The Effect of Diets Containing High-Moisture Corn or Triticale Grain on Animal Performance and the Fatty Acid Composition of Lamb Muscles
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cereal Grain Treatments
2.2. Animals and Feeding
2.3. Nutrient Digestibility and Nitrogen Balance
2.4. Sampling and Chemical Analysis
2.5. Body Weight
2.6. Blood Analysis
2.7. Content of Fatty Acids in Feeds and in the Leg Muscle of Lambs
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borys, B.; Borys, A. Wpływ rasy owiec na wybrane parametry jakości zdrowotnej mięsa jagnięcego. Zesz. Nauk. Przeglądu Hod. 2002, 63, 69–79. (In Polish) [Google Scholar]
- Kłobukowski, J.; Brzostowski, H.; Tański, Z.; Wiśniewska-Pantak, D.; Sowiński, J. The quality and nutritive value of the meat protein of various lamb genotypes. Pol. J. Food Nat. Sci. 2002, 52, 41–45. [Google Scholar]
- Hoffman, L.C.; Muller, M.; Cloete, S.W.P.; Shmidt, D. Composition of six crossbred lamb types: Sensory, physical and nutritional meat quality characteristics. Meat Sci. 2003, 65, 1265–1274. [Google Scholar] [CrossRef]
- Margetin, M.; Oravcova, M.; Margetinova, J.; Kubinec, R. Fatty acids in intramuscular fat of the Ile de France lambs in two different production system. Arch. Anim. Breed. 2018, 61, 395–403. [Google Scholar] [CrossRef]
- Jandásek, J.; Komar, M.; Minerski, M.; Ingr, I. Comparison of the content of intramuscular amino acids in different lamb hybrids. Czech J. Anim. Sci. 2003, 48, 301–306. [Google Scholar]
- Milewski, S. Reproductive efficiency and lamb body weight in sheep breeds raised in Poland. Przegląd Hod. 2017, 3, 1–4. (In Polish) [Google Scholar]
- Pesonen, M.; Honkavaara, M.; Kamarainen, H.; Tolonen, T.; Jaakkola, M.; Virtanen, V.; Huuskonen, A. Effects of concentrate level and rapeseed meal supplementation on performance, carcass characteristics, meat quality and valuable cuts of Hereford and Charolais bulls offered grass silage-barley-based rations. Agric. Food Sci. 2013, 22, 151–167. [Google Scholar] [CrossRef] [Green Version]
- Production of Agricultural and Horticultural Crops in 2021—Report of the Central Statistical Office. 2021. Available online: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/uprawy-rolne-i-ogrodnicze/produkcja-upraw-rolnych-i-ogrodniczych-w-2021-roku,9,20.html (accessed on 2 November 2022). (In Polish)
- García-Lara, S.; Serna-Saldivar, S.O. Corn history and culture. In Corn; Serna-Saldivar, S.O., Ed.; AACC International Press: Oxford, UK, 2019; pp. 1–18. [Google Scholar]
- FAOSTAT. FAO Statistics Division. 2019. Available online: http://faostat.fao.org (accessed on 13 April 2019).
- Jondreville, C.; van den Broecke, J.; Gatel, F.; Grosjean, F.; van Cauwenberghe, S.; Seve, B. Ileal digestibility of amino acids ans estimates of endogenous amino acid losses in pigs fed wheat, triticale, rye, barley, maize and sorghum. Anim. Res. 2001, 50, 119–134. [Google Scholar] [CrossRef]
- Loy, D.D.; Lundy, E.L. Nutritional properties and feeding value of corn and its coproducts. In Corn; Serna-Saldivar, S.O., Ed.; AACC International Press: Oxford, UK, 2019; pp. 633–659. [Google Scholar]
- Arisnabarreta, S.; Eslava, E.T.; Cannon, P. Screening method and response surface design for drying hybrid maize to maintain seed quality. Crop Sci. 2012, 52, 1298–1305. [Google Scholar] [CrossRef]
- Volkov, N.P.; Popov, V.V.; Gaganov, A.P. Preserved Corn Grain in Ration of Young Bulls and Cows. In Forage Conservation 1999; 9th International Scientific Symposium; Research Institute of Animal Production: Nitra, Slovak, 1999; pp. 194–195. [Google Scholar]
- Biro, D.; Juráček, M. Conservation of Maize Corn with High Moisture by Organic Acid. In Forage Conservation 2003; 11th International Scientific Symposium; Research Intitute of Animal Production: Nitra, Slovak, 2003; pp. 122–123. [Google Scholar]
- Dixon, R.M.; Stockdale, C.R. Associative effects between forages and grain: Consequences for feed utilization. Aust. J. Agric. Res. 1999, 50, 757–773. [Google Scholar] [CrossRef] [Green Version]
- Gálik, B.; Biro, D.; Juráček, M.; Šimko, M. Influence of silage additives on fermentation of high moisture crimped corn. J. Cent. Eur. Agric. 2008, 9, 439–444. [Google Scholar]
- Wilkerson, V.A.; Glen, B.P.; McLeod, K.R. Energy and nitrogen balance in lactating cows fed diets containing dry or high moisture corn in either rolled or ground form. J. Dairy Sci. 1997, 80, 2487–2496. [Google Scholar] [CrossRef]
- Zhu, F. Triticale: Nutritional composition and food uses. Food Chem. 2018, 241, 468–479. [Google Scholar] [CrossRef]
- Jaśkiewicz, B.; Sulek, A. Directions of changes of grains production in Poland. Ann. Pol. Assoc. Agric. Agribus. Econ. 2017, 19, 66–73. [Google Scholar] [CrossRef]
- Jaśkiewicz, B.; Szczepanek, M. Amino acids content in triticale grain depending on meteorological, agrotechnical and genetic factors. Res. Rural. Develop. Agricult. Sci. 2018, 2, 28–34. [Google Scholar]
- Lango, B.; Bona, L.; Acs, E.; Tomoskozi, S. Nutritional features of triticale as affected by genotype, crop year and location. Acta Aliment. 2017, 46, 238–245. [Google Scholar] [CrossRef]
- Różewicz, M. Production of triticale grain in Poland and its fodder value and use in poultry nutrition. Zootech. News 2019, 4, 121–132. (In Polish) [Google Scholar]
- Saini, H.S.; Henry, R.J. Frection and evaluation of triticale and pentosans: Comparison with wheat and rye. Cereal Chem. 1988, 66, 11–14. [Google Scholar]
- DLG-Tabele Wartości Pokarmowej Pasz i Normy Żywienia Przeżuwaczy; PPH VIT-REA: Kusowo, Poland, 1997.
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysi, 18th ed.; AOAC: Arlington, VA, USA, 2007. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Faisant, N.; Planchot, V.; Kozlovski, F.; Pacouret, M.P.; Colonna, P.; Champ, M. Resistant starch determination adapted to products containing high level of resistant starch. Sci. Alim. 1995, 15, 83–89. [Google Scholar]
- Rhee, K.S.; Dutson, T.R.; Smith, G.C.; Hostetler, R.L.; Reiser, R. Effects of changes in intermuscular and subcutaneous fat level on cholesterol content of raw and cooked beef steaks. J. Food Sci. 1982, 47, 716–719. [Google Scholar] [CrossRef]
- Pyś, J.B.; Karpowicz, A.; Borowiec, F.; Ratych, I.B. Chemical composition and aerobic stability of high moisture maize grain silage made with bacterial or chemical additives. Anim. Biol. 2009, 11, 180–188. [Google Scholar]
- Sosin-Bzducha, E.; Strzetelski, J.; Borowiec, F.; Kowalczyk, J.; Okoń, K. Effect of feeding ensiled maize grain on rumen development and calf reading performance. J. Anim. Feed Sci. 2010, 19, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Meeske, R.; Basson, H.M.; Cruywagen, C.W. The effect of a lactic acid bacterial inoculant with enzymes on the fermentation dynamics, intake and digestibility of Digitaria eriantha silage. Anim. Feed. Sci. Technol. 1999, 81, 237–244. [Google Scholar] [CrossRef]
- McKeown, L.E.; Chaves, A.V.; Oba, M.; Dugan, M.E.R.; Okine, E.; McAllister, T.A. Effects of replacing barley grain with triticale-based dried distillers’ grains with solubles on nutrient digestibility, lamb growth performance and carcass traits. Can. J. Anim. Sci. 2010, 90, 87–98. [Google Scholar] [CrossRef]
- Sauvant, D. Nutritional and zootechnical consequences of variations in starch degradation rate in ruminants. Inra Prod. Anim. 1997, 10, 287–300. [Google Scholar] [CrossRef]
- Joy, M.T.; DePeters, E.J.; Fadel, J.G.; Zinn, R.A. Effects of corn processing on the site and extent of digestion in lactating cows. J. Dairy Sci. 1997, 80, 2087–2097. [Google Scholar] [CrossRef]
- Aguerre, M.; Cajarville, C.; Kozloski, G.V.; Repetto, J.L. Intake and digestive responses by ruminants fed fresh temperature pasture supplemented with increased levels of sorghum grain: A comparison between cattle and sheep. Anim. Feed Sci. Technol. 2013, 186, 12–19. [Google Scholar] [CrossRef]
- Goulas, C.; Zervas, G.; Papadopoulos, G. The effect of animal fat on sheep’s diet digestibility, degradability and rumen fermentation process. J. Anim. Feed Sci. 2001, 10, 447–455. [Google Scholar] [CrossRef]
- Borowiec, F.; Karpowicz, A.; Cembrzyńska, M.; Pyś, J.B. Effect of feeding dry maize grain and high-moisture maize grain silage on fatty acid profile and cholesterol content in lambs meat. Zesz. Nauk. Uniw. Przyr. We Wrocławiu 2011, 580, 111–121. (In Polish) [Google Scholar]
- Almeida, G.A.; Costa, C.; Monteiro, A.L.G.; Gareia, A.; Munari, D.P.; Neres, M.A. Desem-penho, caracteristicas de caraca e resultado ekonomico de corderios criados Em creep feeding corn silagem de graos umidos de milho. R. Bras. Zootec. 2004, 33, 1048–1059. [Google Scholar] [CrossRef]
- Correddu, F.; Gaspa, G.; Pulina, G.; Nudda, A. Grape seed and linseed, alone and in combination, enhance unsaturated fatty acids in the milk of Sarda dairy sheep. J. Dairy Sci. 2015, 99, 1725–1735. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.K.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Enser, M.; Hallett, K.G.; Fursey, G.A.J.; Wood, J.D.; Harrington, G. Fatty acid content and composition of UK beef and lamb muscle in relation to productin system and implications for human nutrition. Meat Sci. 1998, 49, 329–341. [Google Scholar] [CrossRef]
- French, P.; Stanton, C.; Lawless, F.; ƠRiordan, E.G.; Monahan, F.J.; Caffery, P.J.; Maloney, A.P. Fatty acid composition, including conjugated linoleic acid, of intramuscular fat from steers offered grazed grass, grass silage or concentrate-based diets. J. Anim. Sci. 2000, 78, 2849–2855. [Google Scholar] [CrossRef]
- Fisher, A.V.; Enser, M.; Richardson, R.I.; Wood, J.D.; Nute, G.R.; Kurt, E.; Sinclair, L.A.; Wilkinson, R.G. Fatty acid composition and eating quality of lamb types derived from four diverse breed x production system. Meat Sci. 2000, 55, 141–147. [Google Scholar] [CrossRef]
- Oprządek, J.; Oprządek, A. Modyfikacja składu kwasów tłuszczowych w tłuszczu mięsa przeżuwaczy. Med. Wet. 2003, 59, 492–495. (In Polish) [Google Scholar]
- McKeown, L.E.; Chaves, A.V.; Oba, M.; Dugan, M.E.R.; Okine, E.; McAllister, T.A. Effects of corn- wheat- or triticale dry distillers grains with solubles on in vitro fermentation, growth performance and carcass traits of lambs. Can. J. Anim. Sci. 2010, 90, 99–108. [Google Scholar] [CrossRef]
- Sosin, E.; Borowiec, F.; Strzetelski, J.; Smulikowska, S. The effect of feeding regular or low a-linolenic acid linseed on the fatty acid composition of egg yolks. J. Anim. Feed Sci. 2006, 15, 641–650. [Google Scholar] [CrossRef] [Green Version]
- Szewczyk, A.; Borowiec, F.; Hanczakowska, E. Fatty acid and cholesterol content of meat of broilers feed linseed oil or different linessed varietes. Ann. Anim. Sci. 2006, 1, 109–116. [Google Scholar]
- Chizzolini, R.; Zanardi, E.; Dorigoni, V.; Ghidini, S. Calorific value and cholesterol content of normal land low-fat meat and meat products. Trends Food Sci. Technol. 1999, 10, 119–128. [Google Scholar] [CrossRef]
Item | Feeds | |||
---|---|---|---|---|
High Moisture Corn (HMC) 1 | Triticale Grain (TG) | Soybean Meal | Meadow Hay | |
Dry matter, g/kg−1 FM | 586.3 | 886.9 | 880.5 | 854.7 |
Organic matter 2 | 983.8 | 978.8 | 934.6 | 964.9 |
Crude protein 2 | 110.1 | 122.1 | 467.7 | 141.0 |
Ether extract 2 | 46.7 | 15.5 | 11.5 | 11.5 |
Crude fiber 2 | 25.6 | 26.8 | 36.2 | 328.2 |
aNDF 2 | 80.3 | 185.8 | 83.8 | 695.4 |
ADF 2 | 31.5 | 35.0 | 59.2 | 358.2 |
ADL 2 | 13.5 | 15.2 | 14.2 | 43.9 |
Crude ash 2 | 16.2 | 21.2 | 65.4 | 35.1 |
Starch 2 | 618 | 647 | 69 | - |
Fatty acid profile (% of sums identified of acids) | ||||
C14:0 | 0.06 | 0.22 | 0.17 | 1.35 |
C15:0 | 0.03 | 0.19 | 0.09 | 0.87 |
C16:0 | 15.09 | 19.61 | 15.41 | 29.45 |
C16:1 | 0.20 | 0.18 | 0.12 | 1.32 |
C17:0 | 0.12 | 0.13 | 0.15 | 0.97 |
C17:1 | 0.05 | 0.11 | 0.07 | - |
C18:0 | 2.18 | 1.68 | 3.98 | 4.05 |
C18:1 | 27.65 | 12.23 | 17.32 | 8.59 |
C18:2 | 52.84 | 57.59 | 52.99 | 28.65 |
C18:3 | 1.32 | 7.64 | 9.16 | 24.75 |
C20:0 | 0.46 | 0.25 | 0.34 | - |
C20:1 | - | 0.05 | 0.07 | - |
C20:2 | - | - | 0.05 | - |
SFA | 17.94 | 22.21 | 20.19 | 36.69 |
UFA | 82.06 | 77.79 | 79.81 | 63.31 |
MUFA | 27.90 | 12.57 | 17.61 | 9.91 |
PUFA | 54.17 | 65.23 | 62.20 | 53.40 |
Item | Diets | |||
---|---|---|---|---|
HMC | TG | |||
50% | 75% | 50% | 75% | |
Ingredient | ||||
HMC | 50 | 75 | - | - |
TG | - | - | 50 | 75 |
Soybean meal | 15 | 15 | 15 | 15 |
Meadow hay | 35 | 10 | 35 | 10 |
Chemical composition | ||||
DM, g/kg−1 FM | 725.1 | 656.0 | 875.5 | 881.2 |
OM 1 | 967.0 | 979.6 | 967.4 | 972.3 |
CP 1 | 176.0 | 169.2 | 180.9 | 178.3 |
EE 1 | 29.1 | 37.9 | 13.5 | 14.5 |
Starch 1 | 319.7 | 474.4 | 339.7 | 500.2 |
CF 1 | 131.8 | 55.3 | 130.5 | 55.4 |
aNDF 1 | 293.3 | 137.8 | 343.2 | 216.1 |
ADF 1 | 148.6 | 66.1 | 148.3 | 67.8 |
ME, MJ | 11.67 | 12.32 | 11.38 | 11.66 |
Item | Group | SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|
HMC | TG | Grain | Level | GxL | ||||
50% | 75% | 50% | 75% | |||||
n | 6 | 6 | 6 | 6 | ||||
Intake | ||||||||
DM, g/day | 1019 | 889 | 939 | 935 | 0.031 | ns | ns | ns |
g/LW0.75/day | 76.1 | 71.4 | 71.8 | 73.1 | 0.015 | ns | ns | ns |
ME, MJ/day | 11.91 | 10.95 | 10.68 | 10.98 | 0.390 | ns | ns | ns |
Nutrient digestibility, % | ||||||||
CP | 71.07 | 68.17 | 70.50 | 68.24 | 1.128 | ns | ns | ns |
EE | 78.62 | 87.43 Aa | 60.96 B | 65.03 B | 2.575 | <0.01 | 0.035 | ns |
CF | 53.39 | 39.53 Ba | 46.74 AC | 30.54 Bb | 2.189 | 0.01 | <0.01 | ns |
aNDF | 61.40 | 45.29 Ba | 53.32 A | 35.02 Bb | 2.485 | 0.01 | <0.01 | ns |
OM | 77.04 | 79.20 | 76.56 | 77.68 | 0.82 | ns | ns | ns |
Digested, g/day | ||||||||
OM | 759 | 690 | 695 | 706 | 0.021 | ns | ns | ns |
CP | 127 | 105 | 123 | 114 | 4.032 | ns | <0.05 | ns |
CF | 71 A | 19 B | 59 A | 16 B | ns | <0.01 | ns | |
aNDF | 183 A | 55 B | 172 A | 71 B | 23 | ns | <0.01 | ns |
Fat | 24 A | 30 A | 8 B | 9 B | <0.01 | ns | ns | |
Nitrogen balance, g/day | ||||||||
N intake | 27.87 | 23.91 B | 29.99 A | 27.59 | 0.755 | ns | <0.05 | ns |
N excreted | ||||||||
in feces | 8.08 | 7.02 b | 8.94 a | 7.76 | 0.398 | ns | <0.05 | ns |
in urine | 9.91 | 7.99 b | 11.37 a | 1021 | 0.599 | ns | ns | ns |
N digested | 19.79 a | 16.89 b | 21.22 a | 19.83 a | 0.713 | ns | <0.01 | ns |
N retention | 9.88 | 8.90 | 9.68 | 9.62 | 0.566 | ns | ns | ns |
N retention/N intake, % | 35.44 | 37.20 | 32.08 | 34.90 | 2.45 | ns | ns | ns |
N retention/N digested, % | 49.91 | 52.69 | 45.59 | 48.51 | 3.24 | ns | ns | ns |
Plasma metabolites, mmol/l | ||||||||
Urea-N | 6.95 b | 6.39 b | 8.14 a | 8.28 a | 0.156 | <0.01 | <0.01 | ns |
Glucose | 3.21 | 3.43 | 3.38 | 3.51 | 0.025 | ns | ns | ns |
Item | Diet | SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|
HMC | TG | Grain | Level | GxL | ||||
50% | 75% | 50% | 75% | |||||
Body weight, kg | ||||||||
Initial | 25.83 | 25.00 | 25.75 | 25.03 | 0.791 | ns | ns | ns |
Final | 35.08 | 32.25 | 33.67 | 33.50 | 0.800 | ns | ns | ns |
Average daily gain, g/day | ||||||||
Days 1–15 | 161 a | 93 Bb | 182 A | 183 A | 11.79 | 0.009 | ns | ns |
Days 16–25 | 193 ac | 118 Bbd | 230 Aab | 142 Cd | 14.18 | ns | 0.02 | ns |
Days 26–35 | 298 A | 260 a | 170 Bb | 296 A | 17.11 | ns | ns | 0.01 |
Days 36–45 | 217 A | 230 A | 127 B | 183 | 13.02 | 0.006 | ns | ns |
Days 1–45 | 205 | 161 | 178 | 194 | 7.53 | ns | ns | 0.044 |
Carcass dressing percentage, % | 46.57 | 49.43 | 46.11 | 46.17 | 0.95 | ns | ns | ns |
Carcass weight, kg | 16.33 | 19.90 | 15.43 | 15.42 | 0.42 | ns | ns | ns |
Carcass gain, kg | 12.00 | 12.30 | 11.59 | 11.51 | 0.39 | ns | ns | ns |
Efficiency | ||||||||
DM, kg | ||||||||
per kg of BW gain | 4.92 b | 5.52 Aac | 5.36 a | 4.86 Bbc | 0.09 | ns | ns | 0.011 |
per kg of CW gain | 3.79 | 3.27 | 3.56 | 3.67 | 0.08 | ns | ns | ns |
ME, MJ | ||||||||
per kg of BW gain | 57.28 b | 67.98 a | 61.14 b | 60.18 b | 1.94 | ns | ns | ns |
per kg of CW gain | 44.16 | 40.00 | 40.47 | 42.61 | 1.40 | ns | ns | ns |
Crude protein, g | ||||||||
per kg of BW gain | 864 | 933 | 972 | 865 | 19.22 | ns | ns | ns |
per kg of CW gain | 666 | 549 | 643 | 652 | 17.81 | ns | ns | ns |
Item | Diet | SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|
HMC | TG | Grain | Level | GxL | ||||
50% | 75% | 50% | 75% | |||||
C10:0 | 0.28 | 0.28 | 0.26 | 0.26 | 0.008 | ns | ns | ns |
C12:0 | 0.68 | 0.72 | 0.59 | 0.59 | 0.027 | 0.034 | ns | ns |
C14:0 | 5.58 | 6.29 a | 5.33 b | 5.66 | 0.157 | ns | ns | ns |
C14:1 | 0.20 | 0.23 | 0.23 | 0.24 | 0.009 | ns | ns | ns |
C15:0 | 0.68 | 0.64 | 0.68 | 0.66 | 0.020 | ns | ns | ns |
C16:0 | 28.13 | 29.13 a | 27.42 b | 28.23 | 0.268 | ns | ns | ns |
C16:1 | 2.36 b | 2.47 | 2.64 | 2.70 a | 0.053 | 0.012 | ns | ns |
C17:0 | 1.28 B | 1.25 Bb | 1.43 a | 1.56 A | 0.038 | <0.01 | ns | ns |
C17:1 | 1.01 C | 1.05 C | 1.21 B | 1.37 A | 0.035 | <0.01 | ns | ns |
C18:0 | 17.64 Aa | 15.11 b | 16.29 | 14.65 B | 0.393 | ns | 0.005 | ns |
C18:1 | 35.50 | 37.51 | 37.68 | 37.85 | 0.452 | ns | ns | ns |
C18:2 | 4.17 | 3.42 | 3.87 | 3.84 | 0.124 | ns | ns | ns |
CLA | 0.31 b | 0.39 Aa | 0.32 b | 0.26 B | 0.014 | 0.023 | ns | 0.005 |
C18:3 | 0.52 a | 0.44 Bb | 0.58 A | 0.57 A | 0.016 | <0.01 | ns | ns |
C20:0 | 0.16 | 0.13 | 0.13 | 0.14 | 0.004 | ns | ns | ns |
C20:1 | 0.09 b | 0.09 b | 0.10 a | 0.11 a | 0.003 | 0.003 | ns | ns |
C20:2 | 0.04 | 0.03 | 0.04 | 0.04 | 0.002 | ns | ns | ns |
C20:4 | 1.14 a | 0.64 b | 0.97 | 1.04 | 0.078 | ns | ns | ns |
C20:5 | 0.04 | 0.03 b | 0.05 | 0.06 a | 0.005 | 0.011 | ns | ns |
C22:0 | 0.23 | 0.16 | 0.18 | 0.20 | 0.013 | ns | ns | 0.018 |
SFA | 54.63 | 53.17 | 52.13 | 51.92 | 0.532 | ns | ns | ns |
MUFA | 39.16 | 41.35 | 41.85 | 42.29 | 0.561 | ns | ns | ns |
PUFA | 6.21 a | 4.95 b | 5.85 | 5.79 | 0.190 | ns | ns | ns |
n-3 | 0.55 a | 0.46 Bb | 0.63 A | 0.63 A | 0.020 | 0.01 | ns | ns |
n-6 | 5.34 a | 4.10 b | 4.90 | 4.90 | 0.200 | ns | ns | ns |
n-6/n-3 | 8.94 | 8.91 | 7.78 | 7.78 | 0.159 | ns | ns | ns |
UFA | 45.37 | 46.30 | 47.69 | 48.08 | 0.544 | ns | ns | ns |
DFA | 63.00 | 61.40 b | 63.98 a | 62.72 | 0.381 | ns | ns | ns |
OFA | 37.00 | 38.60 a | 36.03 b | 37.28 | 0.358 | ns | 0.044 | ns |
Total cholesterol | 62.53 | 58.16 B | 67.94 | 72.49 A | 1.920 | 0.007 | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purwin, C.; Opyd, P.M.; Baranowska, M.; Borsuk-Stanulewicz, M. The Effect of Diets Containing High-Moisture Corn or Triticale Grain on Animal Performance and the Fatty Acid Composition of Lamb Muscles. Animals 2022, 12, 3130. https://doi.org/10.3390/ani12223130
Purwin C, Opyd PM, Baranowska M, Borsuk-Stanulewicz M. The Effect of Diets Containing High-Moisture Corn or Triticale Grain on Animal Performance and the Fatty Acid Composition of Lamb Muscles. Animals. 2022; 12(22):3130. https://doi.org/10.3390/ani12223130
Chicago/Turabian StylePurwin, Cezary, Paulina Maria Opyd, Maja Baranowska, and Marta Borsuk-Stanulewicz. 2022. "The Effect of Diets Containing High-Moisture Corn or Triticale Grain on Animal Performance and the Fatty Acid Composition of Lamb Muscles" Animals 12, no. 22: 3130. https://doi.org/10.3390/ani12223130
APA StylePurwin, C., Opyd, P. M., Baranowska, M., & Borsuk-Stanulewicz, M. (2022). The Effect of Diets Containing High-Moisture Corn or Triticale Grain on Animal Performance and the Fatty Acid Composition of Lamb Muscles. Animals, 12(22), 3130. https://doi.org/10.3390/ani12223130