Is the Weight of the Newborn Puppy Related to Its Thermal Balance?
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Facilities
2.2. Study Population
2.3. Infrared Thermography
2.4. Statistical Analysis
- Within subjects’ factor: 7 levels or times: (1) Wet; (2) Dry; (3) Colostrum; (4) 30 min; (5) 1 h; (6) 4 h; (7) 24 h.
- Between subjects’ factor: quartiles (4 levels): (1) Quartile 1 (Q1): 126–226 g n = 73; (2) Quartile 2 (Q2): 227–330 g n = 72; (3) Quartile 3 (Q3): 331–387 g n = 74; (4) Quartile 4 (Q4): 388–452 g n = 70.
- Interaction between factors: groups.
2.5. Ethical Statement
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tortora, G.; Derrickson, B. Principios de anatomía y fisiología. In Principios de Anatomía y Fisiología; Tortora, G., Derrickson, B., Eds.; Médica Panamericana: Madrid, Spain, 2013; pp. 1048–1051. [Google Scholar]
- Arfuso, F.; Acri, G.; Piccione, G.; Sansotta, C.; Fazio, F.; Giudice, E.; Giannetto, C. Eye surface infrared thermography usefulness as a noninvasive method of measuring stress response in sheep during shearing: Correlations with serum cortisol and rectal temperature values. Physiol. Behav. 2022, 250, 113781. [Google Scholar] [CrossRef] [PubMed]
- Gianesella, M.; Arfuso, F.; Fiore, E.; Giambelluca, S.; Giudice, E.; Armato, L.; Piccione, G. Infrared thermography as a rapid and non-invasive diagnostic tool to detect inflammatory foot diseases in dairy cows. Pol. J. Vet. Sci. 2018, 21, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Arfuso, F.; Rizzo, M.; Giannetto, C.; Giudice, E.; Fazio, F.; Piccione, G. Age-related changes of serum mitochondrial uncoupling 1, rumen and rectal temperature in goats. J. Therm. Biol. 2016, 59, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.; Arfuso, F.; Alberghina, D.; Giudice, E.; Gianesella, M.; Piccione, G. Monitoring changes in body surface temperature associated with treadmill exercise in dogs by use of infrared methodology. J. Therm. Biol. 2017, 69, 64–68. [Google Scholar] [CrossRef]
- Lezama-García, K.; Mota-Rojas, D.; Pereira, A.M.F.; Martínez-Burnes, J.; Ghezzi, M.; Domínguez, A.; Gómez, J.; de Mira Geraldo, A.; Lendez, P.; Hernández-Ávalos, I.; et al. Transient receptor potential (TRP) and thermoregulation in animals: Structural biology and neurophysiological aspects. Animals 2022, 12, 106. [Google Scholar] [CrossRef]
- Bertoni, A.; Mota-Rojas, D.; Álvarez-Macias, A.; Mora-Medina, P.; Guerrero-Legarreta, I.; Morales-Canela, A.; Gómez-Prado, J.; José-Pérez, N.; Martínez-Burnes, J. Scientific findings related to changes in vascular microcirculation using infrared thermography in the river buffalo. J. Anim. Behav. Biometeorol. 2020, 8, 288–297. [Google Scholar] [CrossRef]
- Andrade, D.V. Thermal windows and heat exchange. Temperature 2015, 2, 451. [Google Scholar] [CrossRef]
- Villanueva-García, D.; Mota-Rojas, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Mora-Medina, P.; Salmerón, C.; Gómez, J.; Boscato, L.; Gutiérrez-Pérez, O.; Cruz, V.; et al. Hypothermia in newly born piglets: Mechanisms of thermoregulation and pathophysiology of death. J. Anim. Behav. Biometeorol. 2021, 9, 2101. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; López, A.; Martínez-Burnes, J.; Muns, R.; Villanueva-García, D.; Mora-Medina, P.; González-Lozano, M.; Olmos-Hernández, A.; Ramírez-Necoechea, R. Is vitality assessment important in neonatal animals? CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2018, 13, 1–13. [Google Scholar] [CrossRef]
- Uchanska, O.; Ochota, M.; Eberhardt, M.; Nizanski, W. Dead or Alive? A review of perinatal factors that determine canine neonatal viability. Animals 2022, 12, 1402. [Google Scholar] [CrossRef]
- Houška, L.; Wolfová, M.; Nagy, I.; Csörnyei, Z.; Komlósi, I. Economic values for traits of pigs in Hungary. Czech J. Anim. Sci. 2010, 55, 139–148. [Google Scholar] [CrossRef]
- Veronesi, M.C. Assessment of canine neonatal viability-the Apgar score. Reprod. Domest. Anim. 2016, 51, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, M.C.; Panzani, S.; Faustini, M.; Rota, A. An Apgar scoring system for routine assessment of newborn puppy viability and short-term survival prognosis. Theriogenology 2009, 72, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Chastant-Maillard, S.; Guillemot, C.; Feugier, A.; Mariani, C.; Grellet, A.; Mila, H. Reproductive performance and pre-weaning mortality: Preliminary analysis of 27,221 purebred female dogs and 204,537 puppies in France. Reprod. Domest. Anim. 2017, 52, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Pereira, A.M.F.; Wang, D.; Martínez-Burnes, J.; Ghezzi, M.; Hernández-Avalos, I.; Lendez, P.; Mora-Medina, P.; Casas, A.; Olmos-Hernández, A.; et al. Clinical applications and factors involved in validating thermal windows used in infrared thermography in cattle and river buffalo to assess health and productivity. Animals 2021, 11, 2247. [Google Scholar] [CrossRef]
- Martínez-Burnes, J.; Muns, R.; Barrios-García, H.; Villanueva-García, D.; Domínguez-Oliva, A.; Mota-Rojas, D. Parturition in mammals: Animal models, pain and distress. Animals 2021, 11, 2960. [Google Scholar] [CrossRef]
- Hillman, N.H.; Kallapur, S.G.; Jobe, A.H. Physiology of transition from intrauterine to extrauterine life. Clin. Perinatol. 2012, 39, 769–783. [Google Scholar] [CrossRef]
- Lawler, D.F. Neonatal and pediatric care of the puppy and kitten. Theriogenology 2008, 70, 384–392. [Google Scholar] [CrossRef]
- Lezama-García, K.; Mota-Rojas, D.; Martínez-Burnes, J.; Villanueva-García, D.; Domínguez-Oliva, A.; Gómez-Prado, J.; Mora-Medina, P.; Casas-Alvarado, A.; Olmos-Hernández, A.; Soto, P.; et al. Strategies for hypothermia compensation in altricial and precocial newborn mammals and their monitoring by infrared thermography. Vet. Sci. 2022, 9, 246. [Google Scholar] [CrossRef]
- Münnich, A.; Küchenmeister, U. Causes, diagnosis and therapy of common diseases in neonatal puppies in the first days of life: Cornerstones of practical approach. Reprod. Domest. Anim. 2014, 49, 64–74. [Google Scholar] [CrossRef]
- Fix, J.S. Relationship of Piglet Birth Weight with Growth, Efficiency, Composition, and Mortality. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2010. [Google Scholar]
- Mota-Rojas, D.; Wang, D.; Titto, C.G.; Martínez-Burnes, J.; Villanueva-García, D.; Lezama-García, K.; Domínguez, A.; Hernández-Avalos, I.; Mora-Medina, P.; Verduzco, A.; et al. Neonatal infrared thermography images in the hypothermic ruminant model: Anatomical-morphological physiological aspects and mechanisms for thermoregulation. Front. Vet. Sci. 2022, 9, 963205. [Google Scholar] [CrossRef] [PubMed]
- Groppetti, D.; Ravasio, G.; Bronzo, V.; Pecile, A. The role of birth weight on litter size and mortality within 24 h of life in purebred dogs: What aspects are involved? Anim. Reprod. Sci. 2015, 163, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Mila, H.; Grellet, A.; Feugier, A.; Chastant-Maillard, S. Differential impact of birth weight and early growth on neonatal mortality in puppies. J. Anim. Sci. 2015, 93, 4436–4442. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Sotelo, B.; Mota-Rojas, D.; Mora-Medina, P.; Ogi, A.; Mariti, C.; Olmos-Hernández, A.; Martínez-Burnes, J.; Hernández-Ávalos, I.; Sánchez-Millán, J.; Gazzano, A. Blood biomarker profile alterations in newborn canines: Effect of the mother′s weight. Animals 2021, 11, 2307. [Google Scholar] [CrossRef] [PubMed]
- Plavec, T.; Knific, T.; Slapšak, A.; Raspor, S.; Lukanc, B.; Pipan, M.Z. Canine neonatal assessment by vitality score, amniotic fluid, urine, and umbilical cord blood analysis of glucose, lactate, and cortisol: Possible influence of parturition type? Animals 2022, 12, 1247. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-de la Fuente, V.; Wang, D. Physiological and behavioral mechanisms of thermoregulation in mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef]
- Casas-Alvarado, A.; Martínez-Burnes, J.; Mora-Medina, P.; Hernández-Avalos, I.; Domínguez-Oliva, A.; Lezama-García, K.; Gómez-Prado, J.; Mota-Rojas, D. Thermal and circulatory changes in diverse body regions in dogs and cats evaluated by infrared thermography. Animals 2022, 12, 789. [Google Scholar] [CrossRef]
- Reyes-Sotelo, B.; Mota-Rojas, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Hernández-Ávalos, I.; José, N.; Casas-Alvarado, A.; Gómez, J.; Mora-Medina, P. Thermal homeostasis in the newborn puppy: Behavioral and physiological responses. J. Anim. Behav. Biometeorol. 2021, 9, 2112. [Google Scholar] [CrossRef]
- Travain, T.; Colombo, E.S.; Grandi, L.C.; Heinzl, E.; Pelosi, A.; Prato Previde, E.; Valsecchi, P. How good is this food? A study on dogs’ emotional responses to a potentially pleasant event using infrared thermography. Physiol. Behav. 2016, 159, 80–87. [Google Scholar] [CrossRef]
- Mugnier, A.; Mila, H.; Guiraud, F.; Brévaux, J.; Lecarpentier, M.; Martinez, C.; Mariani, C.; Adib-Lesaux, A.; Chastant-Maillard, S.; Saegerman, C.; et al. Birth weight as a risk factor for neonatal mortality: Breed-specific approach to identify at-risk puppies. Prev. Vet. Med. 2019, 171, 104746. [Google Scholar] [CrossRef]
- Tesi, M.; Miragliotta, V.; Scala, L.; Aronica, E.; Lazzarini, G.; Fanelli, D.; Abramo, F.; Rota, A. Relationship between placental characteristics and puppies’ birth weight in toy and small sized dog breeds. Theriogenology 2020, 141, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Boyko, A.R.; Quignon, P.; Li, L.; Schoenebeck, J.J.; Degenhardt, J.D.; Lohmueller, K.E.; Zhao, K.; Brisbin, A.; Parker, H.G.; VonHoldt, B.M.; et al. A Simple genetic architecture underlies morphological variation in dogs. PLoS Biol. 2012, 8, e1000451. [Google Scholar] [CrossRef] [PubMed]
- Lezama-García, K.; Martínez-Burnes, J.; Villanueva-García, D.; Pérez-Jiménez, J.C.; Domínguez-Oliva, A.; Mora-Medina, P.; Hernández-Ávalos, I.; Olmos-Hernández, A.; Mota-Rojas, D. Relation between the dam’s weight on vascular microcirculation and in the temperature of her puppies at different stages post-partum. Vet. Sci. 2022, 9, 673. [Google Scholar] [CrossRef]
- Sherwin, C.M.; Christiansen, S.B.; Duncan, I.J.; Erhard, H.W.; Lay, D.C.; Mench, J.A.; O’Connor, C.E.; Carol Petherick, J. Guidelines for the ethical use of animals in applied ethology studies. Appl. Anim. Behav. Sci. 2003, 81, 291–305. [Google Scholar] [CrossRef]
- Harri, M.; Mononen, J.; Haapanen, K.; Korhonen, H. Postnatal changes in hypothermic response in farm born blue foxes and raccoon dogs. J. Therm. Biol. 1991, 16, 71–76. [Google Scholar] [CrossRef]
- Gómez-Prado, J.; Pereira, A.M.F.; Villanueva-García, D.; Wang, D.; Domínguez-Oliva, A.; Mora-Medina, P.; Hernández-Avalos, I.; Martínez-Burnes, J.; Casas-Alvarado, A.; Olmos-Hernández, A.; et al. Thermoregulation mechanisms and perspectives for validating thermal windows in pigs with hypothermia and hyperthermia: An overview. Front. Vet. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Piccione, G.; Fazio, F.; Giudice, E.; Refinetti, R. Body size and the daily rhythm of body temperature in dogs. J. Therm. Biol. 2009, 34, 171–175. [Google Scholar] [CrossRef]
- Jordan, M.; Bauer, A.; Stella, J.; Croney, C. Temperature Requirements for Dogs. 2022. Available online: https://www.extension.purdue.edu/extmedia/va/va-16-w.pdf (accessed on 1 May 2022).
- Schrank, M.; Mollo, A.; Contiero, B.; Romagnoli, S. Bodyweight at birth and growth rate during the neonatal period in three canine breeds. Animals 2019, 10, 8. [Google Scholar] [CrossRef]
- Rigotti, C.F.; Jolliffe, C.T.; Leece, E.A. Effect of prewarming on the body temperature of small dogs undergoing inhalation anesthesia. J. Am. Vet. Med. Assoc. 2015, 247, 765–770. [Google Scholar] [CrossRef]
- Ewart, S. Homeostasis. In Fisiología Veterinaria; Klein, B.G., Ed.; Elsevier: Barcelona, Spain, 2009; pp. 596–607. [Google Scholar]
- Asakura, H. Fetal and neonatal thermoregulation. J. Nippon Med. Sch. 2004, 71, 360–370. [Google Scholar] [CrossRef]
- Mallet, M.L. Pathophysiology of accidental hypothermia. QJM 2002, 95, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Oncken, A.; Kirby, R.; Rudloff, E. Hypotherma in critically ill dogs and cats. Compend. Contin. Educ. Pract. Vet. 2001, 23, 506–520. [Google Scholar]
- Casas-Alvarado, A.; Mota-Rojas, D.; Hernández-Ávalos, I.; Mora-Medina, P.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Reyes-Sotelo, B.; Martínez-Burnes, J. Advances in infrared thermography: Surgical aspects, vascular changes, and pain monitoring in veterinary medicine. J. Therm. Biol. 2020, 92, 102664. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Martínez-Burnes, J.; Casas-Alvarado, A.; Gómez-Prado, J.; Hernández-Avalos, I.; Domínguez-Oliva, A.; Lezama-García, K.; Jacome-Romero, J.; Rodríguez-González, D.; Pereira, A.M.F. Clinical usefulness of infrared thermography to detect sick animals: Frequent and current cases. CABI Rev. 2022, 22, 1–27. [Google Scholar] [CrossRef]
- Pineda, M.; Dooley, M. McDonald’s Veterinary Endocrinology and Reproduction; Wiley-Blackwell: Hoboken, NJ, USA, 2008; p. 618. [Google Scholar]
- Ogi, A.; Mariti, C.; Pirrone, F.; Baragli, P.; Gazzano, A. The influence of oxytocin on maternal care in lactating dogs. Animals 2021, 11, 1130. [Google Scholar] [CrossRef]
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 30.800 ± | 0.065 b,5 | 30.830 ± | 0.066 b,5 | 30.836 ± | 0.065 a,b,5 | 31.083 ± | 0.067 a,5 |
Dry | 31.621 ± | 0.083 b,4 | 31.637 ± | 0.084 b,4 | 31.740 ± | 0.082 a,b,4 | 32.015 ± | 0.085 a,4 |
Colostrum | 31.964 ± | 0.072 b,3 | 32.073 ± | 0.073 b,3 | 32.186 ± | 0.072 a,b,3 | 32.401 ± | 0.074 a,3 |
30 min AB | 32.929 ± | 0.052 b,2 | 32.905 ± | 0.053 a,b,2 | 33.158 ± | 0.052 a.2 | 33.264 ± | 0.053 a,2 |
1 h AB | 32.901 ± | 0.039 c,2 | 32.958 ± | 0.039 b,c,2 | 33.092 ± | 0.038 b,2 | 33.322 ± | 0.039 a,2 |
4 h AB | 33.025 ± | 0.078 b,2 | 33.065 ± | 0.079 a,b,2 | 33.330 ± | 0.078 a,2 | 33.436 ± | 0.080 a,2 |
24 h AB | 33.600 ± | 0.051 b,1 | 33.723 ± | 0.051 b,1 | 33.923 ± | 0.050 a,1 | 34.066 ± | 0.052 a,1 |
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 28.187 ± | 0.064 c,4 | 28.649 ± | 0.064 b,4 | 28.711 ± | 0.063 b,3 | 29.127 ± | 0.065 a,3 |
Dry | 29.757 ± | 0.059 c,1,2,3 | 30.002 ± | 0.060 b,1,3 | 30.331 ± | 0.059 a,1 | 30.431 ± | 0.060 a,1,2 |
Colostrum | 29.445 ± | 0.076 c,2 | 29.860 ± | 0.077 a,b,2,3 | 30.036 ± | 0.076 a,2 | 30.293 ± | 0.078 a,1,2 |
30 min AB | 29.385 ± | 0.084 b,2 | 29.645 ± | 0.085 a,b,2 | 29.924 ± | 0.084 a,2 | 30.167 ± | 0.086 a,1,2 |
1 h AB | 29.494 ± | 0.144 b,1,2 | 29.619 ± | 0.145 a,b,2 | 29.994 ± | 0.143 a,1,2 | 30.224 ± | 0.148 a,1 |
4 h AB | 29.366 ± | 0.146 b,2 | 29.697 ± | 0.147 a,b,3 | 30.080 ± | 0.145 a,1,2 | 30.377 ± | 0.149 a,1 |
24 h AB | 29.977 ± | 0.107 b,c,1 | 30.281 ± | 0.108 a,1,3 | 30.453 ± | 0.107 a,1 | 30.671 ± | 0.110 a,1 |
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 27.024 ± | 0.062 c,6 | 27.222 ± | 0.062 c,5 | 27.482 ± | 0.061 b,6 | 27.743 ± | 0.063 a,5 |
Dry | 29.858 ± | 0.066 c,3,5 | 30.155 ± | 0.066 b,2,4 | 30.281 ± | 0.065 a,b,2,5 | 30.446 ± | 0.067 a,3 |
Colostrum | 29.028 ± | 0.038 c,4 | 29.255 ± | 0.038 b,3 | 29.344 ± | 0.037 b,4 | 29.742 ± | 0.038 a,4 |
30 min AB | 29.582 ± | 0.081 b,3 | 29.536 ± | 0.082 b,3 | 29.886 ± | 0.081 a,3 | 30.186 ± | 0.083 a,3 |
1 h AB | 30.294 ± | 0.057 b,c,2 | 30.452 ± | 0.057 b,2 | 30.644 ± | 0.056 b,2 | 30.940 ± | 0.058 a,2 |
4 h AB | 30.239 ± | 0.196 b,1,2 | 30.430 ± | 0.197 b,1,2 | 30.664 ± | 0.194 a,b,1,2 | 31.177 ± | 0.200 a,1,2 |
24 h AB | 30.778 ± | 0.086 b,1 | 30.971 ± | 0.086 a,b,1 | 31.271 ± | 0.085 a,1 | 31.543 ± | 0.088 a,1 |
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 28.884 ± | 0.160 a,6 | 28.861 ± | 0.161 a,7 | 29.089 ± | 0.159 a,5 | 29.194 ± | 0.163 a,6 |
Dry | 31.525 ± | 0.042 c,5 | 31.657 ± | 0.042 b,c,6 | 31.806 ± | 0.042 a,b,4 | 31.902 ± | 0.043 a,5 |
Colostrum | 31.718 ± | 0.056 c,4 | 31.904 ± | 0.057 b,c,5 | 31.982 ± | 0.056 a,b,4 | 32.119 ± | 0.057 a,4 |
30 min AB | 32.067 ± | 0.040 c,3 | 32.176 ± | 0.040 c,4 | 32.358 ± | 0.040 b,3 | 32.520 ± | 0.041 a,3 |
1 h AB | 32.218 ± | 0.050 c,3 | 32.380 ± | 0.050 b,c,3 | 32.453 ± | 0.049 a,b,3 | 32.601 ± | 0.051 a,3 |
4 h AB | 32.504 ± | 0.058 c,2 | 32.666 ± | 0.059 b,c,2 | 32.734 ± | 0.058 a,b.2 | 32.910 ± | 0.059 a,2 |
24 h AB | 33.251 ± | 0.048 c,1 | 33.451 ± | 0.048 b,1 | 33.596 ± | 0.048 a,b,1 | 33.705 ± | 0.049 a,1 |
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 29.664 ± | 0.100 a,5 | 29.739 ± | 0.101 a,5 | 29.800 ± | 0.099 a,5 | 29.939 ± | 0.102 a,5 |
Dry | 32.353 ± | 0.039 c,4 | 32.494 ± | 0.039 b,c,4 | 32.608 ± | 0.038 b,4 | 32.764 ± | 0.039 a,4 |
Colostrum | 32.501 ± | 0.063 b,4 | 32.696 ± | 0.063 a,b,4 | 32.708 ± | 0.062 a,b,4 | 32.862 ± | 0.064 a,4 |
30 min AB | 32.836 ± | 0.062 b,3 | 33.007 ± | 0.063 a,b,3 | 33.059 ± | 0.062 a,b,3 | 33.191 ± | 0.064 a,3 |
1 h AB | 32.941 ± | 0.069 b,3 | 33.094 ± | 0.069 a,b,3 | 33.112 ± | 0.068 a,b,3 | 33.337 ± | 0.070 a,3 |
4 h AB | 33.322 ± | 0.071 b,2 | 33.432 ± | 0.072 a,b,2 | 33.438 ± | 0.071 a,b,2 | 33.642 ± | 0.073 a,2 |
24 h AB | 33.788 ± | 0.055 c,1 | 33.995 ± | 0.055 b,1 | 34.087 ± | 0.055 a,b,1 | 34.234 ± | 0.056 a,1 |
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 27.654 ± | 0.055 c,5 | 27.979 ± | 0.055 b,5 | 28.001 ± | 0.055 b,5 | 28.348 ± | 0.056 a,5 |
Dry | 28.670 ± | 0.111 b,3 | 28.826 ± | 0.112 a,b,3,4 | 29.072 ± | 0.111 a,b,3,4 | 29.116 ± | 0.114 a,3 |
Colostrum | 28.020 ± | 0.062 c,4 | 28.280 ± | 0.063 b,4 | 28.515 ± | 0.062 a,4 | 28.714 ± | 0.064 a,4 |
30 min AB | 28.363 ± | 0.097 b,3,4 | 28.535 ± | 0.098 a,b,4 | 28.611 ± | 0.097 a,b,4 | 28.846 ± | 0.099 a,3,4 |
1 h AB | 28.732 ± | 0.081 b,3 | 29.072 ± | 0.081 a,3 | 29.137 ± | 0.080 a,3 | 29.366 ± | 0.082 a,3 |
4 h AB | 29.815 ± | 0.070 b,2 | 30.068 ± | 0.071 a,b,2 | 30.226 ± | 0.070 a,2 | 30.434 ± | 0.072 a,2 |
24 h AB | 30.825 ± | 0.089 b,1 | 31.163 ± | 0.090 a,1 | 31.186 ± | 0.088 a,1 | 31.483 ± | 0.091 a,1 |
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 27.534 ± | 0.051 c,6 | 27.840 ± | 0.051 b,5 | 27.883 ± | 0.050 b,5 | 28.344 ± | 0.052 a,5 |
Dry | 28.439 ± | 0.114 b,3,4 | 28.615 ± | 0.115 a,b,3 | 28.948 ± | 0.113 a,3 | 29.043 ± | 0.116 a,3 |
Colostrum | 27.884 ± | 0.053 d,5 | 28.127 ± | 0.053 c,4 | 28.440 ± | 0.052 b,4 | 28.693 ± | 0.054 a,3,4 |
30 min AB | 28.206 ± | 0.088 c,4 | 28.399 ± | 0.088 b,c,3,4 | 28.543 ± | 0.087 a,b,4 | 28.839 ± | 0.089 a,3,4 |
1 h AB | 28.630 ± | 0.078 c,3 | 28.988 ± | 0.079 b,3 | 29.111 ± | 0.078 b,3 | 29.421 ± | 0.080 a,3 |
4 h AB | 29.567 ± | 0.090 c,2 | 29.876 ± | 0.091 b,c,2 | 30.149 ± | 0.090 a,b,2 | 30.329 ± | 0.092 a,2 |
24 h AB | 30.712 ± | 0.080 c,1 | 31.023 ± | 0.081 b,1 | 31.024 ± | 0.080 b,1 | 31.500 ± | 0.082 a,1 |
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 27.141 ± | 0.049 d,7 | 27.355 ± | 0.049 c,7 | 27.675 ± | 0.049 b,5 | 28.005 ± | 0.050 a,5 |
Dry | 30.798 ± | 0.062 b,6 | 30.993 ± | 0.062 b,6 | 31.341 ± | 0.062 a,4 | 31.351 ± | 0.063 a,3 |
Colostrum | 30.365 ± | 0.066 b,5 | 30.535 ± | 0.067 b,5 | 30.787 ± | 0.066 a,3 | 30.851 ± | 0.068 a,4 |
30 min AB | 31.095 ± | 0.069 c,4 | 31.272 ± | 0.069 b,c,4 | 31.450 ± | 0.068 a,b,4 | 31.565 ± | 0.070 a,2,3 |
1 h AB | 30.093 ± | 0.061 c,3 | 30.239 ± | 0.062 c,3 | 30.540 ± | 0.061 b,3 | 30.895 ± | 0.062 a,2,4 |
4 h AB | 32.149 ± | 0.069 b,2 | 32.415 ± | 0.070 a,2 | 32.615 ± | 0.069 a,2 | 32.485 ± | 0.071 a,1 |
24 h AB | 32.848 ± | 0.081 a,b,1 | 33.094 ± | 0.082 b,1 | 33.012 ± | 0.081 b,1 | 32.594 ± | 0.083 a,1 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.190 | 0.001 |
Dry | 0.189 | 0.001 |
Colostrum | 0.248 | <0.001 |
30 min AB | 0.379 | <0.001 |
1 h AB | 0.444 | <0.001 |
4 h AB | 0.292 | <0.001 |
24 h AB | 0.364 | <0.001 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.542 | <0.001 |
Dry | 0.510 | <0.001 |
Colostrum | 0.423 | <0.001 |
30 min AB | 0.365 | <0.001 |
1 h AB | 0.226 | <0.001 |
4 h AB | 0.353 | <0.001 |
24 h AB | 0.331 | <0.001 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.551 | <0.001 |
Dry | 0.372 | <0.001 |
Colostrum | 0.632 | <0.001 |
30 min AB | 0.315 | <0.001 |
1 h AB | 0.469 | <0.001 |
4 h AB | 0.452 | <0.001 |
24 h AB | 0.353 | <0.001 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.182 | 0.002 |
Dry | 0.409 | <0.001 |
Colostrum | 0.307 | <0.001 |
30 min AB | 0.449 | <0.001 |
1 h AB | 0.337 | <0.001 |
4 h AB | 0.328 | <0.001 |
24 h AB | 0.441 | <0.001 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.146 | 0.013 |
Dry | 0.419 | <0.001 |
Colostrum | 0.258 | <0.001 |
30 min AB | 0.252 | <0.001 |
1 h AB | 0.273 | <0.001 |
4 h AB | 0.205 | <0.001 |
24 h AB | 0.376 | <0.001 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.429 | <0.001 |
Dry | 0.415 | <0.001 |
Colostrum | 0.494 | <0.001 |
30 min AB | 0.224 | <0.001 |
1 h AB | 0.338 | <0.001 |
4 h AB | 0.365 | <0.001 |
24 h AB | 0.292 | <0.001 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.520 | <0.001 |
Dry | 0.444 | <0.001 |
Colostrum | 0.624 | <0.001 |
30 min AB | 0.311 | <0.001 |
1 h AB | 0.397 | <0.001 |
4 h AB | 0.406 | <0.001 |
24 h AB | 0.360 | <0.001 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.651 | <0.001 |
Dry | 0.391 | <0.001 |
Colostrum | 0.429 | <0.001 |
30 min AB | 0.400 | <0.001 |
1 h AB | 0.525 | <0.001 |
4 h AB | 0.259 | <0.001 |
24 h AB | −0.024 | 0.679 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lezama-García, K.; Martínez-Burnes, J.; Marcet-Rius, M.; Gazzano, A.; Olmos-Hernández, A.; Mora-Medina, P.; Domínguez-Oliva, A.; Pereira, A.M.F.; Hernández-Ávalos, I.; Baqueiro-Espinosa, U.; et al. Is the Weight of the Newborn Puppy Related to Its Thermal Balance? Animals 2022, 12, 3536. https://doi.org/10.3390/ani12243536
Lezama-García K, Martínez-Burnes J, Marcet-Rius M, Gazzano A, Olmos-Hernández A, Mora-Medina P, Domínguez-Oliva A, Pereira AMF, Hernández-Ávalos I, Baqueiro-Espinosa U, et al. Is the Weight of the Newborn Puppy Related to Its Thermal Balance? Animals. 2022; 12(24):3536. https://doi.org/10.3390/ani12243536
Chicago/Turabian StyleLezama-García, Karina, Julio Martínez-Burnes, Míriam Marcet-Rius, Angelo Gazzano, Adriana Olmos-Hernández, Patricia Mora-Medina, Adriana Domínguez-Oliva, Alfredo M. F. Pereira, Ismael Hernández-Ávalos, Uri Baqueiro-Espinosa, and et al. 2022. "Is the Weight of the Newborn Puppy Related to Its Thermal Balance?" Animals 12, no. 24: 3536. https://doi.org/10.3390/ani12243536
APA StyleLezama-García, K., Martínez-Burnes, J., Marcet-Rius, M., Gazzano, A., Olmos-Hernández, A., Mora-Medina, P., Domínguez-Oliva, A., Pereira, A. M. F., Hernández-Ávalos, I., Baqueiro-Espinosa, U., Geraldo, A. d. M., Casas-Alvarado, A., & Mota-Rojas, D. (2022). Is the Weight of the Newborn Puppy Related to Its Thermal Balance? Animals, 12(24), 3536. https://doi.org/10.3390/ani12243536