Ruminal Microbial Degradation of Individual Amino Acids from Heat-Treated Soyabean Meal and Corn Gluten Meal in Continuous Culture
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Diets and Treatments
2.2. Continuous Culture System
2.3. Sample Collection
2.4. Chemical Analyses
2.5. Calculations and Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- NASEM. Nutrient Requirements of Dairy Cattle, 8th ed.; NRC, National Academy Press: Washington, DC, USA, 2021. [Google Scholar]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; NRC, National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Noziere, P.; Sauvant, D.; Delaby, L. INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Van Amburgh, M.E.; Foskolos, A.; Collao-Saenz, E.A.; Higgs, R.J.; Ross, D.A. Updating the CNCPS Feed Library with New Feed Amino Acid Profiles and Efficiencies of Use: Evaluation of Model Predictions—Version 6.5. 2013. Available online: https://ecommons.cornell.edu/bitstream/handle/1813/36493/CNC2013_VanAmburgh_m.pdf?sequence=1 (accessed on 6 March 2022).
- Higgs, R.J.; Chase, L.E.; Ross, D.A.; Van Amburgh, M.E. Updating the Cornell Net Carbohydrate and Protein System feed library and analyzing model sensitivity to feed inputs. J. Dairy Sci. 2015, 98, 6340–6360. [Google Scholar] [CrossRef] [PubMed]
- Susmel, P.; Stefanon, B.; Mills, C.R.; Candido, M. Change in amino acid composition of different protein sources after rumen incubation. Anim. Sci. 1989, 49, 375–383. [Google Scholar] [CrossRef]
- Erasmus, L.J.; Botha, P.M.; Cruywagen, C.W.; Meissner, H.H. Amino Acid Profile and Intestinal Digestibility in Dairy Cows of Rumen-Undegradable Protein from Various Feedstuffs. J. Dairy Sci. 1994, 77, 541–551. [Google Scholar] [CrossRef]
- Boucher, S.E.; Calsamiglia, S.; Parsons, C.M.; Stein, H.H.; Stern, M.D.; Erickson, P.S.; Utterback, P.L.; Schwab, C.G. Intestinal digestibility of amino acids in rumen undegradable protein estimated using a precision-fed rooster bioassay: I. Soybean meal and SoyPlus. J. Dairy Sci. 2009, 92, 4489–4498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harstad, O.M.; Prestløkken, E. Rumen degradability and intestinal indigestibility of individual amino acids in corn gluten meal, canola meal and fish meal determined in situ. Anim. Feed Sci. Technol. 2001, 94, 127–135. [Google Scholar] [CrossRef]
- Harstad, O.M.; Prestløkken, E. Effective rumen degradability and intestinal indigestibility of individual amino acids in solvent-extracted soybean meal (SBM) and xylose-treated SBM (SoyPass) determined in situ. Anim. Feed Sci. Technol. 2000, 83, 31–47. [Google Scholar] [CrossRef]
- White, R.R.; Kononoff, P.J.; Firkins, J.L. Technical note: Methodological and feed factors affecting prediction of ruminal degradability and intestinal digestibility of essential amino acids. J. Dairy Sci. 2017, 100, 1946–1950. [Google Scholar] [CrossRef] [Green Version]
- González, J.; Arroyo, J.M.; Guevara-González, J.A.; Mouhbi, R.; Piquer, O.; Moya, V.J. Amino acid availability in ruminants of cereals and cereal co-products. J. Sci. Food Agric. 2014, 94, 2448–2455. [Google Scholar] [CrossRef] [Green Version]
- Titgemeyer, E.C.; Merchen, N.R.; Berger, L.L. Evaluation of Soybean Meal, Corn Gluten Meal, Blood Meal and Fish Meal as Sources of Nitrogen and Amino Acids Disappearing from the Small Intestine of Steers. J. Anim. Sci. 1989, 67, 262–275. [Google Scholar] [CrossRef]
- Gargallo, S.; Ferret, A.; Calsamiglia, S. Estimating degradation of individual essential amino acids in fish meal and blood meal by rumen microbes in a dual-flow continuous-culture system. J. Dairy Sci. 2020, 103, 6209–6217. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Stern, M.D.; Firkins, J.L. Effects of protein source on nitrogen metabolism in continuous culture and intestinal digestion in vitro. J. Anim. Sci. 1995, 73, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Devant, M.; Ferret, A.; Calsamiglia, S.; Casals, R.; Gasa, J. Effect of nitrogen source in high-concentrate, low-protein beef cattle diets on microbial fermentation studied in vivo and in vitro. J. Anim. Sci. 2001, 79, 1944–1953. [Google Scholar] [CrossRef] [PubMed]
- Stern, M.D.; Hoover, W.H. The dual flow continuous culture system. In Procedures of Continuous Culture Fermenters: Frustration or Fermentation; Northwest ADSA-ASAS Regional Meeting: Chazy, NY, USA, 1990; pp. 17–32. [Google Scholar]
- Olubobokun, J.A.; Craig, W.M. Quantity and characteristics of microorganisms associated with ruminal fluid or particles. J. Anim. Sci. 1990, 68, 3360–3370. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, N.L.; Olson, V.M.; Schwab, C.G.; Chesbro, W.R.; Cunningham, K.D.; Lykos, T. Improved techniques for dissociating particle-associated mixed ruminal microorganisms from ruminal digesta solids2. J. Anim. Sci. 1994, 72, 1335–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minato, H.; Suto, T. Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached thereform. J. Gen. Appl. Microbiol. 1978, 24, 1–16. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 15th ed.; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified Reagents for Determination of Urea and Ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Balcells, J.; Guada, J.A.; Peiró, J.M.; Parker, D.S. Simultaneous determination of allantoin and oxypurines in biological fluids by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1992, 575, 153–157. [Google Scholar] [CrossRef]
- Jouany, J.P. Volatile fatty acids and alcohol determination in digestive contents, silage juice, bacterial cultures and anaerobic fermentor contents. Sci. Alim. 1982, 2, 131–144. [Google Scholar]
- Vendrell, J.; Aviles, F.X. Complete amino acid analysis of proteins by dabsyl derivatization and reversed-phase liquid chromatogrphy. J. Chromatogr. A 1986, 358, 401–413. [Google Scholar] [CrossRef]
- Garrett, J.E.; Goodrich, R.D.; Stern, M.D.; Meiske, J.C. Rate of protein degradation and nutrient digestion of various nitrogen sources in continuous culture of rumen contents. Can. J. Anim. Sci. 1987, 67, 745–756. [Google Scholar] [CrossRef]
- Waltz, D.M.; Stern, M.D. Evaluation of various methods for protecting soya-bean protein from degradation by rumen bacteria. Anim. Feed Sci. Technol. 1989, 25, 111–122. [Google Scholar] [CrossRef]
- Cecava, M.J.; Merchen, N.R.; Berger, L.L.; Fahey, G.C., Jr. Intestinal supply of amino acids in sheep fed alkaline hydrogen peroxide-treated wheat straw-based diets supplemented with soybean meal or combinations of corn gluten meal and blood meal. J. Anim. Sci. 1990, 68, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Blake, W.L.; Stern, M.D. Influence of Protein Source on Amino Acid Profile of Effluent Flowing from Continuous Culture of Ruminal Contents. J. Anim. Sci. 1988, 66, 2284–2298. [Google Scholar] [CrossRef]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Windschitl, P.M.; Stern, M.D. Evaluation of Calcium Lignosulfonate-Treated Soybean Meal as a Source of Rumen Protected Protein for Dairy Cattle. J. Dairy Sci. 1988, 71, 3310–3322. [Google Scholar] [CrossRef]
- Koeln, L.L.; Paterson, J.A. Nitrogen Balance and Amino Acid Disappearance from the Small Intestine in Calves Fed Soybean Meal-, Toasted Soybean Meal- or Corn Gluten Meal-Supplemented Diets3. J. Anim. Sci. 1986, 63, 1258–1266. [Google Scholar] [CrossRef]
- Clark, J.H.; Klusmeyer, T.H.; Cameron, M.R. Microbial Protein Synthesis and Flows of Nitrogen Fractions to the Duodenum of Dairy Cows. J. Dairy Sci. 1992, 75, 2304–2323. [Google Scholar] [CrossRef]
- McAllan, A.B.; Smith, R.H. Degradation of nucleic acids in the rumen. Br. J. Nutr. 1973, 29, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Calsamiglia, S.; Stern, M.D.; Firkins, J.L. Comparison of nitrogen-15 and purines as microbial markers in continuous culture. J. Anim. Sci. 1996, 74, 1375–1381. [Google Scholar] [CrossRef] [Green Version]
- Coomer, J.C.; Amos, H.E.; Froetschel, M.A.; Ragland, K.K.; Williams, C.C. Effects of supplemental protein source on ruminal fermentation, protein degradation, and amino acid absorption in steers and on growth and feed efficiency in steers and heifers. J. Anim. Sci. 1993, 71, 3078–3086. [Google Scholar] [CrossRef] [PubMed]
- Keery, C.M.; Amos, H.E.; Froetschel, M.A. Effects of Supplemental Protein Source on lntraruminal Fermentation, Protein Degradation, and Amino Acid Absorption. J. Dairy Sci. 1993, 76, 514–524. [Google Scholar] [CrossRef]
- Santos, K.A.; Stern, M.D.; Satter, L.D. Protein Degradation in the Rumen and Amino Acid Absorption in the Small Intestine of Lactating Dairy Cattle Fed Various Protein Sources. J. Anim. Sci. 1984, 58, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Stern, M.D.; Rode, L.M.; Prange, R.W.; Stauffacher, R.H.; Satter, L.D. Ruminal Protein Degradation of Corn Gluten Meal in Lactating Dairy Cattle Fitted with Duodenal T-Type Cannulae. J. Anim. Sci. 1983, 56, 194–205. [Google Scholar] [CrossRef]
- King, K.J.; Huber, J.T.; Sadik, M.; Bergen, W.G.; Grant, A.L.; King, V.L. Influence of Dietary Protein Sources on the Amino Acid Profiles Available for Digestion and Metabolism in Lactating Cows. J. Dairy Sci. 1990, 73, 3208–3216. [Google Scholar] [CrossRef]
- O’Mara, F.P.; Murphy, J.J.; Rath, M. The amino acid composition of protein feedstuffs before and after ruminal incubation and after subsequent passage through the intestines of dairy cows. J. Anim. Sci. 1997, 75, 1941–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crooker, B.A.; Clark, J.H.; Shanks, R.D.; Fahey, G.C., Jr. Effects of ruminal exposure on the amino acid profile of feeds. Can. J. Anim. Sci. 1987, 67, 1143–1148. [Google Scholar] [CrossRef]
- Chalupa, W. Degradation of Amino Acids by the Mixed Rumen Microbial Population. J. Anim. Sci. 1976, 43, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Piepenbrink, M.S.; Schingoethe, D.J. Ruminal Degradation, Amino Acid Composition, and Estimated Intestinal Digestibilities of Four Protein Supplements. J. Dairy Sci. 1998, 81, 454–461. [Google Scholar] [CrossRef]
- Rulquin, H.; Vérité, R. Amino acid nutrition of dairy cows: Productive effects and animal requirements. In Recent Advances in Animal Nutrition; Garnsworthy, P.C., Cole, D.J.A., Eds.; Nottingham University Press: Nottingham, UK, 1993; pp. 55–77. [Google Scholar]
Diet | ||||||||
---|---|---|---|---|---|---|---|---|
Item | HSBM-0 | HSBM-33 | HSBM-67 | HSBM-100 | CGM-0 | CGM-33 | CGM-67 | CGM-100 |
Ingredients | 71.2 | 71.2 | 71.2 | 71.2 | 71.2 | 71.2 | 71.2 | 71.2 |
Basal mix † | - | 9.5 | 19.0 | 28.4 | - | - | - | - |
HSBM ‡ | - | - | - | - | - | 7.14 | 14.2 | 21.2 |
CGM § | 3.38 | 2.17 | 1.12 | - | 3.43 | 2.90 | 1.86 | 0.91 |
Wheat straw | 10.5 | 7.02 | 3.38 | - | 10.5 | 7.02 | 3.49 | - |
Tryptone | 2.11 | 1.43 | 0.68 | - | 2.06 | 1.37 | 0.71 | - |
Urea | 11.9 | 7.88 | 3.90 | - | 11.9 | 9.47 | 7.64 | 5.72 |
Starch | 1.03 | 0.90 | 0.82 | 0.40 | 1.01 | 0.90 | 0.90 | 1.07 |
Limestone | ||||||||
Analyses | ||||||||
CP †† | 21.7 | 22.0 | 21.8 | 22.1 | 21.7 | 21.8 | 21.9 | 21.8 |
NDF ‡‡ | 33.8 | 34.7 | 36.9 | 38.8 | 33.8 | 35.1 | 31.9 | 30.9 |
ADF §§ | 20.2 | 19.9 | 20.6 | 21.4 | 20.2 | 21.0 | 18.9 | 18.4 |
NFC ¥ | 31.0 | 30.8 | 29.3 | 28.2 | 31.0 | 30.6 | 32.7 | 33.8 |
Amino Acid | HSBM | CGM |
---|---|---|
Asp | 6.8 | 1.61 |
Glu | 13 | 8.37 |
Ser | 6.51 | 5.47 |
Thr | 5.1 | 4.11 |
Gly | 5.11 | 3.35 |
Ala | 5.69 | 8.66 |
Arg | 8.32 | 3.53 |
Pro | 5.76 | 10.6 |
Val | 6.85 | 7.11 |
Met | 1.53 | 2.9 |
Ile | 7.11 | 7.31 |
Leu | 10.3 | 22.9 |
Phe | 6.28 | 8.55 |
Lys | 7.23 | 2.51 |
His | 2.93 | 1.6 |
Tyr | 1.52 | 1.41 |
Essential † | 55.6 | 60.5 |
Nonessential ‡ | 44.4 | 39.5 |
Total | 100 | 100 |
HSBM | CGM | P < † | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | 0 | 33 | 67 | 100 | 0 | 33 | 67 | 100 | SEM | P | LL | LQ | PxD |
OMTF, % ‡ | 58.2 | 55.9 | 52.2 | 51 | 54.7 | 52.1 | 52.1 | 48.6 | 1.36 | 0.01 | 0.01 | NS | NS |
aNDFom fermented, % § | 35.2 | 34 | 33.5 | 33.8 | 25 | 30.3 | 31.6 | 29.2 | 2.5 | 0.05 | NS | NS | NS |
Total VFA, mM ¥ | 101 | 95.8 | 91.6 | 95 | 94.5 | 91.8 | 100 | 90.3 | 3.65 | NS | NS | NS | NS |
BCVFA, mM †† | 5.21 | 4.16 | 3.19 | 3.23 | 4.71 | 4.29 | 4.11 | 3.92 | 0.26 | NS | 0.01 | NS | 0.02 |
Acetate, mol/100 mol | 58.7 | 59.8 | 58.8 | 61.3 | 56.2 | 59.3 | 61.3 | 58.7 | 1.25 | NS | NS | NS | NS |
Propionate, mol/100 mol | 22 | 21.1 | 22.2 | 21 | 23.1 | 21.4 | 21.6 | 21.9 | 0.98 | NS | NS | NS | NS |
Butyrate, mol/100 mol | 9.8 | 10.5 | 11.2 | 10.6 | 11 | 10.4 | 9.2 | 11.3 | 0.6 | NS | NS | NS | NS |
HSBM | CGM | P< † | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | 0 | 33 | 67 | 100 | 0 | 33 | 67 | 100 | SEM | P | LL | LQ | PxD |
Ammonia-N, mg/dl | 46.3 | 32.7 | 23.7 | 15.6 | 47.6 | 31.9 | 23.2 | 12.5 | 1.13 | NS | 0.01 | 0.01 | NS |
Ammonia flow, g/d | 1.45 | 1.03 | 0.75 | 0.5 | 1.51 | 1.02 | 0.73 | 0.4 | 0.03 | NS | 0.01 | NS | NS |
Nonammonia flow, g/d | 2.46 | 2.98 | 3.44 | 3.59 | 2.53 | 3.09 | 3.33 | 3.58 | 0.05 | NS | 0.01 | 0.01 | NS |
Microbial flow, g/d | 1.03 | 1 | 1.23 | 1.27 | 1.1 | 1.04 | 1.09 | 0.99 | 0.05 | NS | NS | NS | 0.01 |
Dietary flow, g/d | 1.43 | 1.98 | 2.22 | 2.32 | 1.42 | 2.05 | 2.24 | 2.6 | 0.07 | NS | 0.01 | 0.01 | NS |
Protein degradation, % | 57.2 | 41.6 | 33.9 | 32.1 | 57.2 | 38.7 | 33.4 | 23.3 | 2.02 | NS | 0.01 | 0.01 | NS |
EMPS ‡, g of N/kg OMTD | 24.1 | 24.9 | 33.9 | 35.2 | 28.5 | 28.9 | 29.6 | 28.5 | 1.58 | 0.01 | 0.01 | 0.01 | 0.01 |
HSBM | CGM | P < † | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amino Acid | 0 | 33 | 67 | 100 | 0 | 33 | 67 | 100 | SEM | P | LL | LQ | PxD |
Asp | 1.53 | 1.91 | 2.44 | 2.71 | 1.53 | 1.99 | 1.96 | 2.18 | 0.12 | NS | 0.01 | NS | 0.01 |
Glu | 1.97 | 2.37 | 3.15 | 3.5 | 1.97 | 3.47 | 3.59 | 4.66 | 0.181 | 0.01 | 0.01 | NS | NS |
Ser | 0.75 | 0.89 | 1.15 | 1.27 | 0.75 | 1.13 | 1.2 | 1.43 | 0.05 | 0.01 | 0.01 | NS | NS |
Thr | 0.77 | 0.89 | 1.12 | 1.2 | 0.77 | 1.05 | 1.07 | 1.18 | 0.037 | NS | 0.01 | NS | NS |
Gly | 0.75 | 0.9 | 1.12 | 1.2 | 0.75 | 0.98 | 0.98 | 1.07 | 0.044 | NS | 0.01 | NS | NS |
Ala | 1.2 | 1.43 | 1.55 | 1.69 | 1.2 | 1.93 | 1.97 | 2.6 | 0.093 | NS | 0.01 | NS | 0.01 |
Arg | 0.65 | 0.89 | 1.18 | 1.25 | 0.65 | 0.88 | 0.89 | 0.99 | 0.041 | NS | 0.01 | NS | 0.03 |
Pro | 0.71 | 0.8 | 0.95 | 1.04 | 0.71 | 1.25 | 1.3 | 1.7 | 0.073 | NS | 0.01 | NS | 0.03 |
Val | 0.91 | 1.03 | 1.34 | 1.44 | 0.91 | 1.26 | 1.27 | 1.5 | 0.044 | NS | 0.01 | NS | NS |
Met | 0.25 | 0.3 | 0.37 | 0.4 | 0.25 | 0.4 | 0.4 | 0.41 | 0.027 | NS | 0.01 | NS | NS |
Ile | 0.75 | 0.88 | 1.21 | 1.31 | 0.75 | 1.09 | 1.1 | 1.34 | 0.048 | NS | 0.01 | NS | NS |
Leu | 1.14 | 1.33 | 1.75 | 1.91 | 1.14 | 2.3 | 2.47 | 3.4 | 0.138 | NS | 0.01 | NS | 0.01 |
Phe | 0.62 | 0.77 | 1.01 | 1.12 | 0.62 | 1.05 | 1.08 | 1.35 | 0.056 | 0.01 | 0.01 | NS | NS |
Lys | 0.78 | 0.88 | 1.15 | 1.18 | 0.78 | 0.93 | 0.85 | 0.83 | 0.032 | 0.01 | 0.01 | NS | NS |
His | 0.2 | 0.26 | 0.39 | 0.39 | 0.2 | 0.33 | 0.32 | 0.41 | 0.016 | NS | 0.01 | NS | NS |
Tyr | 0.57 | 0.67 | 0.89 | 0.87 | 0.57 | 0.95 | 0.96 | 1.24 | 0.044 | 0.01 | 0.01 | NS | NS |
Essential ‡ | 6.06 | 7.24 | 9.51 | 10.21 | 6.06 | 9.28 | 9.44 | 11.4 | 0.369 | 0.04 | 0.01 | NS | NS |
Nonessential § | 7.48 | 8.97 | 11.26 | 12.29 | 7.48 | 11.7 | 11.96 | 14.88 | 0.526 | 0.01 | 0.01 | NS | NS |
Total | 13.54 | 16.21 | 20.77 | 22.49 | 13.54 | 20.98 | 21.4 | 26.28 | 0.873 | 0.01 | 0.01 | NS | NS |
Amino Acid | HSBM | CGM |
---|---|---|
Essential | 6044 (±661.2) + 0.91 (±0.129) x | 6615 (±661.0) + 0.87 * (±0.111) x |
Arg | 676 (±94.2) + 0.88 (±0.093) x | 696 (±94.2) + 0.94 (±0.205) x |
His | 207 (±22.7) + 0.80 (±0.118) x | 223 (±22.7) + 1.21 (±0.203) x |
Ile | 737 (±85.1) + 0.97 (±0.123) x | 804 (±85.0) + 0.77 * (±0.112) x |
Leu | 1121 (±135.7) + 0.92 (±0.235) x | 1282 (±165.6) + 0.98 (±0.99) x |
Lys | 777 (±103.5) + 0.70 * (±0.094) x | 836 (±103.5) + 0.09 * (±0.253) x |
Met | 248 (±33.5) + 1.22 (±0.311) x | 289 (±33.5) + 0.55 * (±0.153) x |
Phe | 619 (±56.3) + 0.95 (±0.155) x | 691 (±56.3) + 0.84 (±0.107) x |
Thr | 764 (±31.1) + 1.04 (±0.135) x | 866 (±61.1) + 1.00 (±0.157) x |
Val | 893 (±90.2) + 0.96 (±0.125) x | 966 (±90.2) + 0.81 (±0.113) x |
Nonessential | 7487 (±774.4) 1.30 (±0.213) x | 8134 (±744.2) + 1.84 * (±0.225) x |
Ala | 1278 (±124.4) + 0.97 (±0.291) x | 1288 (±124) + 1.58 * (±0.179) x |
Asp | 1537 (±154.9) + 2.07 * (±0.271) x | 1629 (±158.9) + 3.86 * (±1.071) x |
Glu | 1934 (±237.9) + 1.43 (±0.252) x | 2189 (±237.9) +3.18 * (±0.367) x |
Gly | 760 (±68.3) + 1.06 (±0.140) x | 803 (±68.3) + 0.91 (±0.201) x |
Pro | 703 (±74.5) + 0.69 * (±0.214) x | 784 (±74.4) + 0.92 (±0.109) x |
Ser | 744 (±66.5) + 0.96 (±0.132) x | 812 (±66.5) + 1.25 (±0.147) x |
Tyr | 583 (±96.2) + 2.57 * (±0.592) x | 629 (±96.2) + 4.61 * (±0.60) x |
Total AA | 13531 (±1426) + 1.09 (±0.164) x | 14749 (±1426) + 1.25 (±0.153) x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gargallo, S.; Ferret, A.; Calsamiglia, S. Ruminal Microbial Degradation of Individual Amino Acids from Heat-Treated Soyabean Meal and Corn Gluten Meal in Continuous Culture. Animals 2022, 12, 688. https://doi.org/10.3390/ani12060688
Gargallo S, Ferret A, Calsamiglia S. Ruminal Microbial Degradation of Individual Amino Acids from Heat-Treated Soyabean Meal and Corn Gluten Meal in Continuous Culture. Animals. 2022; 12(6):688. https://doi.org/10.3390/ani12060688
Chicago/Turabian StyleGargallo, Silvia, Alfred Ferret, and Sergio Calsamiglia. 2022. "Ruminal Microbial Degradation of Individual Amino Acids from Heat-Treated Soyabean Meal and Corn Gluten Meal in Continuous Culture" Animals 12, no. 6: 688. https://doi.org/10.3390/ani12060688
APA StyleGargallo, S., Ferret, A., & Calsamiglia, S. (2022). Ruminal Microbial Degradation of Individual Amino Acids from Heat-Treated Soyabean Meal and Corn Gluten Meal in Continuous Culture. Animals, 12(6), 688. https://doi.org/10.3390/ani12060688