The Effects of Preslaughter Electrical Stunning on Serum Cortisol and Meat Quality Parameters of a Slow-Growing Chinese Chicken Breed
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Animal Slaughter and Sample Collection
2.3. Physical Properties of the Meat
2.3.1. Hemorrhage
2.3.2. pH
2.3.3. Drip Loss
2.3.4. Cooking Loss
2.3.5. Shear Force
2.4. Chemical Properties of the Meat
2.4.1. Cortisol Assays
2.4.2. Inosine Monophosphate Concentration
2.4.3. Reducing Sugar Content
2.5. Statistical Analysis
3. Results
3.1. Physical Properties of the Meat
3.2. Chemical Properties of the Blood and Meat
4. Discussion
4.1. Physical Properties of the Meat
4.2. Chemical Properties of the Meat
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, X.; Hamer, R.; Meng, Q.; Wang, P.; Meng, F.; Li, H.; Feng, J.; Xue, D.; Zhou, Y. Animal welfare development in China. Science 2012, 338, 1150–1151. [Google Scholar] [CrossRef] [PubMed]
- De Jonge, J.; van Trijp, H.C. The impact of broiler production system practices on consumer perceptions of animal welfare. Poultry Sci. 2013, 92, 3080–3095. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, S.; Esteves, A.; Oliveira, I.; Mitchell, M.; Stilwell, G. Impact of pre-slaughter factors on welfare of broilers. Veterinary Animal Sci. 2020, 10, 100146. [Google Scholar] [CrossRef] [PubMed]
- Berg, C.; Raj, M. A Review of Different Stunning Methods for Poultry-Animal Welfare Aspects (Stunning Methods for Poultry). Animals 2015, 5, 1207–1219. [Google Scholar] [CrossRef] [PubMed]
- Fuseini, A.; Knowles, T.G.; Lines, J.A.; Hadley, P.J.; Wotton, S.B. The stunning and slaughter of cattle within the EU: A review of the current situation with regard to the halal market. Animal Welfare 2016, 25, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Zulkifli, I.; Goh, Y.M.; Norbaiyah, B.; Sazili, A.Q.; Lotfi, M.; Soleimani, A.F.; Small, A.H. Changes in blood parameters and electroencephalogram of cattle as affected by different stunning and slaughter methods in cattle. Animal Prod. Sci. 2014, 54. [Google Scholar] [CrossRef] [Green Version]
- Grist, A.; Lines, J.; Knowles, T.G.; Mason, C.; Wotton, S. The Use of a Mechanical Non-Penetrating Captive Bolt Device for the Euthanasia of Neonate Lambs. Animals 2018, 8, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llonch, P.; Rodríguez, P.; Casal, N.; Carreras, R.; Muñoz, I.; Dalmau, A.; Velarde, A. Electrical stunning effectiveness with current levels lower than 1 A in lambs and kid goats. Res. Veterinary Sci. 2014, 98. [Google Scholar] [CrossRef] [PubMed]
- Contreras, C.; Beraquet, N. Electrical Stunning, Hot Boning, and Quality of Chicken Breast Meat. Poultry Sci. 2001, 80, 501–507. [Google Scholar] [CrossRef]
- Raj, M. Recent developments in stunning and slaughter of poultry. World’s Poultry Sci. J. 2006, 62. [Google Scholar] [CrossRef]
- Girasole, M.; Chirollo, C.; Ceruso, M.; Vollano, L.; Chianese, A.; Cortesi, M.L. Optimization of Stunning Electrical Parameters to Improve Animal Welfare in a Poultry Slaughterhouse. Italian J. Food Safety 2015, 4, 4576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, P.; Schilling, M.W.; Williams, J.B.; Radhakrishnan, V.; Battula, V.; Christensen, K.; Vizzier-Thaxton, Y.; Schmidt, T.B. Broiler stunning methods and their effects on welfare, rigor mortis, and meat quality. World’s Poultry Sci. J. 2013, 69, 99–112. [Google Scholar] [CrossRef]
- Wilkins, L.J.; Gregory, N.G.; Wotton, S.B. Effectiveness of different electrical stunning regimens for turkeys and consequences for carcase quality. British Poultry Sci. 1999, 40, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Kissel, C.; Soares, A.; Oba, A.; Shimokomaki, M. Electrical Water Bath Stunning of Broilers: Effects on Breast Meat Quality. The J. Poultry Sci. 2015, 52, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Zhang, L.; Yue, H.Y.; Wu, S.G.; Zhang, H.J.; Ji, F.; Qi, G.H. Effect of electrical stunning current and frequency on meat quality, plasma parameters, and glycolytic potential in broilers. Poultry Sci. 2011, 90, 1823–1830. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, T.S.; Borges, T.D.; Rocha, R.M.M.; Figueira, P.T.; Luciano, F.B.; Macedo, R.E.F. Effect of electrical stunning frequency and current waveform in poultry welfare and meat quality. Poultry Sci. 2017, 96, 2956–2964. [Google Scholar] [CrossRef] [PubMed]
- Sirri, F.; Petracci, M.; Zampiga, M.; Meluzzi, A. Effect of EU electrical stunning conditions on breast meat quality of broiler chickens. Poultry Sci. 2017, 96, 3000–3004. [Google Scholar] [CrossRef]
- Sinclair, M.; Idrus, Z.; Burns, G.L.; Phillips, C.J.C. Livestock Stakeholder Willingness to Embrace Preslaughter Stunning in Key Asian Countries. Animals 2019, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Bostami, A.; Mun, H.S.; Dilawar, M.A.; Baek, K.S.; Yang, C.J. Carcass Characteristics, Proximate Composition, Fatty Acid Profile, and Oxidative Stability of Pectoralis major and Flexor cruris medialis Muscle of Broiler Chicken Subjected to with or without Level of Electrical Stunning, Slaughter, and Subsequent Bleeding. Animals 2021, 11, 1679. [Google Scholar] [CrossRef] [PubMed]
- Guan, R.F.; Lyu, F.; Chen, X.Q.; Ma, J.Q.; Jiang, H.; Xiao, C.G. Meat quality traits of four Chinese indigenous chicken breeds and one commercial broiler stock. J. Zhejiang Univ. Sci. B 2013, 14, 896–902. [Google Scholar] [CrossRef]
- Yan, C.; Xiao, J.; Chen, D.; Turner, S.; Li, Z.; Liu, H.; Liu, W.; Liu, J.; Xingbo, Z. Feed Restriction Induced Changes in Behavior, Corticosterone, and Microbial Programming in Slow- and Fast-Growing Chicken Breeds. Animals 2021, 11, 141. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yan, C.; Xiang, H.; Xiao, J.; Liu, J.; Zhang, H.; Wang, J.; Liu, H.; Zhang, X.; Ou, M.; et al. Transcriptome changes underlie alterations in behavioral traits in different types of chicken. J. Animal Sci. 2020, 98. [Google Scholar] [CrossRef] [PubMed]
- Hillebrand, S.J.W.; Lambooij, E.; Veerkamp, C.H. The effects of alternative electrical and mechanical stunning methods on hemorrhaging and meat quality of broiler breast and thigh muscles. Poultry Sci. 1996, 75, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Honikel, K.-O. Reference methods supported by OECD and their use in Mediterranean meat products. Food Chem. 1997, 59, 573–582. [Google Scholar] [CrossRef]
- Pinheiro, R.S.B.; Francisco, C.L.; Lino, D.M.; Borba, H. Meat quality of Santa Inês lamb chilled-then-frozen storage up to 12 months. Meat Sci. 2019, 148, 72–78. [Google Scholar] [CrossRef]
- Bee, G.; Biolley, C.; Guex, G.; Herzog, W.; Lonergan, S.M.; Huff-Lonergan, E. Effects of available dietary carbohydrate and preslaughter treatment on glycolytic potential, protein degradation, and quality traits of pig muscles. J. Animal Sci. 2006, 84, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Prinz, S.; Van Oijen, G.; Ehinger, F.; Bessei, W.; Coenen, A. Electrical waterbath stunning: Influence of different waveform and voltage settings on the induction of unconsciousness and death in male and female broiler chickens. Poultry Sci. 2012, 91, 998–1008. [Google Scholar] [CrossRef]
- Knowles, T.G.; Warriss, P.D. Stress Physiology of Animals during Transport. Livestock Handling and Transport, 3rd ed.; CABI: Cambridge, MA, USA, 2007; pp. 312–328. [Google Scholar] [CrossRef]
- Pollard, J.C.; Littlejohn, R.P.; Asher, G.W.; Pearse, A.J.; Stevenson-Barry, J.M.; McGregor, S.K.; Manley, T.R.; Duncan, S.J.; Sutton, C.M.; Pollock, K.L.; et al. A comparison of biochemical and meat quality variables in red deer (Cervus elaphus) following either slaughter at pasture or killing at a deer slaughter plant. Meat Sci. 2002, 60, 85–94. [Google Scholar] [CrossRef]
- Bozzo, G.; Barrasso, R.; Marchetti, P.; Roma, R.; Samoilis, G.; Tantillo, G.; Ceci, E. Analysis of Stress Indicators for Evaluation of Animal Welfare and Meat Quality in Traditional and Jewish Slaughtering. Animals 2018, 8, 43. [Google Scholar] [CrossRef]
- Pettersen, M.K.; Nilsen-Nygaard, J.; Hansen, A.; Carlehög, M.; Liland, K.H. Effect of Liquid Absorbent Pads and Packaging Parameters on Drip Loss and Quality of Chicken Breast Fillets. Foods 2021, 10, 1340. [Google Scholar] [CrossRef]
- Barbut, S.; Sosnicki, A.A.; Lonergan, S.M.; Knapp, T.; Ciobanu, D.C.; Gatcliffe, L.J.; Huff-Lonergan, E.; Wilson, E.W. Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat. Meat Sci. 2008, 79, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Brambila, G.S.; Bowker, B.C.; Chatterjee, D.; Zhuang, H. Descriptive texture analyses of broiler breast fillets with the wooden breast condition stored at 4°C and −20°C. Poultry Sci. 2018, 97, 1762–1767. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.; Diaz, M.T.; Martínez, B.; García-Cachán, M.D. Effect of frozen storage conditions (temperature and length of storage) on microbiological and sensory quality of rustic crossbred beef at different states of ageing. Meat Sci. 2009, 83, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Warner, R.D.; Greenwood, P.L.; Pethick, D.W.; Ferguson, D.M. Genetic and environmental effects on meat quality. Meat Sci. 2010, 86, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Ono, T.; Kouguchi, T.; Ishikawa, A.; Nagano, A.J.; Takenouchi, A.; Igawa, T.; Tsudzuki, M. Quantitative trait loci mapping for the shear force value in breast muscle of F2 chickens. Poultry Sci. 2019, 98, 1096–1101. [Google Scholar] [CrossRef]
- Oliveira, R.F.; Mello, J.L.M.; Ferrari, F.B.; Souza, R.A.; Pereira, M.R.; Cavalcanti, E.N.F.; Villegas-Cayllahua, E.A.; Fidelis, H.A.; Giampietro-Ganeco, A.; Fávero, M.S.; et al. Effect of Aging on the Quality of Breast Meat from Broilers Affected by Wooden Breast Myopathy. Animals 2021, 11, 1960. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Thompson, J.M. The Degradation of Myofibrillar Proteins in Beef and Lamb Using Denaturing Electrophoresis—An Overview. J. Muscle Foods 2002, 13, 81–102. [Google Scholar] [CrossRef]
- Koohmaraie, M.; Geesink, G.H. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci. 2006, 74, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Masic, U.; Yeomans, M.R. Umami flavor enhances appetite but also increases satiety. Am. J. Clin. Nutr. 2014, 100, 532–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narukawa, M.; Morita, K.; Hayashi, Y. L-theanine elicits an umami taste with inosine 5′-monophosphate. Biosci. Biotechnol. Biochem. 2008, 72, 3015–3017. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-Y.; Kim, J.-M.; Byun, M.-J.; Kang, K.-S.; Kim, T.-H.; Hong, K.-C.; Lee, K.-T. Structure and polymorphisms of the 5′ regulatory region of porcine adenylate kinase 3-like 1 gene and effect on trait of meat quality. Genes Genom. 2011, 33, 147. [Google Scholar] [CrossRef]
- Matoba, T.; Kuchiba, M.; Kimura, M.; Hasegawa, K. Thermal Degradation of Flavor Enhancers, Inosine 5′-monophosphate, and Guanosine 5′-monophosphate in Aqueous Solution. J. Food Sci. 2006, 53, 1156–1159. [Google Scholar] [CrossRef]
- Jankord, R.; Herman, J.P. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann. N. Y. Acad. Sci. 2008, 1148, 64–73. [Google Scholar] [CrossRef]
- Spencer, R.L.; Deak, T. A users guide to HPA axis research. Physiol. Behav. 2017, 178, 43–65. [Google Scholar] [CrossRef]
- Gou, Z.; Abouelezz, K.F.M.; Fan, Q.; Li, L.; Lin, X.; Wang, Y.; Cui, X.; Ye, J.; Masoud, M.A.; Jiang, S.; et al. Physiological effects of transport duration on stress biomarkers and meat quality of medium-growing Yellow broiler chickens. Animal 2021, 15, 100079. [Google Scholar] [CrossRef]
- Levy, B.; Tasker, J. Synaptic regulation of the hypothalamic–pituitary–adrenal axis and its modulation by glucocorticoids and stress. Front. Cell. Neursci. 2012, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Meinert, L.; Schäfer, A.; Bjergegaard, C.; Aaslyng, M.D.; Bredie, W.L. Comparison of glucose, glucose 6-phosphate, ribose, and mannose as flavour precursors in pork; the effect of monosaccharide addition on flavour generation. Meat Sci. 2009, 81, 419–425. [Google Scholar] [CrossRef]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Tikk, M.; Tikk, K.; Tørngren, M.A.; Meinert, L.; Aaslyng, M.D.; Karlsson, A.H.; Andersen, H.J. Development of inosine monophosphate and its degradation products during aging of pork of different qualities in relation to basic taste and retronasal flavor perception of the meat. J. Agric. Food Chem. 2006, 54, 7769–7777. [Google Scholar] [CrossRef] [PubMed]
- Hewagalamulage, S.D.; Lee, T.K.; Clarke, I.J.; Henry, B.A. Stress, cortisol, and obesity: A role for cortisol responsiveness in identifying individuals prone to obesity. Domestic Animal Endocrinol. 2016, 56, S112–S120. [Google Scholar] [CrossRef] [PubMed]
Muscle Type | Slaughter Method (Mean ± SEM) | p-Value | |
---|---|---|---|
Stunning (S) | No Stunning (NS) | ||
Breast | |||
Hemorrhage score (1–3) | 1.15 ± 0.08 | 1.60 ± 1.15 | 0.013 |
pH | 5.95 ± 0.07 | 5.67 ± 0.04 | <0.001 |
Drip loss (%) | 3.21 ± 1.12 | 4.11 ± 1.11 | 0.002 |
Cooking loss (%) | 26.34 ± 1.26 | 29.48 ± 1.38 | 0.017 |
Shear force (kgf) | 22.69 ± 1.44 | 27.63 ± 1.28 | 0.012 |
Thigh | |||
Hemorrhage score (1–3) | 1.15 ± 0.08 | 1.35 ± 0.11 | 0.152 |
pH | 6.00 ± 0.03 | 5.88 ± 0.05 | 0.096 |
Drip loss (%) | 2.32 ± 1.45 | 3.11 ± 1.36 | 0.012 |
Cooking loss (%) | 32.16 ± 1.35 | 32.24 ± 1.68 | 0.301 |
Shear force (kgf) | 30.42 ± 1.38 | 41.81 ± 1.65 | <0.001 |
Compounds | Slaughter Method (Mean ± SEM) | p-Value | |
---|---|---|---|
Stunning (S) | No Stunning (NS) | ||
Cortisol (pg/mL) | 273.51 ± 40.99 | 504.29 ± 73.42 | 0.003 |
Breast | |||
IMP (nmol/L) | 214.05 ± 5.43 | 179.97 ± 5.80 | <0.001 |
Reducing sugar (μg/g) | 545.80 ± 61.01 | 519.12 ± 63.53 | 0.698 |
Thigh | |||
IMP (nmol/L) | 215.09 ± 5.53 | 201.18 ± 6.47 | 0.056 |
Reducing sugar (μg/g) | 402.38 ± 45.52 | 408.94 ± 61.61 | 0.174 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Yan, C.; Descovich, K.; Phillips, C.J.C.; Chen, Y.; Huang, H.; Wu, X.; Liu, J.; Chen, S.; Zhao, X. The Effects of Preslaughter Electrical Stunning on Serum Cortisol and Meat Quality Parameters of a Slow-Growing Chinese Chicken Breed. Animals 2022, 12, 2866. https://doi.org/10.3390/ani12202866
Li W, Yan C, Descovich K, Phillips CJC, Chen Y, Huang H, Wu X, Liu J, Chen S, Zhao X. The Effects of Preslaughter Electrical Stunning on Serum Cortisol and Meat Quality Parameters of a Slow-Growing Chinese Chicken Breed. Animals. 2022; 12(20):2866. https://doi.org/10.3390/ani12202866
Chicago/Turabian StyleLi, Wenpeng, Chao Yan, Kris Descovich, Clive J. C. Phillips, Yongyou Chen, Huijing Huang, Xuan Wu, Jian Liu, Siyu Chen, and Xingbo Zhao. 2022. "The Effects of Preslaughter Electrical Stunning on Serum Cortisol and Meat Quality Parameters of a Slow-Growing Chinese Chicken Breed" Animals 12, no. 20: 2866. https://doi.org/10.3390/ani12202866
APA StyleLi, W., Yan, C., Descovich, K., Phillips, C. J. C., Chen, Y., Huang, H., Wu, X., Liu, J., Chen, S., & Zhao, X. (2022). The Effects of Preslaughter Electrical Stunning on Serum Cortisol and Meat Quality Parameters of a Slow-Growing Chinese Chicken Breed. Animals, 12(20), 2866. https://doi.org/10.3390/ani12202866