feeding Management for Small Holder Dairy Farmers in the Humid Tropics; Landlinks Press: Collingwood, Australia, 2005; pp. 65–82. [Google Scholar]
- Wrolstad, R.E.; Acree, T.E.; Decker, E.A.; Penner, M.H.; Reid, D.S.; Schwartz, S.J.; Shoemaker, C.F.; Smith, D.; Sporns, P. (Eds.) Anthocyanins. In Handbook of Food Analytical Chemistry-Water, Proteins, Enzymes, Lipids, and Carbohydrates; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 5–69. ISBN 978-0-4717-2187-1. [Google Scholar] [CrossRef]
- Nyambati, E.M.; Muyekho, F.N.; Luwesti, C.M.; Ongonjo, E. Production, characterization and nutritional quality of Pennisetum purpureum (Schum) cultivars in western Kenya. In Proceedings of the 8th African Crop Science Society Conference, El-Minia, Egypt, 27–31 October 2007; pp. 185–188. [Google Scholar]
- Wilson, J.R.; Minson, D.J. Prospects for improving the digestibility and intake of tropical grasses. Trop. Grassl. 1980, 14, 253–259. [Google Scholar]
- Prasanpanich, S.; Sukpituksakul, P.; Tudsri, S.; Mikled, C.; Thwaites, C.J.; Vajrabukka, C. Milk production and eating patterns of lactating cows under grazing and indoor conditions in central Thailand. Trop. Grassl. 2002, 36, 107–115. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics, A Biometrical Approach, 2nd ed.; McGraw-Hill: New York, NY, USA, 1980; p. 420. [Google Scholar] [CrossRef]
- Paengkoum, S.; Tatsapong, P.; Taethaisong, N.; Sorasak, T.; Purba, R.A.P.; Paengkoum, P. Empirical evaluation and prediction of protein requirements for maintenance and growth of 18–24 months old Thai swamp buffaloes. Animals 2021, 11, 1405. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Vimolmangkang, S.; Zheng, D.; Han, Y.; Khan, M.A.; Soria-Guerra, R.E.; Korban, S.S. Transcriptome analysis of the exocarp of apple fruit identifies light-induced genes involved in red color pigmentation. Gene 2014, 534, 78–87. [Google Scholar] [CrossRef]
- Yasin, M.; Malik, M.A.; Nazir, M.S. Effect of different spatial arrangements on forage yield, yield components and quality of Mott Elephant grass. Pak. J. Agric. Sci. 2003, 2, 52–58. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, S.; Paengkoum, P. Development of a simple high-performance liquid chromatography-based method to quantify synergistic compounds and their composition in dried leaf extracts of Piper sarmentosum Robx. Separations 2021, 8, 152. [Google Scholar] [CrossRef]
- SAS. SAS/STAT® 9.4 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2011. [Google Scholar]
- Takos, A.M.; Robinson, S.P.; Walker, A.R. Transcriptional regulation of the flavonoid pathway in the skin of dark-grown ‘‘Cripps Red’’ apples in response to sunlight. J. Hortic. Sci. Biotechnol. 2006, 81, 735–744. [Google Scholar] [CrossRef]
- Trenbath, B.R. Resource use by intercrops. In Multiple Cropping Systems, 1st ed.; Francis, C.A., Ed.; Macmillan Publishing Company: New York, NY, USA, 1986; Volume 1, pp. 57–81. ISBN 978-0-0294-8610-8. [Google Scholar]
- Tessema, Z.K.; Mihret, J.; Solomon, M. Effect of defoliation frequency and cutting height on growth, dry-matter yield and nutritive value of Napier grass (Pennisetum purpureum L. Schumach). Grass Forage Sci. 2010, 65, 421–430. [Google Scholar] [CrossRef]
- Obok, E.E.; Aken’Ova, M.E.; Iwo, G.A. Forage potentials of interspecific hybrids between elephant grass selections and cultivated pearl millet genotypes of Nigerian origin. J. Plant Breed. Crop Sci. 2012, 4, 136–143. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Paul, R.A. Perennial forages as second generation bioenergy crops. Int. J. Mol. Sci. 2008, 9, 768–788. [Google Scholar] [CrossRef] [Green Version]
- Ansah, T.; Osafo, E.L.K.; Hansen, H.H. Herbage yield and chemical composition of four varieties of Napier (Pennisetum purpureum) grass harvested at three different days after planting. Agric. Biol. J. N. Am. 2010, 1, 923–930. [Google Scholar] [CrossRef]
- Zahid, M.S.; Mufti, M.U.; Bhatti, M.B.; Ghafoor, A. Nitrogen fertilizer requirement of elephant grass cv. Mott grown in Pothwar area. J. Sci. Tech. Develop. 1999, 18, 25–30. [Google Scholar]
- Melkie, B.; Solomon, M. Effect of planting patterns and harvesting days on yield and quality of Bana grass (Pennisetum purpureum L. x Pennisetum americanum L.). IUP J. Life Sci. 2010, 4, 56–65. [Google Scholar]
- Boonman, J.G. East Africa’s Grasses and Fodders: Their Ecology and Husbandry; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar] [CrossRef]
- Trlica, M.J. Grass Growth and Response to Grazing. Colorado State University. Cooperative Extension Range. Natural Resource Series. 2013. Available online: https://extension.colostate.edu/docs/pubs/natres/06108.pdf (accessed on 14 September 2019).
- Sollenberger, L.E. Mott Elephant Grass. University of Florida, IFAS, Florida A. & M. University Cooperative Extension Program. 2002. Available online: https://edis.ifas.ufl.edu/pdf/AG/AG155/AG155-13013317.pdf (accessed on 8 May 2020).
- Vorlaphim, T.; Paengkoum, P.; Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Schonewille, J.T. Treatment of rice stubble with Pleurotus ostreatus and urea improves the growth performance in slow-growing goats. Animals 2021, 11, 1053. [Google Scholar] [CrossRef]
- Jones, C.A. C4 Grasses and Cereals: Growth, Development and Stress Response, 1st ed.; Wiley-Interscience: New York, NY, USA, 1985; p. 419. ISBN 978-0-4718-2409-1. [Google Scholar]
- Clavero, L.T. Tiller dynamics of dwarf elephant grass (Pennisetum purpureum cv. Mott) under defoliation. In Proceedings of the 18th International Grassland Congress, Winnipeg and Saskatoon, Saskatoon, SK, Canada, 8–19 June 1997; pp. 31–32. [Google Scholar]
- Assuero, S.G.; Tognetti, J.A. Tillering regulation by endogenous and environmental factors and its agricultural management. Am. J. Plant Sci. 2010, 4, 35–48. [Google Scholar]
- Mannetje, L.; Jones, R.M. Plant Resources of South-East Asia No. 4: Forages; Pudoc Scientific Publishers: Wageningen, The Netherlands, 1992; p. 300. [Google Scholar]
- Mukhtar, M. Dry matter productivity of the dwarf and normal elephant grasses as affected by the planting density and cutting frequency. JITV 2006, 11, 198–205. [Google Scholar] [CrossRef]
- Lafarge, M.; Loiseau, P. Tiller density and stand structure of tall fescue swards differing in age and nitrogen level. Eur. J. Agron. 2002, 17, 209–219. [Google Scholar] [CrossRef]
- Tyas, J.A.; Hofman, P.J.; Underhill, S.J.R.; Bell, K.L. Fruit canopy position and panicle bagging affects yield and quality of ‘‘Tai So’’ lychee. Sci. Hort. 1998, 72, 203–213. [Google Scholar] [CrossRef]
- Rodrigues, L.R.D.E.A.; Mott, G.O.; Veiga, J.B.; Ocumpaugh, W.R. Tillering and morphological characteristics of dwarf elephant grass under grazing. Pesqui. Agropecu. Bras. 1987, 21, 1209–1218. [Google Scholar]
- Budiman, B.; Soetrisno, R.D.; Budhi, S.P.S.; Indrianto, A. Morphological characteristics, productivity and quality of three napier grass (Pennisetum purpureum Schum) cultivars harvested at different age. J. Indonesian Trop. Anim. Agric. 2012, 37, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, M.; Nisa, M.; Khan, M.A.; Mushtaque, M. Chemical composition, herbage yield and nutritive value of Panicum antidole and Pennisetum orientale for Nili buffaloes at different clipping intervals. Asian-Australas. J. Anim. Sci. 2006, 19, 176–180. [Google Scholar] [CrossRef]
- Tilahun, G.; Asmare, B.; Mekuriaw, Y. Effects of harvesting age and spacing on plant characteristics, chemical composition and yield of desho grass (Pennisetum pedicellatum Trin.) in the highlands of Ethiopia. Trop. Grassl. 2017, 5, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Chena, J.; Lai, Y.; Yin, G.; Chena, P.; Pennerman, K.K.; Yan, H.; Wu, B.; Zhang, H.; Yi, X.; et al. Integrative analysis of metabolome and transcriptome reveals anthocyanins biosynthesis regulation in grass species Pennisetum purpureum. Ind. Crops Prod. 2019, 138, 111470. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, S.; Yuangklang, C.; Paengkoum, P. Flavonoids and their aromatic derivatives in Piper betle powder promote in vitro methane mitigation in a variety of diets. Cienc Agrotec. 2020, 44, e012420. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995, 7, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Bentley, R. The shikimate pathway: A metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol. 1990, 25, 307–384. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.K.; Farrell, S.O. Biochemistry, 5th ed.; Thomson Learning, Inc.: California, CA, USA, 2005; ISBN 978-0-5344-0521-2. [Google Scholar]
- Maeda, H.; Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef]
- Paengkoum, S.; Petlum, A.; Purba, R.A.P.; Paengkoum, P. Protein-binding affinity of various condensed tannin molecular weights from tropical leaf peel. J. Appl. Pharm. Sci. 2021, 11, 114–120. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Castellarin, S.D.; Matthews, M.A.; Gaspero, G.D.; Gambetta, G.A. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 2007, 227, 101–112. [Google Scholar] [CrossRef]
- Dai, Z.W.; Leon, C.; Fell, R.; Lunn, J.E.; Delrot, S.; Gomes, E. Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric flesh fruit. J. Exp. Bot. 2013, 64, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Degu, A.; Hochberg, U.; Sikron, N.; Venturini, L.; Buson, G.; Ghan, R.; Plaschkes, I.; Batushansky, A.; Chalifa-Caspi, V.; Mattivi, F.; et al. Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabrernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. BMC Plant Biol. 2014, 14, 188. [Google Scholar] [CrossRef] [Green Version]
- Naoumkina, M.A.; Zhao, Q.; Gallego-Giraldo, L.; Dai, X.; Zhao, P.X.; Dixon, R.A. Genome-wide analysis of phenylpropanoid defence pathways. Mol. Plant Pathol. 2010, 11, 829–846. [Google Scholar] [CrossRef]
- Manela, N.; Oliva, M.; Ovadia, R.; Sikron-Persi, N.; Ayenew, B.; Fait, A.; Galili, G.; Perl, A.; Weiss, D.; Oren-Shamir, M. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension. Front. Plant Sci. 2015, 6, 538. [Google Scholar] [CrossRef]
- Manyawu, G.J.; Chakoma, C.; Sibanda, S.; Mutisi, C.; Chakoma, I.C. The effect of harvesting interval on herbage yield and nutritive value of Napier grass and hybrid Pennisetum. Asian-Australas. J. Anim. Sci. 2003, 16, 996–1002. [Google Scholar] [CrossRef]
- Sitompul, S.M.; Guritno, B. Analisis Pertumbuhan Tanaman; Gadjah Mada University Press: Bukan Fiksi, Indonesia, 1995; pp. 377–394. ISBN 9794203742. [Google Scholar]
- Bhatti, M.B.; Sartaj, D.M.; Sultani, M.I. Effect of different inter-and intra-row spacings on forage yield and quality in elephant grass. Pak. J. Agric. Sci. 1985, 6, 107–112. [Google Scholar]
- Niu, J.; Zhang, G.; Zhang, W.; Goltsev, V.; Sun, S.; Wang, J.; Li, P.; Ma, F. Anthocyanin concentration depends on the counterbalance between its synthesis and degradation in plum fruit at high temperature. Sci. Rep. 2017, 7, 7684. [Google Scholar] [CrossRef] [Green Version]
- Kanzikwera, C.R.; Tenywa, J.S.; Osiru, D.S.O.; Adapala, E.; Bhagsari, A.S. Interactive effect of nitrogen and potassium on dry matter and nutrient partitioning in true potato seed mother plants. Afr. Crop Sci. J. 2001, 9, 127–146. [Google Scholar] [CrossRef]
- Lancaster, J.E. Regulation of skin color in apples. CRC Crit. Rev. Plant Sci. 1992, 10, 487–502. [Google Scholar] [CrossRef]
- Shaikh, N.P.; Adjei, M.B.; Scholberg, J.M. Interactive effect of phosphorus and nitrogen on leaf anthocyanins, tissue nutrient concentrations, and dry-matter yield of Floralta Limpograss during short day length. Commun. Soil Sci. Plant Anal. 2008, 39, 1006–1015. [Google Scholar] [CrossRef]
Interaction | LSR 2 | Ash | Anthocyanin Composition | |||
---|---|---|---|---|---|---|
Cultivar 1 | Space | Age | P3G 3 | M3G 4 | ||
NP-1 | 50 × 50 | 45 | 1.72 | 9.41 | 0.08 | 0.06 |
60 | 1.44 | 9.76 | 0.04 | 0.03 | ||
75 | 0.96 | 10.08 | 0.01 | 0.01 | ||
50 × 75 | 45 | 1.78 | 10.81 | 0.10 | 0.07 | |
60 | 1.51 | 11.20 | 0.07 | 0.04 | ||
75 | 0.99 | 12.57 | 0.01 | 0.02 | ||
75 × 75 | 45 | 1.94 | 12.93 | 0.18 | 0.10 | |
60 | 1.64 | 13.65 | 0.07 | 0.04 | ||
75 | 1.53 | 15.44 | 0.02 | 0.03 | ||
PN | 50 × 50 | 45 | 1.74 | 6.03 | 0.20 | 0.14 |
60 | 1.45 | 6.75 | 0.12 | 0.08 | ||
75 | 0.98 | 6.95 | 0.02 | 0.03 | ||
50 × 75 | 45 | 1.79 | 7.09 | 0.26 | 0.19 | |
60 | 1.59 | 8.03 | 0.17 | 0.10 | ||
75 | 1.03 | 8.69 | 0.04 | 0.05 | ||
75 × 75 | 45 | 2.00 | 8.85 | 0.46 | 0.27 | |
60 | 1.67 | 8.91 | 0.18 | 0.10 | ||
75 | 1.58 | 9.05 | 0.06 | 0.07 | ||
SEM | 0.044 | 0.345 | 0.013 | 0.008 | ||
p-Value | ||||||
Cultivar × Space × Age | 0.043 | 0.0001 | 0.0001 | 0.0004 |
Interaction | Plant Height (cm) | Chemical Composition (%) | Anthocyanin Content (mg/g Dry Weight) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DM 2 | CP | EE | NDF | Hemi | Lignin | C3G 3 | Del | Peo3G | CYA | Pel | Mal | Total Ant. | |||
Cultivar × Space 1 | |||||||||||||||
NP-1 | 50 × 50 | 156.07 | 21.37 | 7.84 | 2.93 | 73.50 | 25.57 | 2.52 | 0.24 | 0.04 | 0.08 | 0.05 | 0.04 | 0.22 | 0.75 |
50 × 75 | 147.67 | 21.60 | 8.23 | 3.37 | 73.99 | 28.54 | 3.28 | 0.31 | 0.05 | 0.12 | 0.06 | 0.06 | 0.23 | 0.93 | |
75 × 75 | 129.00 | 22.32 | 9.05 | 3.37 | 76.37 | 29.82 | 3.46 | 0.42 | 0.06 | 0.15 | 0.07 | 0.07 | 0.27 | 1.16 | |
PN | 50 × 50 | 141.11 | 21.18 | 7.90 | 2.90 | 72.19 | 26.29 | 2.60 | 0.61 | 0.11 | 0.19 | 0.12 | 0.11 | 0.54 | 1.88 |
50 × 75 | 136.22 | 21.36 | 8.73 | 3.24 | 73.36 | 25.09 | 3.31 | 0.78 | 0.13 | 0.30 | 0.14 | 0.16 | 0.56 | 2.33 | |
75 × 75 | 116.22 | 22.19 | 9.25 | 3.31 | 74.08 | 29.37 | 3.34 | 1.06 | 0.16 | 0.39 | 0.17 | 0.18 | 0.66 | 2.90 | |
Cultivar × Age | |||||||||||||||
NP-1 | 45 | 131.45 | 20.23 | 9.87 | 3.54 | 64.20 | 18.82 | 2.73 | 0.76 | 0.08 | 0.19 | 0.09 | 0.09 | 0.33 | 1.71 |
60 | 147.67 | 21.60 | 8.23 | 3.25 | 73.99 | 28.88 | 3.28 | 0.31 | 0.05 | 0.12 | 0.06 | 0.06 | 0.23 | 0.93 | |
75 | 163.68 | 22.96 | 4.09 | 2.75 | 76.37 | 29.82 | 3.69 | 0.09 | 0.02 | 0.05 | 0.04 | 0.03 | 0.20 | 0.45 | |
PN | 45 | 115.70 | 20.09 | 9.95 | 3.45 | 62.55 | 19.75 | 2.63 | 1.90 | 0.20 | 0.50 | 0.24 | 0.24 | 0.82 | 4.34 |
60 | 136.22 | 21.36 | 8.73 | 3.24 | 73.70 | 27.64 | 3.31 | 0.78 | 0.13 | 0.30 | 0.14 | 0.16 | 0.56 | 2.33 | |
75 | 160.32 | 23.64 | 4.28 | 2.62 | 73.36 | 26.29 | 3.33 | 0.24 | 0.06 | 0.12 | 0.09 | 0.08 | 0.51 | 1.18 | |
Space × Age | |||||||||||||||
50 × 50 | 45 | 123.58 | 19.76 | 9.58 | 3.40 | 62.49 | 19.29 | 2.31 | 1.07 | 0.13 | 0.30 | 0.15 | 0.14 | 0.50 | 2.52 |
60 | 148.59 | 21.28 | 7.87 | 2.92 | 73.05 | 28.26 | 2.56 | 0.43 | 0.08 | 0.14 | 0.09 | 0.08 | 0.38 | 1.32 | |
75 | 183.65 | 22.93 | 3.92 | 2.32 | 73.07 | 25.93 | 3.22 | 0.05 | 0.04 | 0.04 | 0.06 | 0.05 | 0.33 | 0.57 | |
50 × 75 | 45 | 126.22 | 20.16 | 9.91 | 3.50 | 64.12 | 20.38 | 2.70 | 1.33 | 0.14 | 0.35 | 0.17 | 0.17 | 0.58 | 3.03 |
60 | 141.95 | 21.48 | 8.48 | 3.25 | 73.85 | 27.76 | 3.30 | 0.55 | 0.09 | 0.21 | 0.10 | 0.11 | 0.40 | 1.63 | |
75 | 162.00 | 22.98 | 4.19 | 3.00 | 74.87 | 27.46 | 3.51 | 0.17 | 0.04 | 0.09 | 0.07 | 0.06 | 0.36 | 0.82 | |
75 × 75 | 45 | 115.05 | 21.60 | 11.72 | 3.60 | 63.38 | 18.68 | 2.76 | 1.56 | 0.17 | 0.45 | 0.20 | 0.18 | 0.68 | 3.73 |
60 | 122.61 | 22.26 | 9.15 | 3.34 | 75.23 | 29.60 | 3.40 | 0.74 | 0.11 | 0.27 | 0.12 | 0.13 | 0.47 | 2.03 | |
75 | 161.00 | 24.51 | 7.51 | 2.74 | 82.19 | 33.16 | 3.57 | 0.37 | 0.07 | 0.13 | 0.08 | 0.06 | 0.38 | 1.16 | |
SEM | 4.071 | 0.202 | 0.335 | 0.058 | 0.897 | 0.706 | 0.059 | 0.074 | 0.008 | 0.020 | 0.009 | 0.008 | 0.028 | 0.162 | |
p-Value | |||||||||||||||
Cultivar × Space | 0.499 | 0.111 | 0.169 | 0.078 | 0.802 | 0.398 | 0.392 | 0.0001 | 0.0003 | 0.0001 | 0.013 | 0.010 | 0.005 | 0.0001 | |
Cultivar × Age | 0.652 | 0.233 | 0.744 | 0.417 | 0.955 | 0.470 | 0.965 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
Space × Age | 0.011 | 0.0001 | 0.0001 | 0.0001 | 0.0100 | 0.0001 | 0.0001 | 0.005 | 0.943 | 0.0009 | 0.360 | 0.005 | 0.004 | 0.0007 |
Main Effect | Plant Height (cm) | Number of Tillers/Plant | Chemical Composition (% DM) | |||
---|---|---|---|---|---|---|
CP 2 | CF | ADF | Cellulose | |||
Cultivar 1 | ||||||
NP-1 | 148.51 | 27.99 | 8.23 | 36.58 | 46.22 | 43.15 |
PN | 136.96 | 31.08 | 8.73 | 35.59 | 45.34 | 42.34 |
Space | ||||||
50 × 50 | 151.94 | 25.39 | 7.12 | 34.92 | 45.15 | 42.45 |
50 × 75 | 143.39 | 30.90 | 7.53 | 36.24 | 45.75 | 42.58 |
75 × 75 | 132.89 | 32.30 | 9.46 | 37.10 | 46.45 | 43.21 |
Age | ||||||
45 | 121.61 | 20.26 | 10.40 | 33.59 | 43.98 | 41.40 |
60 | 137.72 | 32.31 | 8.50 | 37.06 | 45.50 | 42.36 |
75 | 168.88 | 36.03 | 5.20 | 37.61 | 47.86 | 44.49 |
SEM | 4.071 | 1.097 | 0.335 | 0.306 | 0.326 | 0.294 |
p-Value | ||||||
Cultivar | <0.0001 | 0.0004 | <0.0001 | 0.187 | 0.01 | 0.01 |
Space | <0.0001 | 0.0001 | <0.0001 | 0.0001 | 0.05 | 0.247 |
Age | <0.0001 | 0.0001 | <0.0001 | 0.0001 | 0.0001 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onjai-uea, N.; Paengkoum, S.; Taethaisong, N.; Thongpea, S.; Sinpru, B.; Surakhunthod, J.; Meethip, W.; Purba, R.A.P.; Paengkoum, P. Effect of Cultivar, Plant Spacing and Harvesting Age on Yield, Characteristics, Chemical Composition, and Anthocyanin Composition of Purple Napier Grass. Animals 2023, 13, 10. https://doi.org/10.3390/ani13010010
Onjai-uea N, Paengkoum S, Taethaisong N, Thongpea S, Sinpru B, Surakhunthod J, Meethip W, Purba RAP, Paengkoum P. Effect of Cultivar, Plant Spacing and Harvesting Age on Yield, Characteristics, Chemical Composition, and Anthocyanin Composition of Purple Napier Grass. Animals. 2023; 13(1):10. https://doi.org/10.3390/ani13010010
Chicago/Turabian StyleOnjai-uea, Narawich, Siwaporn Paengkoum, Nittaya Taethaisong, Sorasak Thongpea, Boontum Sinpru, Jariya Surakhunthod, Weerada Meethip, Rayudika Aprilia Patindra Purba, and Pramote Paengkoum. 2023. "Effect of Cultivar, Plant Spacing and Harvesting Age on Yield, Characteristics, Chemical Composition, and Anthocyanin Composition of Purple Napier Grass" Animals 13, no. 1: 10. https://doi.org/10.3390/ani13010010