The Effects of Artificial Night Lighting on Tail Regeneration and Prey Consumption in a Nocturnal Salamander (Plethodon cinereus) and on the Behavior of Fruit Fly Prey (Drosophila virilis)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Maintenance of Animals
2.2. Light Chambers
2.3. Growth and Tail Regeneration in Red-Backed Salamanders
2.4. Consumption of Prey by Red-Backed Salamanders
2.5. Behavior of Fruit Fly Prey
3. Results
3.1. Growth and Tail Regeneration in Red-Backed Salamanders
3.2. Consumption of Fruit Fly Prey
3.3. Movement of Fruit Flies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The new world atlas of artificial sky brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef] [PubMed]
- Longcore, T.; Rich, C.D. Ecological light pollution. Front. Ecol. Environ. 2004, 2, 191–198. [Google Scholar] [CrossRef]
- Rich, C.; Longcore, T. Ecological Consequences of Artificial Night Lighting; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Navara, K.J.; Nelson, R.J. The dark side of light at night: Physiological, epidemiological, and ecological consequences. J. Pineal Res. 2007, 43, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J.; Duffy, J.P.; Gaston, S.; Bennie, J.; Davies, T.W. Human alteration of natural light cycles: Causes and ecological consequences. Oecologia 2014, 176, 917–931. [Google Scholar] [CrossRef] [PubMed]
- Russart, K.L.G.; Nelson, R.J. Artificial light alters behavior in laboratory and wild animals. J. Exp. Zool. 2018, 329, 401–408. [Google Scholar] [CrossRef]
- Falcón, J.; Torriglia, A.; Attia, D.; Viénot, F.; Gronfier, C.; Behar-Cohen, F.; Martinsons, C.; Hicks, D. Exposure to artificial light at night and the consequences for flora, fauna, and ecosystems. Front. Neurosci. 2020, 14, 602796. [Google Scholar] [CrossRef]
- Hölker, F.; Wolter, C.; Perkin, E.K.; Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 2010, 25, 681–682. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Hölker, F. Do artificially illuminated skies affect biodiversity in nocturnal landscapes? Landsc. Ecol. 2013, 28, 1637–1640. [Google Scholar] [CrossRef]
- Gaston, K.J.; Visser, M.E.; Hölker, F. The biological impacts of artificial light at night: The research challenge. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140133. [Google Scholar] [CrossRef]
- Buchanan, B.W. Observed and potential effects of artificial night lighting on anuran amphibians. In Ecological Consequences of Artificial Night Lighting; Rich, C., Longcore, T., Eds.; Island Press: Washington, DC, USA, 2006; pp. 192–220. [Google Scholar]
- Wise, S.E.; Buchanan, B.W. Influence of artificial illumination on the nocturnal behavior and physiology of salamanders. In Ecological Consequences of Artificial Night Lighting; Rich, C., Longcore, T., Eds.; Island Press: Washington, DC, USA, 2006; pp. 221–251. [Google Scholar]
- Grubisic, M.; Haim, A.; Bhusal, P.; Dominoni, D.M.; Gabriel, K.M.A.; Jechow, A.; Kupprat, F.; Lerner, A.; Marchant, P.; Riley, W.; et al. Light pollution, circadian photoreception, and melatonin in vertebrates. Sustainability 2019, 11, 6400. [Google Scholar] [CrossRef]
- Pittendrigh, C.S.; Daan, S.A. functional analysis of circadian pacemakers in nocturnal rodents. J. Comp. Physiol. 1976, 106, 333–355. [Google Scholar] [CrossRef]
- Grima, B.; Chélot, E.; Xia, R.; Rouyer, F. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 2004, 431, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Lamba, P.; Bilodeau-Wentworth, D.; Emery, P.; Zhang, Y. Morning and evening oscillators cooperate to reset circadian behavior in response to light input. Cell Rep. 2014, 7, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Rieger, D.; Wülbeck, C.; Rouyer, F.; Helfrich-Förster, C. Period gene expression in four neurons is sufficient for rhythmic activity of Drosophila melanogaster under dim light conditions. J. Biol. Rhythm. 2009, 24, 271–282. [Google Scholar] [CrossRef]
- Alford, R.A.; Dixon, P.M.; Pechmann, J.H. Global amphibian population declines. Nature 2001, 412, 499–500. [Google Scholar] [CrossRef]
- Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.; Fischman, D.L.; Waller, R.W. Status and trends of amphibian declines and extinctions worldwide. Science 2004, 306, 1783–1786. [Google Scholar] [CrossRef]
- Hayes, T.B.; Falso, P.; Gallipeau, S.; Stice, M. The cause of global amphibian declines: A developmental endocrinologist’s perspective. J. Exp. Biol. 2010, 213, 921–933. [Google Scholar] [CrossRef]
- Grant, E.H.C.; Miller, D.A.W.; Muths, E. A synthesis of drivers of amphibian declines. Herpetologica 2020, 76, 101–107. [Google Scholar] [CrossRef]
- Grant, E.H.C.; Miller, D.A.; Schmidt, B.R.; Adams, M.J.; Amburgey, S.M.; Chambert, T.; Cruickshank, S.S.; Fisher, R.N.; Green, D.M.; Hossack, B.R.; et al. Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Sci. Rep. 2016, 6, 25625. [Google Scholar] [CrossRef]
- Alton, L.A.; Franklin, C.E. Drivers of amphibian declines: Effects of ultraviolet radiation and interactions with other environmental factors. Clim. Chang. Responses 2017, 4, 6. [Google Scholar] [CrossRef]
- Carrasco, G.H.; de Souza, M.B.; de Souza Santos, L.R. Effect of multiple stressors and population decline of frogs. Environ. Sci. Pollut. Res. 2021, 28, 59519–59527. [Google Scholar] [CrossRef] [PubMed]
- Demaynadier, P.G.; Hunter, M.L., Jr. Effects of silvicultural edges on the distribution and abundance of amphibians in Maine. Conserv. Biol. 1998, 12, 340–352. [Google Scholar] [CrossRef]
- Welsh, H.H., Jr.; Droege, S. A case for using plethodontid salamanders for monitoring biodiversity and ecosystem integrity of North American forests. Conserv. Biol. 2001, 15, 558–569. [Google Scholar] [CrossRef]
- Wyman, R.L. Experimental assessment of salamanders as predators of detrital food webs: Effects on invertebrates, decomposition and the carbon cycle. Biodivers. Conserv. 1998, 7, 641–650. [Google Scholar] [CrossRef]
- Jaeger, R.G. Seasonal and spatial distributions of the terrestrial salamander Plethodon cinereus. Herpetologica 1979, 35, 90–93. [Google Scholar]
- Burton, T.M.; Likens, G.E. Salamander populations and biomass in the Hubbard Brook Experimental Forest, New Hampshire. Copeia 1975, 1975, 541–546. [Google Scholar] [CrossRef]
- Burton, T.M.; Likens, G.E. Energy flow and nutrient cycling in salamander populations in the Hubbard Brook Experimental Forest, New Hampshire. Ecology 1975, 56, 1068–1080. [Google Scholar] [CrossRef]
- Jaeger, R.G.; Gollmann, B.; Anthony, C.D.; Gabor, C.R.; Kohn, N.R. Behavioral Ecology of the Eastern Red-Backed Salamander; Oxford University Press: New York, NY, USA, 2016. [Google Scholar]
- Dinsmore, C.E. Tail regeneration in the plethodontid salamander, Plethodon cinereus: Induced autotomy versus surgical amputation. J. Exp. Zool. 1977, 199, 163–175. [Google Scholar] [CrossRef]
- Wake, D.B.; Dresner, I.G. Functional morphology and evolution of tail autotomy in salamanders. J. Morphol. 1967, 122, 265–305. [Google Scholar] [CrossRef]
- Maiorana, V.C. Tail autotomy, functional conflicts and their resolutions by salamanders. Nature 1977, 265, 533–535. [Google Scholar] [CrossRef]
- Jamison, J.A.; Harris, R.N. The priority of linear over volumetric caudal regeneration in the salamander Plethodon cinereus (Caudata: Plethodontidae). Copeia 1992, 1992, 235–237. [Google Scholar] [CrossRef]
- Takahashi, M.K.; Pauley, T.K. Resource allocation and life history traits of Plethodon cinereus at different elevations. Am. Midl. Nat. 2010, 163, 87–94. [Google Scholar] [CrossRef]
- Yurewicz, K.L.; Wilbur, H.M. Resource availability and costs of reproduction in the salamander Plethodon cinereus. Copeia 2004, 2004, 28–36. [Google Scholar] [CrossRef]
- Wise, S.E.; Verret, F.D.; Jaeger, R.G. Tail autotomy in territorial salamanders influences scent marking by residents and behavioral responses by intruders to resident chemical cues. Copeia 2004, 2004, 165–172. [Google Scholar] [CrossRef]
- Jaeger, R.G. Agonistic behavior of the red-backed salamander. Copeia 1984, 1984, 309–314. [Google Scholar] [CrossRef]
- Jaeger, R.G.; Schwarz, J.K. Gradational threat postures by the red-backed salamander. J. Herpetol. 1991, 25, 112–114. [Google Scholar] [CrossRef]
- Wise, S.E.; Jaeger, R.G. The influence of tail autotomy on agonistic behavior in a territorial salamander. Anim. Behav. 1998, 55, 1707–1716. [Google Scholar] [CrossRef]
- Ramachandran, A.V.; Ndukuba, P.I. Tail regeneration in normal, blinded and pinealectomized gekkonid lizards, Hemidactylus flaviviridis, exposed to four different light conditions during three seasons (temperatures). Acta Zool. 1989, 70, 205–210. [Google Scholar] [CrossRef]
- Maier, C.E.; Singer, M. The effect of light on forelimb regeneration in the newt. J. Exp. Zool. 1977, 202, 241–244. [Google Scholar] [CrossRef]
- Maier, C.E.; Singer, M. The effect of limiting light to the pineal on the rate of forelimb regeneration in the newt. J. Exp. Zool. 1982, 219, 111–114. [Google Scholar] [CrossRef]
- Gern, W.A.; Norris, D.O. Plasma melatonin in the neotenic Tiger Salamander (Ambystoma tigrinum): Effects of photoperiod and pinealectomy. Gen. Comp. Endocrinol. 1979, 38, 393–398. [Google Scholar] [CrossRef]
- Morgan, W.W.; Mizell, S. Diurnal fluctuation in DNA content and DNA synthesis in the dorsal epidermis of Rana pipiens. Comp. Biochem. Physiol. Part A Physiol. 1971, 38, 591–602. [Google Scholar] [CrossRef]
- Morgan, W.W.; Mizell, S. Daily fluctuations of DNA synthesis in the corneas of Rana pipiens. Comp. Biochem. Physiol. Part A Physiol. 1971, 40, 487–493. [Google Scholar] [CrossRef]
- Banerjee, S.; Margulis, L. Mitotic arrest by melatonin. Exp. Cell Res. 1973, 78, 314–318. [Google Scholar] [CrossRef]
- Lewiński, A.; Sewerynek, E. Melatonin inhibits the basal and TSH-stimulated mitotic activity of thyroid follicular cells in vivo and in organ culture. J. Pineal Res. 1986, 3, 291–299. [Google Scholar] [CrossRef]
- Kojima, T.; Mochizuki, C.; Mitaka, T.; Mochizuki, Y. Effects of melatonin on proliferation, oxidative stress and Cx32 gap junction protein expression in primary cultures of adult rat hepatocytes. Cell Struct. Funct. 1997, 22, 347–356. [Google Scholar] [CrossRef]
- Maier, C.E.; Singer, M. The effect of prolactin on the rate of forelimb regeneration in newts exposed to photoperiod extremes. J. Exp. Zool. 1981, 216, 395–397. [Google Scholar] [CrossRef]
- Ndukuba, P.I.; Ramachandran, A.V. Is the pineal involved in the stimulatory influence of prolactin on tail regeneration in Lizards? Studies with exogenous prolactin in lizards exposed to continuous darkness. Gen. Comp. Endocrinol. 1989, 76, 192–199. [Google Scholar] [CrossRef]
- Forsburg, Z.R.; Guzman, A.; Gabor, C.R. Artificial light at night (ALAN) affects the stress physiology but not the behavior or growth of Rana berlandieri and Bufo valliceps. Environ. Pollut. 2021, 277, 116775. [Google Scholar] [CrossRef]
- Lewis, J.L.; Sullivan, A.M. Salamander stress and duress: The relationship between CORT, autotomy and regeneration, and exploratory behaviour. Zoology 2020, 139, 125751. [Google Scholar] [CrossRef]
- Marvin, G.A.; Lewis, M. Effect of temperature, photoperiod, and feeding on the rate of tail regeneration in a semiaquatic plethodontid salamander. J. Therm. Biol. 2013, 38, 548–552. [Google Scholar] [CrossRef]
- Keen, W.H. Feeding and activity patterns in the salamander Desmognathus ochrophaeus (Amphibia, Urodela, Plethodontidae). J. Herpetol. 1979, 13, 461–467. [Google Scholar] [CrossRef]
- Vernberg, F.J. Correlation of physiological and behavior indexes of activity in the study of Plethodon cinereus (Green) and Plethodon glutinosus (Green). Am. Midl. Nat. 1955, 54, 382–393. [Google Scholar] [CrossRef]
- Sugalski, M.T.; Claussen, D.L. Preference for soil moisture, soil pH, and light intensity by the salamander, Plethodon cinereus. J. Herpetol. 1997, 31, 245–250. [Google Scholar] [CrossRef]
- Perry, G.; Buchanan, B.W.; Fisher, R.N.; Salmon, M.; Wise, S.E. Effects of artificial night lighting on amphibians and reptiles in urban environments. In Urban Herpetology; Mitchell, J.C., Jung Brown, R.E., Bartholomew, B., Eds.; Society for the Study of Amphibians and Reptiles: Salt Lake City, UT, USA, 2008; pp. 239–256. [Google Scholar]
- Bachleitner, W.; Kempinger, L.; Wülbeck, C.; Rieger, D.; Helfrich-Förster, C. Moonlight shifts the endogenous clock of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2007, 104, 3538–3543. [Google Scholar] [CrossRef]
- Hardeland, R.; Stange, G. Comparative studies on the circadian rhythms of locomotor activity of 40 Drosophila species. J. Interdiscip. Cycle Res. 1973, 4, 353–359. [Google Scholar] [CrossRef]
- Bahn, J.H.; Lee, G.; Park, J.H. Comparative analysis of Pdf-mediated circadian behaviors between Drosophila melanogaster and D. virilis. Genetics 2009, 181, 965–975. [Google Scholar] [CrossRef]
- Rieger, D.; Fraunholz, C.; Popp, J.; Bichler, D.; Dittmann, R.; Helfrich-Förster, C. The fruit fly Drosophila melanogaster favors dim light and times its activity peaks to early dawn and late dusk. J. Biol. Rhythm. 2007, 22, 387–399. [Google Scholar] [CrossRef]
- Roth, G. Visual Behavior in Salamanders; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Hensley, S.H.; Yang, X.-L.; Wu, S.M. Relative contribution of rod and cone inputs to bipolar cells and ganglion cells in the Tiger Salamander retina. J. Neurophys. 1993, 69, 2086–2098. [Google Scholar] [CrossRef] [PubMed]
- Wise, S.E.; Buchanan, B.W. An efficient method for measuring salamanders. Herpetol. Rev. 1992, 23, 56–57. [Google Scholar]
- Mathis, A. Territories of male and female terrestrial salamanders: Costs, benefits, and intersexual spatial associations. Oecologia 1991, 86, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Hostedde, A.I.; Zinner, B.; Miller, J.S.; Hickling, G.J. Restitution of mass-size residuals: Validating body condition indices. Ecology 2005, 86, 155–163. [Google Scholar] [CrossRef]
- Harris, R. Body condition and order of arrival affect cooperative nesting behaviour in four-toed salamanders Hemidactylium scutatum. Anim. Behav. 2008, 75, 229–233. [Google Scholar] [CrossRef]
- Riedel, B.I.; Russell, K.R.; Ford, W.M. Physical condition, sex, and age-class of Eastern Red-backed Salamanders (Plethodon cinereus) in forested and open habitats of West Virginia, USA. Int. J. Zool. 2012, 2012, 623730. [Google Scholar] [CrossRef]
- Wise, S.E.; Jaeger, R.G. Maternal body size and condition predict measures of reproductive success and future reproductive allocation in territorial Eastern Red-backed Salamanders. Ichthyol. Herpetol. 2021, 109, 55–63. [Google Scholar] [CrossRef]
- Marvin, G.A. Effect of body size on tail regeneration and recovery of swimming performance after caudal autotomy in a plethodontid salamander. Amphib. Reptil. 2011, 32, 485–492. [Google Scholar] [CrossRef]
- Waldron, B.P.; Ganzfried, M.C.; Hickerson, C.M.; Anthony, C.D. Repeatability of foraging behavior following a simulated predation attempt depends on color morph, sex, and foraging metric in Red-backed Salamanders (Plethodon cinereus). Ethol. Ecol. Evol. 2022, 34, 471–484. [Google Scholar] [CrossRef]
- VanVickle-Chavez, S.J.; Van Gelder, R.N. Action spectrum of Drosophila cryptochrome. J. Biol. Chem. 2007, 282, 10561–10566. [Google Scholar] [CrossRef]
- Frank, K.D.; Zimmerman, W.F. Action spectra for phase shifts of a circadian rhythm in Drosophila. Science 1969, 163, 688–689. [Google Scholar] [CrossRef]
- Fitzpatrick, L.C. Energy allocation in the Allegheny Mountain Salamander, Desmognathus ochrophaeus. Ecol. Monogr. 1973, 43, 43–58. [Google Scholar] [CrossRef]
- Fraser, D.F. On the environmental control of oocyte maturation in a plethodontid salamander. Oecologia 1980, 46, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Brodie, E.D.; Nowak, R.T.; Harvey, W.R. The effectiveness of antipredator secretions and behavior of selected salamanders against shrews. Copeia 1979, 1979, 270–274. [Google Scholar] [CrossRef]
- Arnold, S.J. A quantitative approach to antipredator performance: Salamander defense against snake attack. Copeia 1982, 1982, 247–253. [Google Scholar] [CrossRef]
- Roberts, S.K.D.F. “Clock” controlled activity rhythms in the fruit fly. Science 1956, 124, 172. [Google Scholar] [CrossRef] [PubMed]
- Sinam, B.; Sharma, S.; Thakurdas, P.; Kasture, M.; Shivagaje, A.; Joshi, D. Dim scotopic illumination accelerates the reentrainment following simulated jetlags in a diurnal experimental model, Drosophila. Commun. Integr. Biol. 2013, 6, e22279. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.A.; Elliott, J.A.; Gorman, M.R. Circadian entrainment and phase resetting differ markedly under dimly illuminated versus completely dark nights. Behav. Brain Res. 2005, 162, 116–126. [Google Scholar] [CrossRef]
- Abe, H.; Honma, S.; Namihira, M.; Masubuchi, S.; Honma, K. Behavioural rhythm splitting in the CS mouse is related to clock gene expression outside the suprachiasmatic nucleus. Eur. J. Neurosci. 2001, 14, 1121–1128. [Google Scholar] [CrossRef]
- Dusenbery, D.B. Sensory Ecology: How Organisms Acquire and Respond to Information; W. H. Freeman: New York, NY, USA, 1992. [Google Scholar]
- Ouyang, J.Q.; Davies, S.; Dominoni, D. Hormonally mediated effects of artificial light at night on behavior and fitness: Linking endocrine mechanisms with function. J. Exp. Biol. 2018, 221, jeb156893. [Google Scholar] [CrossRef]
- Woodley, S.K. Life in the slow lane: Stress responses in plethodontid salamanders. Herpetologica 2017, 73, 259–268. [Google Scholar] [CrossRef]
- Thomas, J.R.; Woodley, S.K. Treatment with corticosterone delays cutaneous wound healing in male and female salamanders. Gen. Comp. Endocrinol. 2015, 216, 33–38. [Google Scholar] [CrossRef]
- Losner, J.; Courtemanche, K.; Whited, J.L. A cross-species analysis of systemic mediators of repair and complex tissue regeneration. NPJ Regen. Med. 2021, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Gern, W.A.; Norris, D.O.; Duvall, D. The effect of light and temperature on plasma melatonin in neotenic Tiger Salamanders (Ambystoma tigrinum). J. Herpetol. 1983, 17, 228–234. [Google Scholar] [CrossRef]
- Kopin, I.J.; Pare, C.M.; Axelrod, J.; Weissbach, H. The fate of melatonin in animals. J. Biol. Chem. 1961, 236, 3072–3075. [Google Scholar] [CrossRef]
- Klein, D.C.; Weller, J.L.; Moore, R.Y. Melatonin metabolism: Neural regulation of pineal serotonin: Acetyl coenzyme A N-acetyltransferase activity. Proc. Natl. Acad. Sci. USA 1971, 68, 3107–3110. [Google Scholar] [CrossRef] [PubMed]
- Vanecek, J. Cellular mechanisms of melatonin action. Physiol. Rev. 1998, 78, 687–721. [Google Scholar] [CrossRef] [PubMed]
- Kurup, A.; Ramachandran, A. Melatonin and methoxytryptophol have temporal effect on tail elongation but not methoxytryptamine: Studies on tail regeneration in Hemidactylus flaviviridis. J. Endocrinol. Reprod. 2010, 14, 19–24. [Google Scholar]
- Schauble, M.K.; Tyler, D.B. The effect of prolactin on the seasonal cyclicity of newt forelimb regeneration. J. Exp. Zool. 1972, 182, 41–46. [Google Scholar] [CrossRef]
- Liversage, R.A.; Stewart, W.E.; McLaughlin, D.S. In vitro studies of the influence of prolactin on tail regeneration in the adult newt Notophthalmus viridescens. Wilhelm Roux Arch. Dev. Biol. 1984, 193, 379–387. [Google Scholar] [CrossRef]
- Petranka, J.W. Salamanders of the United States and Canada; Smithsonian Institution Press: Washington, DC, USA, 2010. [Google Scholar]
Source of Variation | Wilks’ λ | Type III SS | F | df | p |
---|---|---|---|---|---|
Initial Condition | 0.915 | 2.024 | 3, 65 | 0.119 | |
Light Treatment | 0.746 | 2.251 | 9, 158.3 | 0.021 * | |
Regeneration, 30 d | 1.559 | 0.636 | 3, 67 | 0.595 | |
Regeneration, 60 d | 62.064 | 5.369 | 3, 67 | 0.002 * | |
0.0001 vs. 0.01 lx | 0.005 * | ||||
0.0001 vs. 1 lx | 0.543 | ||||
0.0001 vs. 100 lx | 0.002 * | ||||
0.01 vs. 1 lx | 0.024 * | ||||
0.01 vs. 100 lx | 0.701 | ||||
1 vs. 100 lx | 0.009 * | ||||
Regeneration, 90 d | 166.285 | 6.664 | 3, 67 | <0.001 * | |
0.0001 vs. 0.01 lx | 0.002 * | ||||
0.0001 vs. 1 lx | 0.723 | ||||
0.0001 vs. 100 lx | 0.001 * | ||||
0.01 vs. 1 lx | 0.006 * | ||||
0.01 vs. 100 lx | 0.821 | ||||
1 vs. 100 lx | 0.003 * | ||||
Sex | 0.749 | 7.248 | 3, 65 | <0.001 * | |
Regeneration, 30 d | 0.071 | 0.087 | 1, 67 | 0.769 | |
Regeneration, 60 d | 41.983 | 10.895 | 1, 67 | 0.002 * | |
Regeneration, 90 d | 133.616 | 16.064 | 1, 67 | <0.001 * | |
Light Treatment*Sex | 0.852 | 1.200 | 9, 158.3 | 0.298 |
Source of Variation | Type III SS | F | df | p |
---|---|---|---|---|
Clock Time 1800 h | 126038 | 0.657 | 3, 91 | 0.581 |
Clock Time 2100 h | 2301081 | 4.710 | 3, 91 | 0.004 * |
0.0001 vs. 0.01 lx | 0.161 | |||
0.0001 vs. 1 lx | <0.001 * | |||
0.0001 vs. 100 lx | 0.022 * | |||
0.01 vs. 1 lx | 0.027 * | |||
0.01 vs. 100 lx | 0.355 | |||
1 vs. 100 lx | 0.189 | |||
Clock Time 0000 h | 4554840 | 6.046 | 3, 91 | <0.001 * |
0.0001 vs. 0.01 lx | 0.064 | |||
0.0001 vs. 1 lx | <0.001 * | |||
0.0001 vs. 100 lx | <0.001 * | |||
0.01 vs. 1 lx | 0.064 | |||
0.01 vs. 100 lx | 0.701 | |||
1 vs. 100 lx | 0.092 | |||
Clock Time 0300 h | 8550782 | 9.243 | 3, 91 | <0.001 * |
0.0001 vs. 0.01 lx | 0.055 | |||
0.0001 vs. 1 lx | <0.001 * | |||
0.0001 vs. 100 lx | <0.001 * | |||
0.01 vs. 1 lx | 0.027 * | |||
0.01 vs. 100 lx | 0.007 * | |||
1 vs. 100 lx | 0.620 | |||
Clock Time 0600 h | 10201286 | 12.782 | 3, 91 | <0.001 * |
0.0001 vs. 0.01 lx | <0.001 * | |||
0.0001 vs. 1 lx | <0.001 * | |||
0.0001 vs. 100 lx | <0.001 * | |||
0.01 vs. 1 lx | 0.531 | |||
0.01 vs. 100 lx | 0.010 * | |||
1 vs. 100 lx | 0.048 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wise, S.E.; Rohacek, A.; Scanlon, A.E.; Cabrera, T.; Buchanan, B.W. The Effects of Artificial Night Lighting on Tail Regeneration and Prey Consumption in a Nocturnal Salamander (Plethodon cinereus) and on the Behavior of Fruit Fly Prey (Drosophila virilis). Animals 2022, 12, 2105. https://doi.org/10.3390/ani12162105
Wise SE, Rohacek A, Scanlon AE, Cabrera T, Buchanan BW. The Effects of Artificial Night Lighting on Tail Regeneration and Prey Consumption in a Nocturnal Salamander (Plethodon cinereus) and on the Behavior of Fruit Fly Prey (Drosophila virilis). Animals. 2022; 12(16):2105. https://doi.org/10.3390/ani12162105
Chicago/Turabian StyleWise, Sharon E., Alex Rohacek, Ashley E. Scanlon, Tiffany Cabrera, and Bryant W. Buchanan. 2022. "The Effects of Artificial Night Lighting on Tail Regeneration and Prey Consumption in a Nocturnal Salamander (Plethodon cinereus) and on the Behavior of Fruit Fly Prey (Drosophila virilis)" Animals 12, no. 16: 2105. https://doi.org/10.3390/ani12162105
APA StyleWise, S. E., Rohacek, A., Scanlon, A. E., Cabrera, T., & Buchanan, B. W. (2022). The Effects of Artificial Night Lighting on Tail Regeneration and Prey Consumption in a Nocturnal Salamander (Plethodon cinereus) and on the Behavior of Fruit Fly Prey (Drosophila virilis). Animals, 12(16), 2105. https://doi.org/10.3390/ani12162105