Temperature Incubation Influences Gonadal Gene Expression during Leopard Gecko Development
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. RNAs
2.3. Expression Analysis of Genes Involved in Gonadal Sex Differentiation
2.4. DDRT-PCR
2.5. Confirmation of Differential Gene Expression: Real-Time PCR
3. Results
3.1. Genes Involved in Gonadal Sex Differentiation
3.2. Identification and Expression Analysis of Seven New Transcripts by DDRT-PCR
3.3. qRT-PCR Expression Analysis of Genes Identified by DDRT-PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quinn, A.; Koopman, P. The Molecular Genetics of Sex Determination and Sex Reversal in Mammals. Semin. Reprod. Med. 2012, 30, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Mullon, C.; Pomiankowski, A.; Reuter, M. Molecular evolution of Drosophila Sex-lethal and related sex determining genes. BMC Evol. Biol. 2012, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Uguz, C.; Iscan, M.; Togan, I. Developmental genetics and physiology of sex differentiation in vertabrates. Environ. Toxicol. Pharmacol. 2003, 14, 9–16. [Google Scholar] [CrossRef]
- Barrionuevo, F.J.; Burgos, M.; Scherer, G.; Jiménez, R. Genes promoting and disturbing testis development. Histol. Histopathol. 2012, 27, 1361–1383. [Google Scholar] [CrossRef]
- Ciofi, C.; Swingland, I.R. Environmental sex determination in reptiles. Appl. Anim. Behav. Sci. 1997, 51, 251–265. [Google Scholar] [CrossRef]
- Janzen, F.J.; Paukstis, G.L. A preliminary test of the adaptive significance of environmental sex determination in reptiles. Evolution 1991, 45, 435–440. [Google Scholar] [CrossRef]
- Miller, D.; Summers, J.; Silber, S. Environmental versus genetic sex determination: A possible factor in dinosaur extinction? Fertil. Steril. 2004, 81, 954–964. [Google Scholar] [CrossRef]
- Girondot, M.; Ben Hassine, S.; Sellos, C.; Godfrey, M.; Guillon, J.-M. Modeling Thermal Influence on Animal Growth and Sex Determination in Reptiles: Being Closer to the Target Gives New Views. Sex. Dev. 2010, 4, 29–38. [Google Scholar] [CrossRef]
- Modi, W.S.; Crews, D. Sex chromosomes and sex determination in reptiles: Commentary. Curr. Opin. Genet. Dev. 2005, 15, 660–665. [Google Scholar] [CrossRef]
- Valenzuela, N. Multivariate Expression Analysis of the Gene Network Underlying Sexual Development in Turtle Embryos with Temperature-Dependent and Genotypic Sex Determination. Sex. Dev. 2010, 4, 39–49. [Google Scholar] [CrossRef]
- Du, W.-G.; Shine, R.; Ma, L.; Sun, B.-J. Adaptive responses of the embryos of birds and reptiles to spatial and temporal variations in nest temperatures. Proc. R. Soc. Boil. Sci. 2019, 286, 20192078. [Google Scholar] [CrossRef] [PubMed]
- Piprek, R.P. Molecular Mechanisms Underlying Female Sex Determination—Antagonism Between Female and Male Pathway. Folia Biol. 2009, 57, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, E.; Aksoy, S.; Onel, T.; Yaba, A. Gonadal development and sex determination in mouse. Reprod. Biol. 2020, 20, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Endo, D.; Kanaho, Y.-I.; Park, M.K. Expression of sex steroid hormone-related genes in the embryo of the leopard gecko. Gen. Comp. Endocrinol. 2008, 155, 70–78. [Google Scholar] [CrossRef]
- Valleley, E.M.; Cartwright, E.J.; Croft, N.J.; Markham, A.F.; Coletta, P.L. Characterisation and expression ofSox9 in the Leopard gecko, Eublepharis macularius. J. Exp. Zool. 2001, 291, 85–91. [Google Scholar] [CrossRef]
- Pallotta, M.M.; Turano, M.; Ronca, R.; Mezzasalma, M.; Petraccioli, A.; Odierna, G.; Capriglione, T. Brain Gene Expression is Influenced by Incubation Temperature During Leopard Gecko (Eublepharis macularius) Development. J. Exp. Zool. Mol. Dev. Evol. 2017, 328, 360–370. [Google Scholar] [CrossRef]
- Wise, P.A.; Vickaryous, M.K.; Russell, A.P. An Embryonic Staging Table for in ovo Development of Eublepharis macularius, the Leopard Gecko. Anat. Rec. 2009, 292, 1198–1212. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Maldonado, L.T.; Piedra, A.L.; Mendoza, N.M.; Valencia, A.M.; Martínez, A.M.; Larios, H.M. Expression profiles of Dax1, Dmrt1, and Sox9 during temperature sex determination in gonads of the sea turtle Lepidochelys olivacea. Gen. Comp. Endocrinol. 2002, 129, 20–26. [Google Scholar] [CrossRef]
- Shoemaker, C.M.; Crews, D. Analyzing the coordinated gene network underlying temperature-dependent sex determination in reptiles. Semin. Cell Dev. Biol. 2009, 20, 293–303. [Google Scholar] [CrossRef]
- Shoemaker, C.M.; Queen, J.; Crews, D. Response of Candidate Sex-Determining Genes to Changes in Temperature Reveals Their Involvement in the Molecular Network Underlying Temperature-Dependent Sex Determination. Mol. Endocrinol. 2007, 21, 2750–2763. [Google Scholar] [CrossRef] [PubMed]
- Western, P.S.; Harry, J.L.; Graves, J.A.; Sinclair, A.H. Temperature-dependent sex determination in the American alligator: Expression of SF1, WT1 and DAX1 during gonadogenesis. Gene 1999, 241, 223–232. [Google Scholar] [CrossRef]
- Valenzuela, N. Evolution of the gene network underlying gonadogenesis in turtles with temperature-dependent and genotypic sex determination. Integr. Comp. Biol. 2008, 48, 476–485. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Capriglione, T.; Vaccaro, M.; Morescalchi, M.; Tammaro, S.; De Iorio, S. Differential DMRT1 Expression in the Gonads of Podarcis sicula (Reptilia: Lacertidae). Sex. Dev. 2010, 4, 104–109. [Google Scholar] [CrossRef]
- Ikeda, Y.; Noguchi, T. Allosteric Regulation of Pyruvate Kinase M2 Isozyme Involves a Cysteine Residue in the Intersubunit Contact. J. Biol. Chem. 1998, 273, 12227–12233. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tsutsumi, H.; Tani, K.; Fujii, H.; Miwa, S. Expression of L- and M-type pyruvate kinase in human tissues. Genomics 1988, 2, 86–89. [Google Scholar] [CrossRef]
- Yang, W.; Xia, Y.; Ji, H.; Zheng, Y.; Liang, J.; Huang, W.; Gao, X.; Aldape, K.; Lu, Z. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature 2011, 480, 118–122. [Google Scholar] [CrossRef]
- Vrontou, S.; Petrou, P.; I Meyer, B.; Galanopoulos, V.K.; Imai, K.; Yanagi, M.; Chowdhury, K.; Scambler, P.; Chalepakis, G. Fras1 deficiency results in cryptophthalmos, renal agenesis and blebbed phenotype in mice. Nat. Genet. 2003, 34, 209–214. [Google Scholar] [CrossRef]
- Loktev, A.V.; Zhang, Q.; Beck, J.S.; Searby, C.C.; Scheetz, T.E.; Bazan, J.F.; Slusarski, D.C.; Sheffield, V.C.; Jackson, P.K.; Nachury, M.V. A BBSome Subunit Links Ciliogenesis, Microtubule Stability, and Acetylation. Dev. Cell 2008, 15, 854–865. [Google Scholar] [CrossRef]
- Zhang, Q.; Nishimura, D.; Vogel, T.; Shao, J.; Swiderski, R.; Yin, T.; Searby, C.; Carter, C.C.; Kim, G.; Bugge, K.; et al. BBS7 is required for BBSome formation and its absence in mice results in Bardet-Biedl syndrome phenotypes and selective abnormalities in membrane protein trafficking. J. Cell Sci. 2013, 126, 2372–2380. [Google Scholar] [CrossRef]
- Juszczak, G.R.; Stankiewicz, A.M. Glucocorticoids, genes and brain function. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 82, 136–168. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Montiel, W.; Collí-Dula, R.C.; Ramón-Ugalde, J.P.; Martínez-Núñez, M.A.; Zamora-Bustillos, R. RNA-seq Transcriptome Analysis in Ovarian Tissue of Pelibuey Breed to Explore the Regulation of Prolificacy. Genes 2019, 10, 358. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, K.; Peippo, J.; Weldenegodguad, M.; Honkatukia, M.; Li, M.-H.; Kantanen, J. Gene Expression Profiling of Corpus luteum Reveals Important Insights about Early Pregnancy in Domestic Sheep. Genes 2020, 11, 415. [Google Scholar] [CrossRef] [PubMed]
Gene | Oligo Forward Sequence (5′-3′) | Oligo Reverse Sequence (5′-3′) |
---|---|---|
Erα | CACCCTGGAAAGCTGTTGTT | TTCGGAATCGAGTAGCAGTG |
Erβ | ATCCCGGCAAGCTAATCTTT | CAGCTCTCGAAACCTTGAAGT |
GnRH | GTCTTGCTGGCCTCTCCTC | GTGGTCTCCTGCCAGTGTTC |
P450 aromatase | TGAACACCCTCAGTGTGGAA | TCAGVTTTGGCATGTCTTCA |
PRL | AAGGCCATGGAGATTGAGG | GGAGGCCTGACCAAGTAGAA |
PRL-R | ATGGAGGTCTCCCCACTAAT | AACAGGAATTGGGTCCTCCT |
WNT4 | CTGCAACAAGACCTCCAAGG | AGCAGCACCGTGGAATTG |
SOX9 | GGGCAAGCTTTGGAGGTTAC | TGGGCTGGTACTTATAGTCTGGA |
DMRT1 | GCAGGGGATCCTACCAAAGT | AGAAGGCAGCAAGCTCAAGA |
ALDOC | TACCATGGTGTTGTGCAAGC | CTTCACGCTGCATTTTCTCA |
FREM1 | GGAATGTCAACCAAGATGTGG | CAGGGGAGATCAGAACCACT |
BBIP1 | CGTGAGCTGTAGCTTTGCAG | CTGCCTTACCCACAGCACTT |
CA5A | TTGCAAAGTTATGGGGAGGA | TCAAGCAGGGTTTATTTCTCATC |
NADH5 | GCTACAGGTAAATCCGCTCAA | AGTAGGGCAGAAACGGGAGT |
L1 non-LTR retrotransposons | ATCATCGTGGGCCTCTTTGC | AGCAGCACCGTGGAATTG |
PKM | AGAGCTGCTTGTACGCCTGT | CCAGATTTCCAAAGGACAGTG |
Primers | Sequence |
---|---|
3′ oligo (dT) H-T11G | AAGCTTTTTTTTTTTG |
3′ oligo (dT) H-T11A | AAGCTTTTTTTTTTTA |
3′ oligo (dT) H-T11C | AAGCTTTTTTTTTTTC |
H-AP1 | AAGCTTGATTGCC |
H-AP2 | AAGCTTCGACTGT |
H-AP3 | AAGCTTTGGTCAG |
H-AP4 | AAGCTTCTCAACG |
H-AP5 | AAGCTTAGTAGGC |
H-AP6 | AAGCTTGCACCAT |
H-AP7 | AAGCTTAACGAGG |
H-AP8 | AAGCTTTTACCGC |
Clone | E-Value | Length (BP) | Identity (%) | Results |
---|---|---|---|---|
McAP2 | e−121 | 450 | 98% | Gekko japonicus, aldolase fructose-bisphosphate C (ALDOC) |
Ma1AP5 | 2e−41 | 528 | 83% | Anolis carolinensis, pyruvate kinase muscle isozyme-like (PKM) |
Ma2AP5 | 2e−60 | 710 | 95% | Anolis carolinensis, FRAS1 related extracellular matrix 1 (FREM1) |
FaAP5 | 4e−148 | 1011 | 73% | Hemitheconyx caudicinctus, NADH dehydrogenase subunit 5 (mitochondrion) (NADH-CoQ reduttasii) |
McAP5 | 1e−144 | 592 | 83% | Anolis carolinensis, BBSome-interacting protein 1-like (BBIP1) |
Fg1AP6 | 9e−15 | 137 | 77% | Sphaerodactylus townsendi, carbonic anhydrase 5A (CA5A) |
FcAP7 | 1e−14 | 202 | 76% | Aanolis carolinensis, L1 non-LTR retrotransposons |
Gene | Identification | Embryo Gonads Stage 30 |
---|---|---|
Erα | qRT-PCR | No differential expression |
Erβ | qRT-PCR | No differential expression |
GnRH | qRT-PCR | No differential expression |
P450 aromatase | qRT-PCR | No differential expression |
PRL | qRT-PCR | Not detected |
PRL-R | qRT-PCR | FPT |
WNT4 | qRT-PCR | MPT |
SOX9 | qRT-PCR | MPT |
DMRT1 | qRT-PCR | MPT |
ALDOC | DDRT-PCR | MPT |
FREM1 | DDRT-PCR | MPT |
BBIP1 | DDRT-PCR | MPT |
CA5A | DDRT-PCR | FPT |
NADH5 | DDRT-PCR | No differential expression |
L1 non-LTR retrotransposons | DDRT-PCR | FPT |
PKM | DDRT-PCR | MPT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallotta, M.M.; Fogliano, C.; Carotenuto, R. Temperature Incubation Influences Gonadal Gene Expression during Leopard Gecko Development. Animals 2022, 12, 3186. https://doi.org/10.3390/ani12223186
Pallotta MM, Fogliano C, Carotenuto R. Temperature Incubation Influences Gonadal Gene Expression during Leopard Gecko Development. Animals. 2022; 12(22):3186. https://doi.org/10.3390/ani12223186
Chicago/Turabian StylePallotta, Maria Michela, Chiara Fogliano, and Rosa Carotenuto. 2022. "Temperature Incubation Influences Gonadal Gene Expression during Leopard Gecko Development" Animals 12, no. 22: 3186. https://doi.org/10.3390/ani12223186
APA StylePallotta, M. M., Fogliano, C., & Carotenuto, R. (2022). Temperature Incubation Influences Gonadal Gene Expression during Leopard Gecko Development. Animals, 12(22), 3186. https://doi.org/10.3390/ani12223186