Effect of TMR Briquettes on Milk Production, Nutrient Digestibility, and Manure Excretions of Dairy Cows in the Dry Zone of Sri Lanka
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Animals and Treatments
2.3. Total Collection of Faeces and Urine
2.4. Animal Measurements, Sample Collection, and Analyses
2.5. Calculations and Statistical Analysis
3. Results and Discussion
3.1. Particle Size Distribution of Diets
3.2. Dry Matter Intake, Milk Production and Body Measurements
3.3. Plasma Metabolites
3.4. Nutrient Intake and Digestibility
3.5. Manure Excretions and N Efficiencies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schingoethe, D.J. A 100-year review: Total mixed ration feeding of dairy cows. J. Dairy Sci. 2017, 100, 10143–10150. [Google Scholar] [CrossRef] [PubMed]
- Sarker, N.R.; Yeasmin, D.; Habib, M.A.; Tabassum, F. Feeding effect of total mixed ration on milk yield, nutrient intake, digestibility and rumen environment in Red Chittagong cows. Asian J. Med. Biol. Res. 2019, 5, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Rego, O.A.; Portugal, P.A.; Sousa, M.B.; Rosa, H.J.D.; Vouzela, C.M. Effect of diet on the fatty acid pattern of milk from dairy cows. J. Anim. Res. 2004, 53, 213–220. [Google Scholar] [CrossRef]
- Sarker, N.R.; Yeasmin, D.; Tabassum, F.; Habib, M.A. Effect of paddy-straw based total mixed ration (TMR) on milk yield, milk composition and rumen parameters in lactating Red Chittagong cows Bangaladesh. J. Livest. Res. 2018, 21, 69–81. [Google Scholar] [CrossRef]
- Ganashan, P.; Balendira, S.; Dassanayake, M.D. Sri Lanka: Country Report to the FAO International Technical Conference on Plant Genetic Resources; FAO: Peradeniya, Sri Lanka, 1995; pp. 1–99. [Google Scholar]
- Houwers, W.; Wouters, B.; Vernooij, A. Sri Lanka Fodder Study; An overview of potential, bottlenecks and improvements to meet the rising demand for quality fodder in Sri Lanka. Livestock Research Report 924; Wageningen UR (University & Research centre) Livestock Research: Wageningen, The Netherlands, 2015; pp. 9–37. [Google Scholar]
- Rajendram, K. Rainfall variability and drought in the dry and wet zones of Sri Lanka. J. World Sci. 2021, 160, 172–189. [Google Scholar]
- Hitihamu, S.; Epasinghe, S. Socio-Economic Condition of Dairy Industry in Mahaweli H Area; Hector Kobbekaduwa Agrarian Research and Training Institute: Colombo, Sri Lanka, 2015; pp. 1–51.
- Somasiri, S.C.; Premaratne, S.; Gunathilake, H.A.J.; Abeysoma, H.A.; Dematawewa, C.M.B.; Satsara, J.H.M.N. Effect of Giricidia (Gliricidia sepium) leaf meal blocks on intake, live weight gain and milk yield of dairy cows. J. Trop. Agric. Res. 2010, 22, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Karunanayaka, R.H.W.M.; Nayananjalie, W.A.D.; Somasiri, S.C.; Adikari, A.M.J.B.; Weerasingha, W.V.V.R.; Kumari, M.A.A.P.; Mangalika, U.L.P.; Dissanayake, S.N.; Sundarabarathy, T.V. Nutritional and keeping quality of total mixed ration briquettes produced for lactating dairy cows. Sri Lankan J. Agric. Ecosyst. 2021, 3, 46–66. [Google Scholar] [CrossRef]
- Kristensen, N.B. Implement Compact TMR to Increase Productivity, Feed Efficiency and Health in Dairy Herds; Dairy and Beef Research Centre: Aarhus, Denmark, 2015; pp. 1–7. [Google Scholar]
- Kronqvist, C.; Petters, F.; Robertsson, U.; Lindberg, M. Evaluation of production parameters, feed sorting behaviour and social interactions in dairy cows: Comparison of two total mixed rations with different particle size and water content. Livest. Sci. 2021, 251, 104662. [Google Scholar] [CrossRef]
- Miller-Cushon, E.K.; Dayton, A.M.; Horvath, K.C.; Monteiro, A.P.A.; Weng, X.; Tao, S. Effects of acute and chronic heat stress on feed sorting behaviour of lactating dairy cows. J. Anim. Sci. 2019, 13, 2044–2051. [Google Scholar] [CrossRef]
- Karunanayaka, R.H.W.M.; Nayananjalie, W.A.D.; Somasiri, S.C.; Adikari, A.M.J.B.; Weerasingha, W.V.V.R.; Kumari, M.A.A.P. Comparison of nutritive value in fodder species and industrial by-products available in Anuradhapura. J. Dry Zone Agric. 2020, 6, 79–89. [Google Scholar]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001; pp. 1–381. [Google Scholar]
- Wildman, E.E.; Jones, G.M.; Wagner, P.E.; Boman, R.L.; Troutt, J.H.F.; Lesch, T.N. A dairy cow body condition scoring system and its relationship to selected production characteristics. J. Dairy Sci. 1982, 65, 495–501. [Google Scholar] [CrossRef]
- Damery, T.; Pate, R.; Cardoso, P. Are You Correctly Defining Physically Effective Fiber (peNDF) in Your Cow’s Diet? University of Illinois: Champaign, IL, USA, 2017; p. 1. [Google Scholar]
- AOAC International. Official Methods of Analysis of Association of Official Agricultural Chemists International, 21st ed.; AOAC International: Gaithersburg, MD, USA, 2019; pp. 1–75. [Google Scholar]
- Van Soest, V.P.J.; Robertson, J.B.; Lewis, B.A. Method of dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Dairy Records Management Systems. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.686.2482&rep=rep1&type=pdf (accessed on 20 March 2022).
- Vidanarachchi, J.K.; Chathurika, H.M.M.; Dias, H.M.; Gedara, P.K.; Silva, G.L.L.P.; Perera, E.R.K.; Perera, A.N.F. Dairy Industry in Sri Lanka: Current Status and Way Forward for a Sustainable Industry; Association of Animal Production, University of Peradeniya: Peradeniya, Sri Lanka, 2019; pp. 1–38. [Google Scholar]
- Weerasinghe, W.M.P.B. Livestock Feeds and Feeding Practices in Sri Lanka; SAARC Agriculture Centre: Dhaka, Bangladesh, 2019; pp. 181–206. [Google Scholar]
- Haselmann, A.; Zehetgruber, K.; Fuerst-Waltl, B.; Zollitsch, W.; Knaus, W.; Zebeli, Q. Feeding forages with reduced particle size in a total mixed ration improves feed intake, total-tract digestibility, and performance of organic dairy cows. J. Dairy Sci. 2019, 102, 8839–8849. [Google Scholar] [CrossRef] [PubMed]
- Petters, F. Compact Total Mixed Ration to Dairy Cows—Effects on Feed Hygiene, Feed Intake, Rumen Environment and Milk Production; Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2018; pp. 1–34. [Google Scholar]
- Storm, A.C.; Kristensen, N.B. Effects of particle size and dry matter content of a total mixed ration on intra ruminal equilibration and net portal flux of volatile fatty acids in lactating dairy cows. J. Dairy Sci. 2010, 93, 4223–4238. [Google Scholar] [CrossRef]
- Felton, C.A.; Devries, T.J. Effect of water addition to a total mixed ration on feed temperature, feed intake, sorting behaviour, and milk production of dairy cows. J. Dairy Sci. 2010, 93, 2651–2660. [Google Scholar] [CrossRef]
- Heinrichs, A.; Kononoff, P. Evaluating Particle Size of Forages and TMRs Using the New Penn State Forage Particle Separator; Cooperative Extension DAS; Pennsylvania State University: University Park, PA, USA, 2002; pp. 1–15. [Google Scholar]
- Einarson, M.S.; Plaizier, J.C.; Wittenberg, K.M. Effects of barley silage chop length on productivity and rumen conditions of lactating dairy cows fed total mixed ration. J. Dairy Sci. 2004, 87, 2987–2996. [Google Scholar] [CrossRef]
- Oh, M.R.; Hong, H.; Li, H.L.; Jeon, B.T.; Choi, C.H.; Ding, Y.L.; Tang, Y.J.; Kim, E.K.; Jang, S.Y.; Seong, H.J.; et al. Effects of physically effective neutral detergent fiber content on intake, digestibility, and chewing activity in fattening heifer fed total mixed ration. Asian-Aust. J. Anim. Sci. 2016, 29, 1719–1724. [Google Scholar] [CrossRef]
- Yang, W.Z.; Beauchemin, K.A. Increasing the physically effective fiber content of dairy cow diets may lower efficiency of feed use. J. Dairy Sci. 2006, 89, 2694–2704. [Google Scholar] [CrossRef]
- Kononoff, P.J.; Heinrichs, A.J. The effect of reducing alfalfa hay silage particle size on cows in early lactation. J. Dairy Sci. 2003, 86, 1445–1457. [Google Scholar] [CrossRef] [Green Version]
- Estrada, J.I.C.; Delagarde, R.; Faverdin, P.; Peyraud, J.L. Dry matter intake and eating rate of grass by dairy cows is restricted by internal, but not external water. Anim. Feed Sci. Technol. 2004, 114, 59–74. [Google Scholar] [CrossRef]
- Prakash, B.; Singh, S.; Pundir, R.K.; Sodhi, M.; Singh, P.K.; Mukesh, M.; Ahlawat, S.P.S. Cattle Genetic Resources of India Sahiwal the Champion Dairy Breed; National Bureau of Animal Genetic Resources (Indian Council of Agricultural Research): Haryana, India, 2005; pp. 1–80.
- Samaraweera, A.M.; Boerner, V.; Cyril, H.W.; van der Werf, J.; Hermesch, S. Genetic parameters for milk yield in imported Jersey and Jersey-Friesian cows using daily milk records in Sri Lanka. Asian-Aust. J. Anim. Sci. 2020, 33, 1741–1754. [Google Scholar] [CrossRef] [PubMed]
- Ranaweera, K.K.T.N.; Mahipala, M.B.P.K.; Weerasinghe, W.M.P.B. Evaluation of energy balance in tropical and temperate crossbred dairy cows at post-partum transition stage: A case study. Trop. Agric. Res. 2020, 31, 12–20. [Google Scholar] [CrossRef]
- Sreedhar, S.; Rao, K.S.; Suresh, J.; Moorthy, P.R.S.; Reddy, V.P. Changes in hematocrit and some serum biochemical profile of Sahiwal and Jersey × Sahiwal cows in tropical environments. Vet. Arh. 2013, 83, 171–187. [Google Scholar]
- Vaidya, M.M.; Singh, S.V.; Upadhyay, R.C.; Aggarwal, A. Plasma profile of hormones and energy metabolites in low and high producing periparturient Sahiwal cows during summer and winter season. Indian J. Anim. Res. 2017, 51, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Hammond, A.C. Effect of dietary protein level, ruminal protein solubility and time after feeding on plasma urea nitrogen and the relationship of plasma urea nitrogen to other ruminal and plasma parameters. J. Anim. Sci. 1998, 57, 43–57. [Google Scholar]
- Roseler, D.K.; Ferguson, F.D.; Sniffen, C.F.; Herrema, I. Dietary protein degradability effects on plasma and milk urea nitrogen and milk non-protein nitrogen in Holstein cows. J. Dairy Sci. 1993, 76, 525–534. [Google Scholar] [CrossRef]
- Bowden, D.M. Non-esterified fatty acids and ketone bodies in blood as indicators of nutritional status in Ruminants: A review. Can. J. Anim. Sci. 1971, 51, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Nogalski, Z.; Wroński, M.; Lewandowska, B.; Pogorzelska, P. Changes in the blood indicators and body condition of high yielding Holstein cows with retained placenta and ketosis. J. Acta Vet. Brno 2012, 81, 341–359. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Zhang, J.; Yang, W.; Xia, C.; Zhang, H.Y.; Wang, Y.H.; Xu, C. Predictive value of plasma parameters in the risk of postpartum ketosis in dairy cows. J. Vet. Res. 2017, 61, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, G.F.; Delahoy, J.E.; Vidaurreta, I.; Bargo, F.; Gagliostro, G.A.; Muller, L.D. Milk fatty acid composition of cows fed a total mixed ration or pasture plus concentrates replacing corn with fat. J. Dairy Sci. 2003, 86, 3237–3248. [Google Scholar] [CrossRef]
- Kendall, C.; Leonardi, C.; Hoffman, P.C.; Combs, D.K. Intake and milk production of cows fed diets that differed in dietary neutral detergent fiber and neutral detergent fiber digestibility. J. Dairy Sci. 2009, 92, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Man, N.V.; Wiktorsson, H. Forage yield, nutritive value, feed intake and digestibility of three grass species as affected by harvest frequency. J. Trop. Grassl. 2003, 37, 101–110. [Google Scholar]
- Raharjo, Y.C. Evaluation of Tropical Forages and By-Product Feeds for Rabbit Production. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1987; pp. 1–251. [Google Scholar]
- Seresinhe, T.; Pathirana, K.K. Associative effects of tree legumes and effect of cutting height on the yield and nutritive value of Panicum maximum cv. Guinea. J. Trop. Grassl. 2000, 34, 103–109. [Google Scholar]
- Appuhamy, J.A.D.R.N.; Moraes, L.E.; Wagner-Riddle, C.; Casper, D.P.; Kebreab, E. Predicting manure volatile solid output of lactating dairy cows. J. Dairy Sci. 2018, 101, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 2018, 131, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Puchala, R.; Animut, G.; Patra, A.K.; Detweiler, G.D.; Wells, J.E.; Varel, V.H.; Sahlu, T.; Goetsch, A.L. Effects of different fresh-cut forages and their hays on feed intake, digestibility, heat production, and ruminal methane emission by Boer × Spanish goats. J. Anim. Sci. 2012, 90, 2754–2762. [Google Scholar] [CrossRef] [Green Version]
- Shojaeian, K.; Thakur, S.S. Effect of exogenous fibrolytic enzymes supplementation to substrates containing different roughage: Concentrate ratios on in vitro rumen fermentation DM and NDF degradability. Ind. J. Dairy Sci. 2007, 60, 94–101. [Google Scholar]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Comparative analysis of silage fermentation and in vitro digestibility of tropical grass prepared with Acremonium and Tricoderma species producing cellulases. Asian-Aust. J. Anim. Sci. 2018, 31, 1913–1922. [Google Scholar] [CrossRef] [Green Version]
- Appuhamy, J.A.; Wagner-Riddle, C.; Casper, D.P.; France, J.; Kebreab, E. Quantifying body water kinetics and fecal and urinary water output from lactating Holstein dairy cows. J. Dairy Sci. 2014, 97, 6177–6195. [Google Scholar] [CrossRef]
- King, L.; Wickramasinghe, J.; Dooley, B.; McCarthy, C.; Branstad, E.; Grilli, E.; Baumgard, L.; Appuhamy, R. Effects of microencapsulated methionine on milk production and manure nitrogen excretions of lactating dairy cows. J. Anim. 2021, 11, 3545. [Google Scholar] [CrossRef]
Ingredients | CTL | TMR1 | TMR2 |
---|---|---|---|
Forages | |||
Gliricidia (Gliricidia sepium) | 085 | 110 | |
Guinea grass (Panicum maximum) | 650 | 215 | 140 |
Maize (Zea mays) | 160 | 110 | |
Napier grass 2 | 130 | 190 | |
Sorghum (Sorghum bicolor) | 130 | 215 | |
Concentrates | |||
Rice (Oryza sativa) bran | 100 | 065 | |
Ground maize (Zea mays) | 025 | 070 | |
Soybean (Glycine max) meal | 025 | 030 | |
Coconut (Cocos nucifera) poonac | 110 | 050 | |
Mineral mixture | 020 | 000 | |
Dicalcium phosphate | 020 | ||
Commercial cattle feed 3 | 350 |
Variable 2 | Treatments 1 | ||
---|---|---|---|
CTL | TMR1 | TMR2 | |
DM, g/kg | 256 ± 21.2 | 889 ± 14.0 | 886 ± 10.7 |
Ash, g/kg | 133 ± 5.9 | 111 ± 16.8 | 111 ± 26.8 |
CP, g/kg | 94.3 ± 8.8 | 116 ± 10.6 | 115 ± 10.0 |
ADF, g/kg | 438 ± 32.1 | 345 ± 23.4 | 387 ± 25.8 |
NDF, g/kg | 527 ± 37.0 | 488 ± 33.0 | 486 ± 26.6 |
NEL, Mcal/kg of DM | 0.960 ± 0.047 | 1.21 ± 0.040 | 1.18 ± 0.031 |
Variable 2 | Treatments 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CTL | TMR1 | TMR2 | |||
Particle size distribution | |||||
>19 mm | 71.6 a | 48.8 b | 49.7 b | 1.01 | <0.001 |
19 mm–8 mm | 24.2 a | 21.6 b | 21.3 b | 0.55 | 0.009 |
8 mm–3 mm | 1.65 c | 5.18 b | 6.62 a | 0.414 | <0.001 |
<3 mm | 2.55 c | 24.4 a | 22.4 b | 0.485 | <0.001 |
peNDF | 51.4 a | 36.9 b | 37.7 b | 0.36 | <0.001 |
Variable 2 | Treatments 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CTL | TMR1 | TMR2 | |||
DMI, kg/d | 6.50 | 7.16 | 7.00 | 0.202 | 0.070 |
Milk yield, kg/d | 5.55 | 6.59 | 6.04 | 0.558 | 0.092 |
Fat, g/kg | 38.4 | 34.5 | 37.6 | 2.05 | 0.354 |
Fat, kg/d | 0.218 | 0.221 | 0.225 | 0.0253 | 0.961 |
Protein, g/kg | 30.6 | 30.7 | 31.4 | 0.34 | 0.244 |
Protein, kg/d | 0.170 | 0.203 | 0.188 | 0.0171 | 0.091 |
MUN, mg/dL | 13.0 a | 13.0 a | 10.5 b | 0.65 | 0.006 |
ECM, kg/d | 5.94 | 6.57 | 6.32 | 0.623 | 0.519 |
BCS | 2.47 | 2.63 | 2.60 | 0.084 | 0.198 |
BW, kg | 259 | 271 | 270 | 9.6 | 0.326 |
Variable 2 | Treatments 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CTL | TMR1 | TMR2 | |||
Glucose, mg/dL | 63.3 | 61.9 | 64.2 | 1.59 | 0.630 |
BUN, mg/dL | 20.7 | 20.4 | 19.6 | 0.97 | 0.726 |
NEFA, mg/dL | 8.14 | 5.53 | 8.78 | 1.311 | 0.210 |
ALB, ng/mL | 1.69 | 1.95 | 2.10 | 0.110 | 0.062 |
BHBA, mg/dL | 3.80 | 3.51 | 2.41 | 0.415 | 0.664 |
Variable 2 | Treatments 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CTL | TMR1 | TMR2 | |||
Nutrient intake, kg/d | |||||
DM | 6.8 | 7.06 | 6.99 | 0.213 | 0.57 |
Ash | 0.917 a | 0.781 b | 0.774 b | 0.0251 | <0.001 |
OM | 5.88 | 6.28 | 6.22 | 0.187 | 0.194 |
CP | 0.639 b | 0.819 a | 0.801 a | 0.0242 | <0.001 |
ADF | 2.98 a | 2.44 c | 2.71 b | 0.081 | <0.001 |
NDF | 3.58 | 3.45 | 3.4 | 0.105 | 0.331 |
Nutrient digestibility | |||||
DM | 0.440 b | 0.573 a | 0.626 a | 0.0189 | <0.001 |
Ash | 0.370 b | 0.414 ab | 0.493 a | 0.0282 | 0.029 |
OM | 0.450 b | 0.592 a | 0.641 a | 0.0182 | <0.001 |
CP | 0.703 | 0.665 | 0.692 | 0.0159 | 0.232 |
ADF | 0.416 c | 0.491 b | 0.617 a | 0.0219 | <0.001 |
NDF | 0.418 c | 0.582 b | 0.656 a | 0.0183 | <0.001 |
Variable | Treatments 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CTL | TMR1 | TMR2 | |||
Fresh faeces volume, kg/d | 17.9 a | 15.6 ab | 14.3 b | 0.83 | 0.028 |
Faecal N, g/d | 30.5 b | 44.2 a | 39.6 a | 2.44 | 0.004 |
Faecal N, % of N intake | 29.7 | 33.5 | 30.8 | 1.60 | 0.232 |
Urine volume, L/d | 8.60 b | 10.2 a | 8.98 b | 0.578 | 0.008 |
Urinary N, g/d | 43.1 | 37.0 | 31.8 | 7.34 | 0.568 |
Urinary N, % of N intake | 41.9 | 27.2 | 25.1 | 6.21 | 0.149 |
Faecal N + Urinary N, g/d | 73.6 | 81.2 | 71.5 | 7.66 | 0.652 |
Faecal N + Urinary N, % of N intake | 71.6 | 60.7 | 55.8 | 6.43 | 0.247 |
Milk protein efficiency, % | 25.9 | 24.4 | 22.9 | 2.13 | 0.221 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karunanayaka, W.; Nayananjalie, D.; Appuhamy, R.; Adikari, J.; Weerasingha, V.; Kumari, A.; Somasiri, S.; Liyanage, R.; Mangalika, P.; Sundarabarathy, T. Effect of TMR Briquettes on Milk Production, Nutrient Digestibility, and Manure Excretions of Dairy Cows in the Dry Zone of Sri Lanka. Animals 2022, 12, 932. https://doi.org/10.3390/ani12070932
Karunanayaka W, Nayananjalie D, Appuhamy R, Adikari J, Weerasingha V, Kumari A, Somasiri S, Liyanage R, Mangalika P, Sundarabarathy T. Effect of TMR Briquettes on Milk Production, Nutrient Digestibility, and Manure Excretions of Dairy Cows in the Dry Zone of Sri Lanka. Animals. 2022; 12(7):932. https://doi.org/10.3390/ani12070932
Chicago/Turabian StyleKarunanayaka, Wishma, Deepthi Nayananjalie, Ranga Appuhamy, Jayantha Adikari, Viraj Weerasingha, Amali Kumari, Sharini Somasiri, Ridma Liyanage, Priyani Mangalika, and Thenmoli Sundarabarathy. 2022. "Effect of TMR Briquettes on Milk Production, Nutrient Digestibility, and Manure Excretions of Dairy Cows in the Dry Zone of Sri Lanka" Animals 12, no. 7: 932. https://doi.org/10.3390/ani12070932
APA StyleKarunanayaka, W., Nayananjalie, D., Appuhamy, R., Adikari, J., Weerasingha, V., Kumari, A., Somasiri, S., Liyanage, R., Mangalika, P., & Sundarabarathy, T. (2022). Effect of TMR Briquettes on Milk Production, Nutrient Digestibility, and Manure Excretions of Dairy Cows in the Dry Zone of Sri Lanka. Animals, 12(7), 932. https://doi.org/10.3390/ani12070932