Copy Number Variations in the MICALL2 and MOGAT2 Genes Are Associated with Ashidan Yak Growth Traits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Growth Trait Measurement
2.2. Nucleic Acid Isolation
2.3. Primer Design and Validation
2.4. MICALL2 and MOGAT2 CNV and Tissue Expression Analyses
2.5. Association Analyses
3. Results
3.1. Associations between Ashidan Yak CNVs and Growth Traits
3.2. MICALL2 and MOGAT2 Gene Expression Profiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prakash, B.S.; Sarkar, M.; Mondal, M. An update on reproduction in yak and mithun. Reprod. Domest. Anim. Zuchthyg. 2008, 43 (Suppl. S2), 217–223. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhou, X.; Ding, X.; Chu, M.; Liang, C.; Pei, J.; Xiong, L.; Bao, P.; Guo, X.; Yan, P. The Selection of Reference Genes for Quantitative Real-Time PCR in the Ashidan Yak Mammary Gland During Lactation and Dry Period. Animals 2019, 9, 943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Hu, Q.; Ma, H.; Wang, L.; Yang, Y.; Luo, W.; Qiu, Q. Genome-wide variation within and between wild and domestic yak. Mol. Ecol. Resour. 2014, 14, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Macé, A.; Kutalik, Z.; Valsesia, A. Copy Number Variation. Methods Mol. Biol. 2018, 1793, 231–258. [Google Scholar]
- Upadhyay, M.; da Silva, V.H.; Megens, H.J.; Visker, M.; Ajmone-Marsan, P.; Bâlteanu, V.A.; Dunner, S.; Garcia, J.F.; Ginja, C.; Kantanen, J.; et al. Distribution and Functionality of Copy Number Variation across European Cattle Populations. Front. Genet. 2017, 8, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Z.; Li, J.; Zhang, Z.; Chai, Y.; Liu, X.; Li, J.; Huang, Y.; Li, L.; Huang, W.; Yang, G.; et al. The relationship between MFN1 copy number variation and growth traits of beef cattle. Gene 2022, 811, 146071. [Google Scholar] [CrossRef]
- Bi, Y.; Feng, W.; Kang, Y.; Wang, K.; Yang, Y.; Qu, L.; Chen, H.; Lan, X.; Pan, C. Detection of mRNA Expression and Copy Number Variations Within the Goat Fec (B) Gene Associated With Litter Size. Front. Vet. Sci. 2021, 8, 758705. [Google Scholar] [CrossRef]
- Ge, F.; Jia, C.; Chu, M.; Liang, C.; Yan, P. Copy Number Variation of the CADM2 Gene and Its Association with Growth Traits in Yak. Animal 2019, 9, 1008. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Ge, F.; Ren, W.; Zhang, Y.; Wu, X.; Zhang, Q.; Ma, X.; Bao, P.; Guo, X.; Chu, M.; et al. Copy number variation of the HPGDS gene in the Ashidan yak and its associations with growth traits. Gene 2021, 772, 145382. [Google Scholar] [CrossRef]
- Min, P.; Zhang, L.; Wang, Y.; Qi, C.; Song, Y.; Bibi, M.; Zhang, Y.; Ma, Y.; Zhao, X.; Yu, M.; et al. MICAL-L2 Is Essential for c-Myc Deubiquitination and Stability in Non-small Cell Lung Cancer Cells. Front. Cell Dev. Biol. 2020, 8, 575903. [Google Scholar] [CrossRef]
- Giridharan, S.S.; Rohn, J.L.; Naslavsky, N.; Caplan, S. Differential regulation of actin microfilaments by human MICAL proteins. J. Cell Sci. 2012, 125, 614–624. [Google Scholar] [CrossRef]
- Rahajeng, J.; Giridharan, S.S.; Cai, B.; Naslavsky, N.; Caplan, S. Important relationships between Rab and MICAL proteins in endocytic trafficking. World J. Biol. Chem. 2010, 1, 254–264. [Google Scholar] [CrossRef]
- Giridharan, S.S.; Caplan, S. MICAL-family proteins: Complex regulators of the actin cytoskeleton. Antioxid. Redox Signal. 2014, 20, 2059–2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Nelson, D.W.; Banh, T.; Yen, M.I.; Yen, C.E. Intestine-specific expression of MOGAT2 partially restores metabolic efficiency in Mogat2-deficient mice. J. Lipid Res. 2013, 54, 1644–1652. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Guo, Y.; Liu, S.; Meng, Q. Genome-Wide Assessment Characteristics of Genes Overlapping Copy Number Variation Regions in Duroc Purebred Population. Front. Genet. 2021, 12, 753748. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, L.; Shi, T.; Zhou, Y.; Cai, H.; Lan, X.; Zhang, C.; Lei, C.; Chen, H. Copy number variations of MICAL-L2 shaping gene expression contribute to different phenotypes of cattle. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 2013, 24, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chai, Z.; Hu, D.; Ji, Q.; Xin, J.; Zhang, C.; Zhong, J. A global analysis of CNVs in diverse yak populations using whole-genome resequencing. BMC Genom. 2019, 20, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, R.P.; Bailey, D.R.; Shannon, N.H. Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci. 1993, 71, 1712–1720. [Google Scholar] [CrossRef]
- Ali, S.; Srivastava, A.K.; Chopra, R.; Aggarwal, S.; Garg, V.K.; Bhattacharya, S.N.; Bamezai, R.N. IL12B SNPs and copy number variation in IL23R gene associated with susceptibility to leprosy. J. Med. Genet. 2013, 50, 34–42. [Google Scholar] [CrossRef]
- Xie, C.; Tammi, M.T. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinform. 2009, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Chapman, J.R.; Waldenström, J. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies. PLoS ONE 2015, 10, e0141853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, S.; Dube, S.; Mir, A.; Qin, J.; Sun, G.; Ramakrishnan, R.; Jones, R.C.; Livak, K.J. Taking qPCR to a higher level: Analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution. Methods 2010, 50, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.L. The use of marker-assisted selection in animal breeding and biotechnology. Rev. Sci. Et Tech. Int. Off. Epizoot. 2005, 24, 379–391. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, C.; Yang, Z.; Li, M.; Chen, Z.; Xu, T.; Zhang, H.; Mao, Y. The polymorphism of bovine Cofilin-1 gene sequence variants and association analysis with growth traits in Qinchuan cattle. Anim. Biotechnol. 2022, 33, 63–69. [Google Scholar] [CrossRef]
- Wei, C.; Niu, Y.; Chen, B.; Qin, P.; Wang, Y.; Hou, D.; Li, T.; Li, R.; Wang, C.; Yin, H.; et al. Genetic effect of an InDel in the promoter region of the NUDT15 and its effect on myoblast proliferation in chickens. BMC Genom. 2022, 23, 138. [Google Scholar] [CrossRef] [PubMed]
- Toremurat, Z.; Ibrahim, E.E.; Huang, Y.Z.; Lan, X.; Pi, L.; Chaogetu, B.; Hu, L.; Chen, H. Copy number variations of TOP2B gene are associated with growth traits in Chinese sheep breeds. Anim. Biotechnol. 2022, 33, 85–89. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Shi, Q.T.; Shi, S.Y.; Yang, P.; Zhang, Z.J.; Lyu, S.J.; Chen, F.Y.; Xu, J.W.; Liu, X.; Li, Z.; et al. Association between copy number variation of SERPINA3-1 gene and growth traits in Chinese cattle. Anim. Biotechnol. 2022, 24, 1–8. [Google Scholar] [CrossRef]
- Li, X.; Ding, X.; Liu, L.; Yang, P.; Yao, Z.; Lei, C.; Chen, H.; Huang, Y.; Liu, W. Copy number variation of bovine DYNC1I2 gene is associated with body conformation traits in chinese beef cattle. Gene 2022, 810, 146060. [Google Scholar] [CrossRef]
- Yang, P.; Cai, C.; Niu, M.; Liu, X.; Wang, H.; Liang, H.; Cheng, B.; Zhang, Z.; Chen, F.; Xie, J.; et al. Effect of copy number variation of PLA2G2A gene to growth traits in Chinese cattle. Gene 2022, 809, 146014. [Google Scholar] [CrossRef]
- Yang, H.; Yue, B.; Yang, Y.; Tang, J.; Yang, S.; Qi, A.; Qu, K.; Lan, X.; Lei, C.; Wei, Z.; et al. Distribution of Copy Number Variation in SYT11 Gene and Its Association with Growth Conformation Traits in Chinese Cattle. Biology 2022, 11, 223. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, X.; Song, X.; An, Q.; Wang, D.; Zhang, Z.; Ding, X.; Yao, Z.; Wang, E.; Liu, X.; et al. Association between the copy number variation of CCSER1 gene and growth traits in Chinese Capra hircus (goat) populations. Anim. Biotechnol. 2022, 2, 1–7. [Google Scholar] [CrossRef]
- Shi, S.Y.; Li, L.J.; Zhang, Z.J.; Wang, E.Y.; Wang, J.; Xu, J.W.; Liu, H.B.; Wen, Y.F.; He, H.; Lei, C.Z.; et al. Copy number variation of MYLK4 gene and its growth traits of Capra hircus (goat). Anim. Biotechnol. 2020, 31, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Li, X.; Cheng, J.; Jiang, R.; Huang, R.; Wang, D.; Huang, Y.; Pi, L.; Hu, L.; Chen, H. Copy Number Variation of the PIGY Gene in Sheep and Its Association Analysis with Growth Traits. Animal 2020, 10, 688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, Y.; Cao, X.; Huang, Y.; Li, P.; Lan, X.; Buren, C.; Hu, L.; Chen, H. Copy number variations of the KAT6A gene are associated with body measurements of Chinese sheep breeds. Anim. Biotechnol. 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Pasterkamp, R.J.; Dai, H.N.; Terman, J.R.; Wahlin, K.J.; Kim, B.; Bregman, B.S.; Popovich, P.G.; Kolodkin, A.L. MICAL flavoprotein monooxygenases: Expression during neural development and following spinal cord injuries in the rat. Mol. Cell. Neurosci. 2006, 31, 52–69. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, M.S.; Bell, E.S.; Girard, M.; Chaineau, M.; Hamlin, J.N.; Daubaras, M.; Monast, A.; Park, M.; Hodgson, L.; McPherson, P.S. DENND2B activates Rab13 at the leading edge of migrating cells and promotes metastatic behavior. J. Cell Biol. 2015, 208, 629–648. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.L.; Farese, R.V., Jr. MGAT2, a monoacylglycerol acyltransferase expressed in the small intestine. J. Biol. Chem. 2003, 278, 18532–18537. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.W.; Gao, Y.; Spencer, N.M.; Banh, T.; Yen, C.L. Deficiency of MGAT2 increases energy expenditure without high-fat feeding and protects genetically obese mice from excessive weight gain. J. Lipid Res. 2011, 52, 1723–1732. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hu, Y.; Wang, X.; Jiang, Q.; Zhao, H.; Wang, J.; Ju, Z.; Yang, L.; Gao, Y.; Wei, X.; et al. Population Structure, and Selection Signatures Underlying High-Altitude Adaptation Inferred From Genome-Wide Copy Number Variations in Chinese Indigenous Cattle. Front. Genet. 2019, 10, 1404. [Google Scholar] [CrossRef]
Level | Gene | Primer Pairs Sequence (5′-3′) | Product Length (bp) | Temperature (°C) |
---|---|---|---|---|
DNA | MICALL2 | F: CCGTCGTCTAATGCCAGTGA R: CATCTTTCCGCTGGACGGTA | 133 | 58.0 |
MOGAT2 |
F: CGCTGGTCAAGACTGCCTAT R: ACAGTGAGGAAAACCCGGTG | 126 | 60.0 | |
BTF3 | F: AACCAGGAGAAACTCGCCAA R: TTCGGTGAAATGCCCTCTCG | 166 | 60.0 | |
mRNA | MICALL2 | F: CCTCATGGTGGACTGGTTCC R: CAATGATGTCGCTTCGGCTG | 239 | 59.9 |
MOGAT2 | F: CGCTGGTCAAGACTGCCTAT R: CATCATCAGATGTGGGCGGA | 155 | 59.8 | |
GADPH | F: AATGAAAGGGCCATCACCATC R: GTGGTTCACGCCCATCACA | 204 | 58.8 |
Age | Growth Trait | CNV Type (Mean ± SD) | p-Value | ||
---|---|---|---|---|---|
Loss (142) | Normal (108) | Gain (65) | |||
6 months | Body weight (kg) | 82.70 ± 9.553 c | 86.54 ± 11.289 a | 84.10 ± 10.115 ab | 0.0151 * |
Withers height (cm) | 94.41 ± 4.767 | 94.69 ± 5.445 | 93.70 ± 6.338 | 0.504 | |
Body length (cm) | 90.91 ± 6.425 | 92.49 ± 7.564 | 93.03 ± 9.136 | 0.0971 | |
Chest girth (cm) | 124.46 ± 7.554 | 123.51 ± 7.693 | 124.13 ± 8.021 | 0.626 | |
12 months | Body weight (kg) | 82.28 ± 9.819 | 83.69 ± 11.064 | 81.61 ± 11.056 | 0.413 |
Withers height (cm) | 90.46 ± 4.034 | 90.52 ± 4.618 | 90.46 ± 3.942 | 0.992 | |
Body length (cm) | 95.81 ± 4.085 | 96.48 ± 5.482 | 95.73 ± 4.965 | 0.478 | |
Chest girth (cm) | 117.36 ± 4.848 | 117.47 ± 5.726 | 116.49 ± 4.700 | 0.447 | |
18 months | Body weight (kg) | 121.63 ± 13.048 | 124.49 ± 14.391 | 120.82 ± 11.663 | 0.226 |
Withers height (cm) | 100.42 ± 6.392 C | 102.55 ± 6.057 AB | 103.59 ± 5.308 A | 0.00138 ** | |
Body length (cm) | 101.10 ± 5.742 | 102.53 ± 6.349 | 102.20 ± 4.448 | 0.427 | |
Chest girth (cm) | 137.40 ± 10.263 | 138.99 ± 10.601 | 139.01 ± 9.882 | 0.149 | |
30 months | Body weight (kg) | 155.77 ± 14.586 | 156.62 ± 17.498 | 154.47 ± 13.713 | 0.771 |
Withers height (cm) | 99.26 ± 5.195 | 100.45 ± 5.126 | 99.46 ± 4.895 | 0.288 | |
Body length (cm) | 113.70 ± 5.022 a | 113.49 ± 6.260 ab | 111.20 ± 5.692 c | 0.031 * | |
Chest girth (cm) | 147.18 ± 7.638 ab | 148.32 ± 8.256 a | 144.09 ± 10.148 c | 0.038 * |
Age | Growth Trait | CNV Type (Mean ± SD) | p-Value | ||
---|---|---|---|---|---|
Loss (130) | Normal (87) | Gain (66) | |||
6 months | Body weight (kg) | 85.23 ± 11.014 ab | 85.51 ± 10.266 a | 81.85 ± 9.757 c | 0.0462 * |
Withers height (cm) | 94.12 ± 5.098 | 94.34 ± 6.117 | 94.72 ± 4.958 | 0.804 | |
Body length (cm) | 91.27 ± 6.768 | 92.26 ± 7.128 | 92.78 ± 8.543 | 0.353 | |
Chest girth (cm) | 124.18 ± 8.503 | 124.80 ± 6.725 | 123.00 ± 7.479 | 0.384 | |
12 months | Body weight (kg) | 83.43 ± 10.559 | 83.98 ± 9.891 | 80.89 ± 11.325 | 0.171 |
Withers height (cm) | 90.43 ± 4.315 | 90.66 ± 4.324 | 90.23 ± 4.109 | 0.833 | |
Body length (cm) | 96.09 ± 4.885 | 95.94 ± 4.793 | 95.61 ± 5.574 | 0.822 | |
Chest girth (cm) | 117.30 ± 5.631 | 117.42 ± 4.582 | 117.19 ± 5.279 | 0.959 | |
18 months | Body weight (kg) | 123.76 ± 12.689 | 123.09 ± 13.356 | 119.34 ± 15.277 | 0.162 |
Withers height (cm) | 100.38 ± 5.891 c | 102.20 ± 6.515 ab | 103.20 ± 5.381 a | 0.00725 ** | |
Body length (cm) | 101.94 ± 5.552 | 101.60 ± 5.908 | 101.56 ± 5.781 | 0.905 | |
Chest girth (cm) | 138.47 ± 10.138 | 137.80 ± 10.531 | 138.07 ± 10.473 | 0.898 | |
30 months | Body weight (kg) | 157.26 ± 14.992 ab | 158.42 ± 14.525 a | 151.16 ± 17.188 c | 0.0328 * |
Withers height (cm) | 99.38 ± 5.006 | 99.98 ± 5.234 | 99.45 ± 4.655 | 0.738 | |
Body length (cm) | 113.58 ± 5.454 | 113.63 ± 5.943 | 112.59 ± 6.130 | 0.848 | |
Chest girth (cm) | 146.67 ± 8.325 | 147.44 ± 8.779 | 147.18 ± 8.215 | 0.562 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Huang, C.; Dai, R.; Ren, W.; Li, X.; Wu, X.; Ma, X.; Chu, M.; Bao, P.; Guo, X.; et al. Copy Number Variations in the MICALL2 and MOGAT2 Genes Are Associated with Ashidan Yak Growth Traits. Animals 2022, 12, 2779. https://doi.org/10.3390/ani12202779
Liu M, Huang C, Dai R, Ren W, Li X, Wu X, Ma X, Chu M, Bao P, Guo X, et al. Copy Number Variations in the MICALL2 and MOGAT2 Genes Are Associated with Ashidan Yak Growth Traits. Animals. 2022; 12(20):2779. https://doi.org/10.3390/ani12202779
Chicago/Turabian StyleLiu, Modian, Chun Huang, Rongfeng Dai, Wenwen Ren, Xinyi Li, Xiaoyun Wu, Xiaoming Ma, Min Chu, Pengjia Bao, Xian Guo, and et al. 2022. "Copy Number Variations in the MICALL2 and MOGAT2 Genes Are Associated with Ashidan Yak Growth Traits" Animals 12, no. 20: 2779. https://doi.org/10.3390/ani12202779
APA StyleLiu, M., Huang, C., Dai, R., Ren, W., Li, X., Wu, X., Ma, X., Chu, M., Bao, P., Guo, X., Pei, J., Xiong, L., Yan, P., & Liang, C. (2022). Copy Number Variations in the MICALL2 and MOGAT2 Genes Are Associated with Ashidan Yak Growth Traits. Animals, 12(20), 2779. https://doi.org/10.3390/ani12202779