A Modified Memetic Algorithm with an Application to Gene Selection in a Sheep Body Weight Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. The Genetic Algorithm
Algorithm 1 Initialization of individual |
|
Algorithm 2 Improved splicing method |
|
2.2. The Proposed Method
3. Materials
3.1. The Investigated Data
3.2. The Fitness Function Setting
3.3. The Hyper-Parameter Setting
4. Results and Discussion
4.1. SVR vs. Other Heuristic Methods
4.2. Proposed Method vs. ABSS
4.3. Proposed Method vs. GA
4.4. Proposed Method vs. Other Heuristic Algorithms
4.5. Selected Genes
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mafarja, M.; Mirjalili, S. Whale optimization approaches for wrapper feature selection. Appl. Soft Comput. 2018, 62, 441–453. [Google Scholar] [CrossRef]
- Liu, H.; Motoda, H. Feature Selection for Knowledge Discovery and Data Mining; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 454. [Google Scholar]
- Li, B.; Zhang, N.; Wang, Y.G.; George, A.W.; Reverter, A.; Li, Y. Genomic prediction of breeding values using a subset of SNPs identified by three machine learning methods. Front. Genet. 2018, 9, 237. [Google Scholar] [CrossRef]
- Pashaei, E.; Pashaei, E. Gene selection using hybrid dragonfly black hole algorithm: A case study on RNA-seq COVID-19 data. Anal. Biochem. 2021, 627, 114242. [Google Scholar] [CrossRef]
- Pashaei, E.; Pashaei, E. Gene selection using intelligent dynamic genetic algorithm and random forest. In Proceedings of the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2019; pp. 470–474. [Google Scholar]
- Palma-Mendoza, R.J.; Rodriguez, D.; De-Marcos, L. Distributed reliefF-based feature selection in spark. Knowl. Inf. Syst. 2018, 57, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Wang, Y.; Jiang, X.; Chen, F.; Lu, W.C. A cancer gene selection algorithm based on the KS test and CFS. BioMed Res. Int. 2017, 2017, 1645619. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Paul, S.; Hong, Z.; Wang, Y.G. Significance tests for analyzing gene expression data with small sample sizes. Bioinformatics 2019, 35, 3996–4003. [Google Scholar] [CrossRef]
- Nakariyakul, S. A hybrid gene selection algorithm based on interaction information for microarray-based cancer classification. PLoS ONE 2019, 14, e0212333. [Google Scholar] [CrossRef] [PubMed]
- Alzubi, R.; Ramzan, N.; Alzoubi, H.; Amira, A. A hybrid feature selection method for complex diseases SNPs. IEEE Access 2017, 6, 1292–1301. [Google Scholar] [CrossRef]
- Pirgazi, J.; Alimoradi, M.; Abharian, T.E.; Olyaee, M.H. An efficient hybrid filter-wrapper metaheuristic-based gene selection method for high dimensional datasets. Sci. Rep. 2019, 9, 18580. [Google Scholar] [CrossRef]
- Mustaqeem, A.; Anwar, S.M.; Majid, M.; Khan, A.R. Wrapper method for feature selection to classify cardiac arrhythmia. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; pp. 3656–3659. [Google Scholar]
- Lv, J.; Peng, Q.; Chen, X.; Sun, Z. A multi-objective heuristic algorithm for gene expression microarray data classification. Expert Syst. Appl. 2016, 59, 13–19. [Google Scholar] [CrossRef]
- Shukla, A.K.; Tripathi, D.; Reddy, B.R.; Chandramohan, D. A study on metaheuristics approaches for gene selection in microarray data: Algorithms, applications and open challenges. Evol. Intell. 2020, 13, 309–329. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.G.; Burrage, K.; Tian, Y.C.; Lawson, B.; Ding, Z. An improved firefly algorithm for global continuous optimization problems. Expert Syst. Appl. 2020, 149, 113340. [Google Scholar] [CrossRef]
- Motieghader, H.; Najafi, A.; Sadeghi, B.; Masoudi-Nejad, A. A hybrid gene selection algorithm for microarray cancer classification using genetic algorithm and learning automata. Inform. Med. Unlocked 2017, 9, 246–254. [Google Scholar] [CrossRef]
- Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv. (CSUR) 2013, 45, 1–33. [Google Scholar] [CrossRef]
- Oh, I.S.; Lee, J.S.; Moon, B.R. Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1424–1437. [Google Scholar] [PubMed] [Green Version]
- Rezapoor Mirsaleh, M.; Meybodi, M.R. Balancing exploration and exploitation in memetic algorithms: A learning automata approach. Comput. Intell. 2018, 34, 282–309. [Google Scholar] [CrossRef]
- Ghosh, M.; Begum, S.; Sarkar, R.; Chakraborty, D.; Maulik, U. Recursive memetic algorithm for gene selection in microarray data. Expert Syst. Appl. 2019, 116, 172–185. [Google Scholar] [CrossRef]
- Zhu, Z.; Ong, Y.S.; Dash, M. Wrapper–filter feature selection algorithm using a memetic framework. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2007, 37, 70–76. [Google Scholar] [CrossRef]
- Guha, R.; Ghosh, M.; Kapri, S.; Shaw, S.; Mutsuddi, S.; Bhateja, V.; Sarkar, R. Deluge based genetic algorithm for feature selection. Evol. Intell. 2021, 14, 357–367. [Google Scholar] [CrossRef]
- Ghosh, M.; Malakar, S.; Bhowmik, S.; Sarkar, R.; Nasipuri, M. Feature selection for handwritten word recognition using memetic algorithm. In Advances in Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2019; pp. 103–124. [Google Scholar]
- Zhu, J.; Wen, C.; Zhu, J.; Zhang, H.; Wang, X. A polynomial algorithm for best-subset selection problem. Proc. Natl. Acad. Sci. USA 2020, 117, 33117–33123. [Google Scholar] [CrossRef]
- Desale, K.S.; Ade, R. Genetic algorithm based feature selection approach for effective intrusion detection system. In Proceedings of the 2015 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 8–10 January 2015; pp. 1–6. [Google Scholar]
- Al-Betar, M.A.; Hammouri, A.I.; Awadallah, M.A.; Abu Doush, I. Binary β-hill climbing optimizer with S-shape transfer function for feature selection. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 7637–7665. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M.; Hassanien, A.E.; Elhoseny, M.; Gunasekaran, M. A new binary salp swarm algorithm: Development and application for optimization tasks. Neural Comput. Appl. 2019, 31, 1641–1663. [Google Scholar] [CrossRef]
- Santana, C.J., Jr.; Macedo, M.; Siqueira, H.; Gokhale, A.; Bastos-Filho, C.J. A novel binary artificial bee colony algorithm. Future Gener. Comput. Syst. 2019, 98, 180–196. [Google Scholar] [CrossRef]
- Hafez, A.I.; Zawbaa, H.M.; Emary, E.; Hassanien, A.E. Sine cosine optimization algorithm for feature selection. In Proceedings of the 2016 International Symposium on Innovations in Intelligent Systems and Applications (INISTA), Sinaia, Romania, 2–5 August 2016; pp. 1–5. [Google Scholar]
- Xue, B.; Zhang, M.; Browne, W.N. New fitness functions in binary particle swarm optimisation for feature selection. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8. [Google Scholar]
- Mirjalili, S. Genetic algorithm. In Evolutionary Algorithms and Neural Networks; Springer: Berlin/Heidelberg, Germany, 2019; pp. 43–55. [Google Scholar]
- Razali, N.M.; Geraghty, J. Genetic algorithm performance with different selection strategies in solving TSP. In Proceedings of the World Congress on Engineering; International Association of Engineers Hong Kong: Hong Kong, China, 2011; Volume 2, pp. 1–6. [Google Scholar]
- Merz, P.; Freisleben, B. Fitness landscapes and memetic algorithm design. New Ideas Optim. 1999, 1999, 245–260. [Google Scholar]
- De Jong, K.A.; Spears, W.M. A formal analysis of the role of multi-point crossover in genetic algorithms. Ann. Math. Artif. Intell. 1992, 5, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Gebreselassie, G.; Berihulay, H.; Jiang, L.; Ma, Y. Review on genomic regions and candidate genes associated with economically important production and reproduction traits in sheep (Ovies aries). Animals 2020, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Song, X.; Shan, H.; Jiang, J.; Xiong, P.; Wu, J.; Shi, F.; Jiang, Y. Genome-wide association study of body weights in Hu sheep and population verification of related single-nucleotide polymorphisms. Front. Genet. 2020, 11, 588. [Google Scholar] [CrossRef]
- Abdulqader, D.M.; Abdulazeez, A.M.; Zeebaree, D.Q. Machine learning supervised algorithms of gene selection: A review. Mach. Learn. 2020, 62, 233–244. [Google Scholar]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv. (CSUR) 2017, 50, 1–45. [Google Scholar] [CrossRef]
- Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Ding, Z.; Tian, Y.C.; Tang, M.; Li, Y.; Wang, Y.G.; Zhou, C. Profile-guided three-phase virtual resource management for energy efficiency of data centers. IEEE Trans. Ind. Electron. 2019, 67, 2460–2468. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Ding, Z. Improved grey model by dragonfly algorithm for chinese tourism demand forecasting. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 199–209. [Google Scholar]
Type of BW | Number of Genes | Number of Instances |
---|---|---|
Birth weight | 54,183 | 240 |
Six-month weight | 54,183 | 240 |
Weaning weight | 54,183 | 240 |
Type of BW | C | T | N | s | ||||
---|---|---|---|---|---|---|---|---|
Birth Weight | 30 | 0.5 | 0.1 | 0.01 | 30 | 20 | 2000 | |
Six-Month Weight | 50 | 0.5 | 1 | 0.01 | 0.01 | 30 | 20 | 2000 |
Weaning Weight | 50 | 0.2 | 0.1 | 0.01 | 30 | 20 | 2000 |
Birth Weight | Six-Month Weight | Weaning Weight | ||||
---|---|---|---|---|---|---|
Method | MSE | NumF | MSE | NumF | MSE | NumF |
SVR | 0.2393 | All | 5.6800 | All | 15.9099 | All |
SWA | 0.2392 | 2053 | 5.6424 | 1947 | 15.8819 | 2018 |
ABC | 0.2390 | 1890 | 5.6264 | 2025 | 15.8762 | 1947 |
SCA | 0.2391 | 1954 | 5.6433 | 2022 | 15.8815 | 1964 |
GA | 0.2393 | 1995 | 5.6470 | 1905 | 15.8831 | 1952 |
BPSO | 0.2392 | 1923 | 5.6464 | 2080 | 15.8835 | 1922 |
-hill climbing | 0.2389 | 1928 | 5.6385 | 1995 | 15.8799 | 1984 |
ABSS | 0.2292 | 9 | 5.8182 | 9 | 15.8993 | 9 |
Proposed method | 0.2213 | 28 | 5.4026 | 50 | 15.7727 | 48 |
Type of BW | Selected Genes |
---|---|
Birth Weight | OAR1_103547224.1,OAR1_156571804.1,OAR1_174344110.1, OAR1_200004020.1,OAR1_246870800.1,OAR1_254887296.1, OAR11_46573882.1,OAR13_25820059.1,OAR18_41747912.1, OAR19_10882333.1,OAR25_30336172.1,OAR5_63048172.1, OAR6_31217798.1,OAR6_73014482.1,OAR9_1294177.1, OARX_10743378.1,OARX_26036045.1,OARX_8338946.1, s02618.1,s12587.1,s15089.1,s16141.1,s17567.1, s44639.1,s50831.1,s64861.1,s70488.1,s75788.1 |
Six-Month Weight | OAR1_103051402.1,OAR1_138627292.1,OAR1_214050298.1, OAR1_225069797.1,OAR1_252270534.1,OAR1_57838218.1, OAR1_72149006.1,OAR11_43264793_X.1,OAR13_22347021.1, OAR13_9894722.1,OAR16_60244426.1,OAR17_77852604.1, OAR19_33417302.1,OAR2_149404956.1,OAR2_16857269.1, OAR2_208372724.1,OAR20_12878785.1,OAR21_26401940.1, OAR23_40774711.1,OAR23_60556779.1,OAR25_1902197.1, OAR25_41478486.1,OAR26_24866987.1,OAR26_42053565.1, OAR26_48607412.1,OAR3_113183544.1,OAR3_119620209.1, OAR3_27184388.1,OAR3_88091256.1,OAR5_89062571.1, OAR7_73093180.1,OAR7_97719696.1,OAR8_73226726.1, OARUn.2169_4737.1,s01688.1,s01826.1,s06354.1, s07270.1,s13965.1,s14962.1,s17349.1,s35998.1, s36469.1,s52321.1,s56088.1,s64103.1,s70105.1, s71447.1,s72138.1,s72816.1 |
Weaning Weight | OAR1_174220716.1,OAR1_193099978.1,OAR1_208929906.1, OAR1_285395930.1,OAR1_286637130.1,OAR1_89153973_X.1, OAR11_8041122.1,OAR13_58349162.1,OAR13_63513054.1, OAR16_67669492.1,OAR17_12809597.1,OAR17_28751326.1, OAR17_32705384.1,OAR17_37807906.1,OAR18_55245057.1, OAR19_41399545.1,OAR2_127646604_X.1,OAR2_130068033.1, OAR2_161930539.1,OAR2_75375830_X.1,OAR20_5632451.1, OAR22_28398167.1,OAR25_25782002.1,OAR26_10130406.1, OAR3_158876220.1,OAR3_182544365.1,OAR3_195768950.1, OAR3_235746854.1,OAR3_88835595_X.1,OAR4_125875837.1, OAR4_93485963.1,OAR4_97984717.1,OAR5_42553589.1, OAR5_93445511_X.1,OAR6_121519387.1,OAR7_78566470.1, OAR8_36682621.1,OAR9_31965185.1,s07941.1,s26017.1, s44731.1,s48924.1,s50855.1,s56042.1,s56962.1, s59822.1,s65507.1,s65803.1 |
Proposed | SWA | ABC | SCA | GA | BPSO | -Hill Climbing | ABSS | |
---|---|---|---|---|---|---|---|---|
Rank | 1 | 5.17 | 2.67 | 4.67 | 7 | 6.5 | 3 | 6 |
Comparison | p-Values | Result |
---|---|---|
Proposed vs. SWA | 0.428 | is not rejected |
Proposed vs. ABC | 0.900 | is not rejected |
Proposed vs. SCA | 0.583 | is not rejected |
Proposed vs. GA | 0.055 | is rejected |
Proposed vs. BPSO | 0.108 | is rejected |
Proposed vs. -Hill Climbing | 0.900 | is not rejected |
Proposed vs. ABSS | 0.195 | is not rejected |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, M.; Wu, J.; Cai, F.; Wang, Y.-G. A Modified Memetic Algorithm with an Application to Gene Selection in a Sheep Body Weight Study. Animals 2022, 12, 201. https://doi.org/10.3390/ani12020201
Miao M, Wu J, Cai F, Wang Y-G. A Modified Memetic Algorithm with an Application to Gene Selection in a Sheep Body Weight Study. Animals. 2022; 12(2):201. https://doi.org/10.3390/ani12020201
Chicago/Turabian StyleMiao, Maoxuan, Jinran Wu, Fengjing Cai, and You-Gan Wang. 2022. "A Modified Memetic Algorithm with an Application to Gene Selection in a Sheep Body Weight Study" Animals 12, no. 2: 201. https://doi.org/10.3390/ani12020201
APA StyleMiao, M., Wu, J., Cai, F., & Wang, Y.-G. (2022). A Modified Memetic Algorithm with an Application to Gene Selection in a Sheep Body Weight Study. Animals, 12(2), 201. https://doi.org/10.3390/ani12020201