Combined Inclusion of Former Foodstuff and Distiller Grains in Dairy Cows Ration: Effect on Milk Production, Rumen Environment, and Fiber Digestibility
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Samples and Data Collection
FCM = (milk yield × 0.4324) + (milk fat × 16.2162)
100 − (uNDFdiet/uNDFfeces) × (pdNDFfeces/pdNDFdiet) × 100
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Feed Manufacturers Federation (FEFAC). In Proceedings of the EFFPA & FEFAC Welcome Commission Guidelines on Feed Use of Former Foodstuffs. 2018. Available online: https://www.effpa.eu/effpa-fefac-welcome-commisson-guidelines-feed-use-former-foodstuffs/ (accessed on 15 September 2022).
- Flachowsky, G.; Meyer, U. Challenges for Plant Breeders from the View of Animal Nutrition. Agriculture 2015, 5, 1252–1276. [Google Scholar] [CrossRef] [Green Version]
- Buonaiuto, G.; Palmonari, A.; Ghiaccio, F.; Visentin, G.; Cavallini, D.; Campidonico, L.; Formigoni, A.; Mammi, L.M.E. Effects of complete replacement of corn flour with sorghum flour in dairy cows fed Parmigiano Reggiano dry hay-based ration. Ital. J. Anim. Sci. 2021, 20, 826–833. [Google Scholar] [CrossRef]
- Wilkinson, J.M. Re-Defining Efficiency of Feed Use by Livestock. Animal 2011, 5, 1014–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, E.D. Food waste strategy: Feed use of former foodstuffs to minimize waste. In Proceedings of the 55th FEFAC Annual General Meeting “Competitive Livestock Production in Europe from Sustainable Feed Sources”; 2012. Available online: http://www.fefac.eu (accessed on 20 September 2022).
- Jędrejek, D.; Levic, J.; Wallace, J.; Oleszek, W. Animal by-products for feed: Characteristics, European regulatory framework, and potential impacts on human and animal health and the environment. J. Anim. Feed Sci. 2016, 25, 189–202. [Google Scholar] [CrossRef]
- Fausto-Castro, L.; Rivas-García, P.; Gómez-Nafte, J.A.; Rico-Martínez, R.; Rico-Ramírez, V.; Gomez-Gonzalez, R.; Cuarón-Ibargüengoytia, J.A.; Botello-Álvarez, J.E. Selection of food waste with low moisture and high protein content from Mexican restaurants as a supplement to swine feed. J. Clean. Prod. 2020, 256, 120137. [Google Scholar] [CrossRef]
- Luciano, A.; Tretola, M.; Ottoboni, M.; Baldi, A.; Cattaneo, D.; Pinotti, L. Potentials and Challenges of Former Food Products (Food Leftover) as Alternative Feed Ingredients. Animals 2020, 10, 125. [Google Scholar] [CrossRef] [Green Version]
- Pinotti, L.; Luciano, A.; Ottoboni, M.; Manoni, M.; Ferrari, L.; Marchis, D.; Tretola, M. Recycling food leftovers in feed as opportunity to increase the sustainability of livestock production. J. Clean. Prod. 2021, 294, 126290. [Google Scholar] [CrossRef]
- Giromini, C.; Ottoboni, M.; Tretola, M.; Marchis, D.; Gottardo, D.; Caprarulo, V.; Baldi, A.; Pinotti, L. Nutritional evaluation of former food products (ex-food) intended for pig nutrition. Food Addit. Contam. Part A 2017, 34, 1436–1445. [Google Scholar] [CrossRef]
- Tretola, M.; Di Rosa, A.R.; Tirloni, E.; Ottoboni, M.; Giromini, C.; Leone, F.; Bernardi, C.E.M.; Dell’Orto, V.; Chiofalo, V.; Pinotti, L. Former food products safety: Microbiological quality and computer vision evaluation of packaging remnants contamination. Food Addit. Contam. Part A 2017, 34, 1427–1435. [Google Scholar] [CrossRef]
- Pinotti, L.; Ottoboni, M.; Luciano, A.; Savoini, G.; Cattaneo, D.; Tretola, M. Ex-Food in Animal Nutrition: Potentials and Challenges. In Energy and Protein Metabolism and Nutrition; EAAP Scientific Series; Wageningen Academic Publishers: Noordwijk, The Netherlands, 2019; Volume 138, pp. 47–52. ISBN 978-90-8686-340-2. [Google Scholar]
- Woyengo, T.A.; Beltranena, E.; Zijlstra, R.T. Nonruminant Nutrition Symposium: Controlling feed cost by including alternative ingredients into pig diets: A review. J. Anim. Sci. 2014, 92, 1293–1305. [Google Scholar] [CrossRef]
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary Fiber and Intestinal Health of Monogastric Animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commission Regulation (EU) No 68/2013 of 16 January 2013 on the Catalogue of Feed Materials Text with EEA Relevance; The European Commission: Brussels, Belgium, 2013; Volume 29.
- Humer, E.; Aditya, S.; Kaltenegger, A.; Klevenhusen, F.; Petri, R.; Zebeli, Q. Graded substitution of grains with bakery by-products modulates ruminal fermentation, nutrient degradation, and microbial community composition in vitro. J. Dairy Sci. 2018, 101, 3085–3098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaltenegger, A.; Humer, E.; Stauder, A.; Zebeli, Q. Feeding of bakery by-products in the replacement of grains enhanced milk performance, modulated blood metabolic profile, and lowered the risk of rumen acidosis in dairy cows. J. Dairy Sci. 2020, 103, 10122–10135. [Google Scholar] [CrossRef] [PubMed]
- Boerman, J.; Hornback, W.; Beever, D.; Doane, P.; Cecava, M.; Lock, A.; Hansen, S.; Drewnoski, M.; Murphy, M.; Drackley, J. Effects of physical preparation of diets and inclusion rate of modified wet distillers grains with solubles on production and rumen measurements of lactating dairy cows. J. Dairy Sci. 2021, 104, 1680–1695. [Google Scholar] [CrossRef]
- Anderson, J.; Schingoethe, D.; Kalscheur, K.; Hippen, A. Evaluation of Dried and Wet Distillers Grains Included at Two Concentrations in the Diets of Lactating Dairy Cows. J. Dairy Sci. 2006, 89, 3133–3142. [Google Scholar] [CrossRef] [Green Version]
- Schingoethe, D.; Kalscheur, K.; Hippen, A.; Garcia, A. Invited review: The use of distillers products in dairy cattle diets. J. Dairy Sci. 2009, 92, 5802–5813. [Google Scholar] [CrossRef]
- Abdelqader, M.; Oba, M. Lactation performance of dairy cows fed increasing concentrations of wheat dried distillers grains with solubles. J. Dairy Sci. 2012, 95, 3894–3904. [Google Scholar] [CrossRef] [Green Version]
- Ranathunga, S.D.; Kalscheur, K.F.; Herrick, K.J. Ruminal fermentation, kinetics, and total-tract digestibility of lactating dairy cows fed distillers dried grains with solubles in low- and high-forage diets. J. Dairy Sci. 2019, 102, 7980–7996. [Google Scholar] [CrossRef]
- Penner, G.; Yu, P.; Christensen, D. Effect of replacing forage or concentrate with wet or dry distillers’ grains on the productivity and chewing activity of dairy cattle. Anim. Feed Sci. Technol. 2009, 153, 1–10. [Google Scholar] [CrossRef]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes Text with EEA Relevance; The European Parliament and The Council of The European Union: Brussels, Belgium, 2010; Volume 276.
- European Former Foodstuff Processors Association (EFFPA). Available online: https://www.effpa.eu/figures-network/ (accessed on 13 June 2022).
- Consorzio del Formaggio Parmigiano Reggiano. Regulation of the Parmigiano Reggiano Cheese. 2011. Available online: https://www.parmigiano-reggiano.it/.consorzio/disciplinare_produzione_vigente_30_03_2018 (accessed on 10 September 2022).
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 20th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2016. [Google Scholar]
- Ehrman, T. Determination of Starch in Biomass Samples by Chemical Solubilization and Enzymatic Digestion; US Dept. Energy, National Bioenergy Center: Washington, DC, USA, 1996.
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar]
- Cotanch, K.W.; Grant, R.J.; Van Amburgh, M.E.; Zontini, A.; Fustini, M.; Palmonari, A.; Formigoni, A. Applications of UNDF in Ration Modeling and Formulation. In Procedure Cornell Nutrition Conference; Department of Animal Science—Cornell University: Ithaca, NY, USA, 2014; pp. 114–131. [Google Scholar]
- Commission Regulation (EC) No 152/2009 of 27 January 2009 Laying down the Methods of Sampling and Analysis for the Official Control of Feed (Text with EEA Relevance); The European Commission: Brussels, Belgium, 2009; Volume 54.
- Palmonari, A.; Cavallini, D.; Sniffen, C.; Fernandes, L.; Holder, P.; Fagioli, L.; Fusaro, I.; Biagi, G.; Formigoni, A.; Mammi, L. Short communication: Characterization of molasses chemical composition. J. Dairy Sci. 2020, 103, 6244–6249. [Google Scholar] [CrossRef] [PubMed]
- Ferraretto, L.; Fonseca, A.; Sniffen, C.; Formigoni, A.; Shaver, R. Effect of corn silage hybrids differing in starch and neutral detergent fiber digestibility on lactation performance and total-tract nutrient digestibility by dairy cows. J. Dairy Sci. 2015, 98, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Giaretta, E.; Mordenti, A.; Palmonari, A.; Brogna, N.; Canestrari, G.; Belloni, P.; Cavallini, D.; Mammi, L.; Cabbri, R.; Formigoni, A. NIRs calibration models for chemical composition and fatty acid families of raw and freeze-dried beef: A comparison. J. Food Compos. Anal. 2019, 83, 103257. [Google Scholar] [CrossRef]
- Buonaiuto, G.; Cavallini, D.; Mammi, L.M.E.; Ghiaccio, F.; Palmonari, A.; Formigoni, A.; Visentin, G. The accuracy of NIRS in predicting chemical composition and fibre digestibility of hay-based total mixed rations. Ital. J. Anim. Sci. 2021, 20, 1730–1739. [Google Scholar] [CrossRef]
- Davidson, S.; Hopkins, B.; Odle, J.; Brownie, C.; Fellner, V.; Whitlow, L. Supplementing Limited Methionine Diets with Rumen-Protected Methionine, Betaine, and Choline in Early Lactation Holstein Cows. J. Dairy Sci. 2008, 91, 1552–1559. [Google Scholar] [CrossRef] [Green Version]
- Cavallini, D.; Mammi, L.M.E.; Biagi, G.; Fusaro, I.; Giammarco, M.; Formigoni, A.; Palmonari, A. Effects of 00-rapeseed meal inclusion in Parmigiano Reggiano hay-based ration on dairy cows’ production, reticular pH and fibre digestibility. Ital. J. Anim. Sci. 2021, 20, 295–303. [Google Scholar] [CrossRef]
- Brogna, N.; Palmonari, A.; Canestrari, G.; Mammi, L.; Prà, A.D.; Formigoni, A. Technical note: Near infrared reflectance spectroscopy to predict fecal indigestible neutral detergent fiber for dairy cows. J. Dairy Sci. 2018, 101, 1234–1239. [Google Scholar] [CrossRef] [Green Version]
- Palmonari, A.; Canestrari, G.; Bonfante, E.; Fustini, M.; Mammi, L.; Formigoni, A. Technical note: In vitro digestibility of amylase-treated, ash-corrected neutral detergent fiber, with addition of sodium sulfite, at 240 hours with or without rumen fluid reinoculation. J. Dairy Sci. 2017, 100, 1200–1202. [Google Scholar] [CrossRef] [Green Version]
- Schirmann, K.; von Keyserlingk, M.; Weary, D.; Veira, D.; Heuwieser, W. Technical note: Validation of a system for monitoring rumination in dairy cows. J. Dairy Sci. 2009, 92, 6052–6055. [Google Scholar] [CrossRef] [Green Version]
- Klevenhusen, F.; Pourazad, P.; Wetzels, S.U.; Qumar, M.; Khol-Parisini, A.; Zebeli, Q. Technical note: Evaluation of a real-time wireless pH measurement system relative to intraruminal differences of digesta in dairy cattle. J. Anim. Sci. 2014, 92, 5635–5639. [Google Scholar] [CrossRef]
- Goetsch, A.L.; Galyean, M.L. Influence of Feeding Frequency on Passage of Fluid and Particulate Markers in Steers Fed a Concentrate Diet. Can. J. Anim. Sci. 1983, 63, 727–730. [Google Scholar] [CrossRef]
- Kleinschmit, D.; Schingoethe, D.; Kalscheur, K.; Hippen, A. Evaluation of Various Sources of Corn Dried Distillers Grains Plus Solubles for Lactating Dairy Cattle. J. Dairy Sci. 2006, 89, 4784–4794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janicek, B.; Kononoff, P.; Gehman, A.; Doane, P. The Effect of Feeding Dried Distillers Grains Plus Solubles on Milk Production and Excretion of Urinary Purine Derivatives. J. Dairy Sci. 2008, 91, 3544–3553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benchaar, C.; Hassanat, F.; Gervais, R.; Chouinard, P.; Julien, C.; Petit, H.; Massé, D. Effects of increasing amounts of corn dried distillers grains with solubles in dairy cow diets on methane production, ruminal fermentation, digestion, N balance, and milk production. J. Dairy Sci. 2013, 96, 2413–2427. [Google Scholar] [CrossRef] [Green Version]
- Hollmann, M.; Allen, M.; Beede, D. Diet fermentability influences lactational performance responses to corn distillers grains: A meta-analysis. J. Dairy Sci. 2011, 94, 2007–2021. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Penner, G.B.; Abdelqader, M.; Oba, M. Effects of Feeding Alfalfa Hay on Chewing, Rumen PH, and Milk Fat Concentration of Dairy Cows Fed Wheat Dried Distillers Grains with Solubles as a Partial Substitute for Barley Silage. J. Dairy Sci. 2010, 93, 3243–3252. [Google Scholar] [CrossRef] [Green Version]
- De Boever, J.L.; Blok, M.C.; Millet, S.; Vanacker, J.; De Campeneere, S. The Nutritive Value of Condensed Wheat Distillers Solubles for Cattle. Animal 2016, 10, 1955–1964. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, J.; Spörndly, R.; Lindberg, M.; Holtenius, K. Replacing Human-Edible Feed Ingredients with by-Products Increases Net Food Production Efficiency in Dairy Cows. J. Dairy Sci. 2018, 101, 7146–7155. [Google Scholar] [CrossRef] [Green Version]
- Plaizier, J.C.; Krause, D.O.; Gozho, G.N.; McBride, B.W. Subacute Ruminal Acidosis in Dairy Cows: The Physiological Causes, Incidence and Consequences. Vet. J. 2008, 176, 21–31. [Google Scholar] [CrossRef]
- Takiya, C.S.; Ylioja, C.M.; Bennett, A.; Davidson, M.J.; Sudbeck, M.; Wickersham, T.A.; VandeHaar, M.J.; Bradford, B.J. Feeding Dairy Cows With “Leftovers” and the Variation in Recovery of Human-Edible Nutrients in Milk. Front. Sustain. Food Syst. 2019, 3, 114. [Google Scholar] [CrossRef]
Component, % DM | WDGS | FF |
---|---|---|
DM, % as fed | 35.48 | 90.33 |
Moisture | 64.52 | 9.68 |
CP | 22.12 | 10.57 |
EE | 4.29 | 10.11 |
Starch | 17.14 | 44.12 |
aNDFom | 1.10 | 13.24 |
ADF | 1.09 | 6.49 |
ADL | 0.27 | 3.01 |
Ash | 11.44 | 2.16 |
Sugars 3 | 28.41 | 11.3 |
Sucrose | 2.16 | 0.3 |
Glucose | 4.44 | 7.5 |
Fructose | 4.30 | 2.5 |
Starch digestibility 4, % | -- | 87.36 |
pH | 3.47 | -- |
Ingredients, kg/Day as Fed | CTR | WDGS | FF | WDGS + FF |
---|---|---|---|---|
Alfa-alfa hay | 8.0 | 8.0 | 8.0 | 8.0 |
Grass hay | 3.0 | 3.0 | 3.0 | 3.0 |
Grain mix 2 | 7.5 | 7.0 | 7.0 | 5.3 |
Mixed flakes 3 | 7.5 | 7.5 | 5.0 | 5.0 |
Min-Vit supplement 4 | 0.7 | 0.7 | 0.7 | 0.7 |
Megafat® | 0.5 | 0.5 | 0.5 | 0.5 |
Former foodstuff feed 5 | -- | -- | 3.0 | 3.0 |
Wheat wet distiller soluble | -- | 4.0 | -- | 4.0 |
Composition, % DM | ||||
DM, % as fed | 89.7 | 83.1 | 90.1 | 84.3 |
CP | 14.9 | 15.0 | 15.0 | 14.9 |
Starch | 19.4 | 18.4 | 20.3 | 19.1 |
Fat | 4.5 | 4.6 | 5.3 | 5.4 |
aNDFom | 34.7 | 33.7 | 32.9 | 31.8 |
ADF | 23.3 | 22.9 | 23.3 | 21.2 |
ADL | 4.5 | 4.3 | 4.1 | 3.9 |
uNDF240 | 9.7 | 9.5 | 10.3 | 10.2 |
Ash | 8.9 | 9.2 | 8.8 | 9.1 |
peNDFom | 13.2 | 13.9 | 13.4 | 13.8 |
Item | CTR | WDGS | FF | WDGS + FF | SEM 4 | p-Value |
---|---|---|---|---|---|---|
DMI, kg | 22.99 | 22.25 | 23.15 | 23.08 | 0.30 | 0.67 |
Water intake, L/day | 136.3 | 140.5 | 137.8 | 135.0 | 5.09 | 0.86 |
BW, kg | 614 | 619 | 606 | 607 | 52 | 0.79 |
Rumination, min/day | 517.1 | 509.0 | 511.5 | 530.0 | 15.69 | 0.82 |
Daily average r-Ph | 6.13 | 6.13 | 6.12 | 6.10 | 0.03 | 0.83 |
Time r-pH < 5.8, min/day | 55.86 b | 104.98 b | 108.93 b | 171.87 a | 22.37 | 0.02 |
Time r-pH < 5.5, min/day | 11.65 B | 14.49 AB | 19.63 AB | 27.16 A | 1.37 | 0.08 |
Item | CTR | WDGS | FF | WDGS + FF | SEM | p-Value |
---|---|---|---|---|---|---|
NH3, mg/100 mL | 9.75 a | 7.72 b | 9.29 a | 8.50 ab | 0.805 | 0.02 |
VFA Concentration (mmol/L) | ||||||
Total VFA | 95.95 a | 77.93 b | 98.63 a | 83.40 ab | 5.709 | 0.03 |
Acetic | 54.89 a | 44.75 b | 53.93 a | 46.26 ab | 3.073 | 0.02 |
Propionic | 26.28 ab | 21.08 b | 29.46 a | 24.37 ab | 2.586 | 0.03 |
Isobutyric | 0.95 ab | 0.79 b | 1.04 a | 0.81 b | 0.078 | 0.03 |
Butyric | 11.17 | 9.08 | 11.21 | 9.58 | 1.125 | 0.15 |
Isovaleric | 0.93 ab | 0.80 ab | 0.96 a | 0.72 b | 0.104 | 0.03 |
Valeric | 1.69 ab | 1.43 b | 1.95 a | 1.61 ab | 0.192 | 0.01 |
VFA molar proportion (% mol) | ||||||
Acetic | 57.52 | 57.15 | 55.62 | 55.54 | 1.526 | 0.54 |
Propionic | 27.00 | 27.37 | 28.99 | 29.20 | 1.682 | 0.57 |
Acetic/Propionic | 2.22 | 2.18 | 1.98 | 2.01 | 0.230 | 0.69 |
Isobutyric | 0.98 | 1.01 | 1.03 | 0.97 | 0.082 | 0.82 |
Butyric | 11.74 | 11.60 | 11.43 | 11.44 | 0.644 | 0.96 |
Isovaleric | 0.98 | 1.02 | 0.99 | 0.89 | 0.099 | 0.58 |
Valeric | 1.77 | 1.86 | 1.95 | 1.96 | 0.135 | 0.38 |
Item 2 | CTR | WDGS | FF | WDGS + FF | SEM | p-Value |
---|---|---|---|---|---|---|
Milk, kg | 35.71 cb | 35.48 c | 36.92 ab | 37.39 a | 0.502 | 0.001 |
ECM 4%, kg | 34.94 ab | 33.72 b | 35.55 ab | 35.96 a | 0.762 | 0.04 |
FCM 4%, kg | 39.05 | 37.74 | 40.00 | 40.37 | 1.150 | 0.23 |
Fat, % | 3.74 | 3.67 | 3.64 | 3.68 | 0.163 | 0.87 |
Protein, % | 3.44 a | 3.35 b | 3.33 b | 3.36 ab | 0.080 | 0.04 |
Lactose, % | 4.79 | 4.82 | 4.77 | 4.81 | 0.033 | 0.73 |
Urea, mg/100 mL | 16.95 a | 15.58 ab | 16.19 a | 13.14 b | 1.240 | 0.02 |
Milk/DMI | 1.58 | 1.62 | 1.65 | 1.64 | 0.048 | 0.64 |
Item 2 | CTR | WDGS | FF | WDGS + FF | SEM | p-Value |
---|---|---|---|---|---|---|
Dry matter, % as fed | 14.70 | 14.20 | 15.05 | 14.90 | 0.53 | 0.65 |
CP, % DM | 13.29 | 13.32 | 12.70 | 12.86 | 0.38 | 0.42 |
Starch, % DM | 3.90 | 3.56 | 3.76 | 3.59 | 0.14 | 0.23 |
aNDFom, % DM | 57.95 | 59.50 | 58.86 | 58.64 | 1.30 | 0.86 |
ADF, % DM | 43.19 | 44.13 | 43.00 | 43.68 | 0.91 | 0.82 |
ADL, % DM | 16.73 a | 18.02 b | 16.47 a | 16.39 a | 0.558 | 0.04 |
Ash, % DM | 10.53 | 10.73 | 10.25 | 10.66 | 0.20 | 0.73 |
uNDF240, % NDF | 74.39 | 73.90 | 77.20 | 76.33 | 2.12 | 0.86 |
uNDF240, % DM | 43.11 | 44.02 | 45.40 | 44.72 | 1.46 | 0.78 |
pdNDF240, % NDF | 25.61 | 26.10 | 22.80 | 23.67 | 2.12 | 0.64 |
pdNDF240, % DM | 14.84 | 15.49 | 13.46 | 13.91 | 1.34 | 0.91 |
pdNDF24, % NDF | 15.22 | 15.37 | 15.46 | 15.20 | 0.30 | 0.62 |
TTDpdNDF, % pdNDF | 80.44 a | 76.65 b | 79.39 a | 80.11 a | 1.03 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mammi, L.M.E.; Buonaiuto, G.; Ghiaccio, F.; Cavallini, D.; Palmonari, A.; Fusaro, I.; Massa, V.; Giorgino, A.; Formigoni, A. Combined Inclusion of Former Foodstuff and Distiller Grains in Dairy Cows Ration: Effect on Milk Production, Rumen Environment, and Fiber Digestibility. Animals 2022, 12, 3519. https://doi.org/10.3390/ani12243519
Mammi LME, Buonaiuto G, Ghiaccio F, Cavallini D, Palmonari A, Fusaro I, Massa V, Giorgino A, Formigoni A. Combined Inclusion of Former Foodstuff and Distiller Grains in Dairy Cows Ration: Effect on Milk Production, Rumen Environment, and Fiber Digestibility. Animals. 2022; 12(24):3519. https://doi.org/10.3390/ani12243519
Chicago/Turabian StyleMammi, Ludovica Maria Eugenia, Giovanni Buonaiuto, Francesca Ghiaccio, Damiano Cavallini, Alberto Palmonari, Isa Fusaro, Valentina Massa, Andrea Giorgino, and Andrea Formigoni. 2022. "Combined Inclusion of Former Foodstuff and Distiller Grains in Dairy Cows Ration: Effect on Milk Production, Rumen Environment, and Fiber Digestibility" Animals 12, no. 24: 3519. https://doi.org/10.3390/ani12243519
APA StyleMammi, L. M. E., Buonaiuto, G., Ghiaccio, F., Cavallini, D., Palmonari, A., Fusaro, I., Massa, V., Giorgino, A., & Formigoni, A. (2022). Combined Inclusion of Former Foodstuff and Distiller Grains in Dairy Cows Ration: Effect on Milk Production, Rumen Environment, and Fiber Digestibility. Animals, 12(24), 3519. https://doi.org/10.3390/ani12243519