Altrenogest Supplementation during Early Pregnancy Improves Reproductive Outcome in Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing and Management
2.2. Experimental Design
2.3. Data Collection
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Da Silva, C.L.A.; Van Den Brand, H.; Laurenssen, B.F.A.; Broekhuijse, M.L.; Knol, E.F.; Kemp, B.; Soede, N.M. Relationships between ovulation rate and embryonic and placental characteristics in multiparous sows at 35 days of pregnancy. Animal 2016, 10, 1192–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, W.F.; Xie, S.; Broermann, D.M.; Nephew, K.P. Causes and consequences of early embryonic diversity in pigs. J. Reprod. Fertil. 1990, 40, 251–260. [Google Scholar] [CrossRef]
- Kridli, R.T.; Khalaj, K.; Bidarimath, M.; Tayade, C. Placentation, maternal- fetal interface, and conceptus loss in swine. Theriogenology 2016, 85, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Van Der Waaij, E.H.; Hazeleger, W.; Soede, N.M.; Laurenssen, B.F.A.; Kemp, B. Effect of excessive, hormonally induced intrauterine crowding in the gilt on fetal development on day 40 of pregnancy. J. Anim. Sci. 2010, 88, 2611–2619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallet, J.L.; Miles, J.R.; Rempel, L.A.; Nonneman, D.J.; Lents, C.A. Relationships between day one piglet serum immunoglobulin immunocrit and subsequent growth, puberty attainment, litter size, and lactation performance. J. Anim. Sci. 2015, 93, 2722–2729. [Google Scholar] [CrossRef]
- Johnson, G.A.; Seo, H.; Bazer, F.W.; Wu, G.; Kramer, A.C.; McLendon, B.A.; Cain, J.W. Metabolic pathways utilized by the porcine conceptus, uterus, and placenta. Mol. Reprod. Dev. 2022, 1–11. [Google Scholar] [CrossRef]
- Geisert, R.D.; Schmitt, R.A.M. Early embryonic survival in the pig: Can it be improved? J. Anim. Sci. 2002, 80, 54–65. [Google Scholar]
- Quesnel, H.; Brossard, L.; Valancogne, A.; Quiniou, N. Influence of some sows characteristics on within-litter variation of piglets birth weight. Animal 2008, 2, 1842–1849. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, A.D.; Aalhus, J.L.; Williams, N.H.; Patience, J.F. Impact of piglet birth weight, birth order, and litter size on subsequent growth performance, carcass quality, muscle composition, and eating quality of pork. J. Anim. Sci. 2010, 88, 2767–2778. [Google Scholar] [CrossRef]
- Bazer, F.W.; Johnson, G.A. Pig blastocyst-uterine interactions. Differentiation 2014, 87, 52–65. [Google Scholar] [CrossRef]
- Carter, F.; Forde, N.; Duffy, P.; Wade, M.; Fair, T.; Crowe, M.A. Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reprod. Fertil. Dev. 2008, 20, 368–375. [Google Scholar] [CrossRef]
- Bailey, D.W.; Dunlap, K.A.; Frank, J.W.; Erikson, D.W.; White, B.G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A. Effect of long-term progesterone on developmental aspects of porcine uterine epithelia and vasculature: Progesterone alone does not support development of uterine glands comparable to that of pregnancy. Reproduction 2010, 140, 583–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okrasa, S.; Franczak, A.; Zmijewska, A.; Wojciechowic, B.; Dziekonski, M.; Martyniak, M.; Kolakowska, J.; Zglejc, K.; Kotwica, G. The uterine secretory activity and its physiological changes in the pig. Acta Biol. Crac. 2014, 55, 40–57. [Google Scholar]
- Chen, X.; Fu, J.; Wang, A. Expression of genes involved in progesterone receptor paracrine signaling and their effect on litter size in pigs. J. Anim. Sci. Biotechnol. 2016, 7, 31–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugentobler, S.A.; Sreenan, J.M.; Humpherson, P.G.; Leese, H.J.; Diskin, M.G.; Morris, D.G. Effects of changes in the concentration of systemic progesterone on ions, amino acids and energy substrates in cattle oviduct and uterine fluid and blood. Reprod. Fertil. Dev. 2010, 22, 684–694. [Google Scholar] [CrossRef]
- Mann, G.E.; Fray, M.D.; Lamming, G.E. Effects of time of progesterone supplementation on embryo development and interferon-tau production in the cow. Vet. J. 2006, 171, 500–503. [Google Scholar] [CrossRef]
- Satterfield, M.C.; Bazer, F.W.; Spencer, T.E. Progesterone regulation of preimplantation conceptus growth and galectin 15 (LGALS15) in the ovine uterus. Biol. Reprod. 2006, 75, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Satterfield, M.C.; Gao, H.; Li, X.; Wu, G.; Johnson, G.A.; Spencer, T.E.; Bazer, F.W. Select nutrients and their associated transporters are increased in the ovine uterus following early progesterone administration. Biol. Reprod. 2010, 82, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.; Diskin, M. Effect of progesterone on embryo survival. Animal 2008, 2, 1112–1119. [Google Scholar] [CrossRef] [Green Version]
- López-Gatius, F.; Santolaria, P.; Yániz, J.L.; Hunter, R.H.F. Progesterone supplementation during the early fetal period reduces pregnancy loss in high-yielding dairy cattle. Theriogenology 2004, 62, 1529–1535. [Google Scholar] [CrossRef]
- McNeill, R.E.; Sreenan, J.M.; Diskin, M.G.; Cairns, M.T.; Fitzpatrick, R.; Smith, T.J.; Morris, D.G. Effect of systemic progesterone concentration on the expression of progesterone-responsive genes in the bovine endometrium during the early luteal phase. Reprod. Fertil. Dev. 2006, 18, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Waclawik, A.; Kaczmarek, M.M.; Blitek, A.; Kaczynski, P.; Ziecik, A.J. Embryo-maternal dialogue during pregnancy establishment and implantation in the pig. Mol. Reprod. Dev. 2017, 84, 842–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, J.; Foxcroft, G.R. Progesterone therapy during early pregnancy and embryonal survival in primiparous weaned sows. J. Anim. Sci. 1998, 76, 1922–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soede, N.M.; Bouwman, E.G.; Van der Laan, I.; Hazegeler, W.; Jourquin, J.; Langendijk, P.; Kemp, B. Progestagen supplementation during early pregnancy does not improve embryo survival in pigs. Reprod. Domest. Anim. 2012, 47, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Szymanska, M.; Blitek, A. Endometrial and conceptus response to exogenous progesterone treatment in early pregnant gilts following hormonally-induced estrus. Anim. Reprod. Sci. 2016, 174, 56–64. [Google Scholar] [CrossRef]
- Muro, B.B.D.; Carnevale, R.F.; Leal, D.F.; Torres, M.A.; Mendonça, M.V.; Nakasone, D.H.; Martinez, C.H.G.; Ravagnani, G.M.; Monteiro, M.S.; Poor, A.P.; et al. Supplemental progesterone during early pregnancy exerts divergent responses on embryonic characteristics in sows and gilts. Animal 2020, 14, 1234–1240. [Google Scholar] [CrossRef]
- Mathew, D.J.; Sellner, E.M.; Green, J.C.; Okamura, C.S.; Anderson, L.L.; Lucy, M.C.; Geisert, R.D. Uterine progesterone receptor expression, conceptus development, and ovarian function in pigs treated with RU 486 during early pregnancy. Biol. Reprod. 2011, 84, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Borges, V.F.; Bernardi, M.L.; Bortolozzo, F.P.; Wentz, I. Risk factors for stillbirth and foetal mummification in four Brazilian swine herds. Prev. Vet. Med. 2005, 70, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Raguvaran, R.; Sangeetha, P.; Prabakar, G.; Ravindra, V.J. Still birth and mummification in swine—A review. Agric. Rev. 2017, 38, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, R.C. Fetal mummification in the major domestic species: Current perspectives on causes and management. Vet. Med. Res. Rep. 2015, 6, 233. [Google Scholar] [CrossRef] [Green Version]
- Vikram, R.; Joshi, V.; Khatti, A.; Babu, M.; Biam, K.P.; Barman, D. Fetal Mummification in Domestic Animals: A Critical Review. Int. J. Livest. Res. 2020, 10, 15–22. [Google Scholar]
- Mesa, H.; Cammack, K.M.; Safranski, T.J.; Green, J.A.; Lamberson, W.R. Selection for placental efficiency in swine: Conceptus development. J. Anim. Sci. 2012, 90, 4217–4222. [Google Scholar] [CrossRef] [Green Version]
- Vallet, J.L.; Freking, B.A. Differences in placental structure during gestation associated with large and small pig fetuses. J. Anim. Sci. 2007, 85, 3267–3275. [Google Scholar] [CrossRef] [PubMed]
- Rootwelt, V.; Reksen, O.; Farstad, W.; Framstad, T. Associations between intrapartum death and piglet, placental, and umbilical characteristics. J. Anim. Sci. 2012, 90, 4289–4296. [Google Scholar] [CrossRef] [Green Version]
- Miles, J.R.; Freking, B.A.; Blomberg, L.A.; Vallet, J.L.; Zuelke, K.A. Conceptus development during blastocyst elongation in lines of pigs selected for increased uterine capacity or ovulation rate. J. Anim. Sci. 2008, 86, 2126–2134. [Google Scholar] [CrossRef]
- Satterfield, M.C.; Dunlap, K.A.; Hayashi, K.; Burghardt, R.C.; Spencer, T.E.; Bazer, F.W. Tight and adherens junctions in the ovine uterus: Differential regulation by pregnancy and progesterone. Endocrinology 2006, 148, 3922–3931. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Satterfield, M.C.; Kim, J.; Bazer, F.W.; Spencer, T.E. Gastrin-releasing peptide (GRP) in the ovine uterus: Regulation by interferon tau and progesterone. Biol. Reprod. 2008, 79, 376–386. [Google Scholar] [CrossRef]
- Muro, B.B.D.; Leal, D.F.; Carnevale, R.F.; Torres, M.A.; Mendonça, M.V.; Nakasone, D.H.; Martinez, C.H.G.; Martinez, G.M.; Monteiro, M.S.; Poor, A.P.; et al. Altrenogest during early pregnancy modulates uterine glandular epithelium and endometrial growth factor expression at the time implantation in pigs. Anim. Reprod. 2021, 18. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Feng, C.; Liu, T.; Shi, M.; Wu, G.; Bazer, F.W. Physiological alterations associated with intrauterine growth restriction in fetal pigs: Causes and insights for nutritional optimization. Mol. Reprod. Dev. 2017, 84, 897–904. [Google Scholar] [CrossRef] [Green Version]
- Gourley, K.M.; Calderon, H.I.; Woodworth, J.C.; DeRouchey, J.M.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D. Sow and piglet traits associated with piglet survival at birth and to weaning. J. Anim. Sci. 2020, 98, skaa187. [Google Scholar] [CrossRef]
- Vanderhaeghe, C.; Dewulf, J.; De Vliegher, S.; Papadopoulos, G.A.; De Kruif, A.; Maes, D. Longitudinal field study to assess sow level risk factors associated with stillborn piglets. Anim. Reprod. Sci. 2010, 120, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Fix, J.S.; Cassady, J.P.; Holl, J.W.; Herring, W.O.; Culbertson, M.S.; See, M.T. Effect of piglet birth weight on survival and quality of commercial market swine. Livest. Sci. 2010, 132, 98–106. [Google Scholar] [CrossRef]
- Canario, L.; Cantoni, E.L.B.E.; Le Bihan, E.; Caritez, J.C.; Billon, Y.; Bidanel, J.P.; Foulley, J.L. Between-breed variability of stillbirth and its relationship with sow and piglet characteristics. J. Anim. Sci. 2006, 84, 3185–3196. [Google Scholar] [CrossRef] [PubMed]
- Langendijk, P.; Plush, K. Parturition and its relationship with stillbirths and asphyxiated piglets. Animals 2019, 9, 885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | CON 1 | ALT 2 | p-Value |
---|---|---|---|
Number of females (n) | 163 | 138 | |
Parity | 3.4 ± 0.2 | 3.2 ± 0.2 | 0.40 |
Weaning-to-estrus interval | 4.3 ± 0.1 | 4.3 ± 0.1 | 0.90 |
Farrowing rate (%) | 94.3 ± 2.61 | 93.2 ± 2.62 | 0.50 |
Total piglets born (n) | 16.6 ± 0.36 | 17.3 ± 0.37 | 0.03 |
Born alive (n) | 14.8 ± 0.34 | 15.6 ± 0.36 | 0.02 |
Stillbirth rate (%) | 7.6 ± 0.58 | 5.9 ± 0.56 | 0.02 |
Mummies (%) | 2.4 ± 0.39 | 3.2 ± 0.40 | 0.05 |
Total placenta weight 4 (kg) | 3.8 ± 0.15 | 4.2 ± 0.15 | <0.01 |
Total litter weight 4 (kg) | 20.7 ± 0.45 | 21.3 ± 0.46 | 0.14 |
Average birth weight (kg) | 1.288 ± 0.02 | 1.293 ± 0.02 | 0.80 |
Piglets born < 800 g 4 (%) | 8.0 ± 0.60 | 6.6 ± 0.56 | 0.02 |
CV 3 of birth weight 4 (kg) | 22.8 ± 1.04 | 21.6 ± 1.08 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muro, B.B.D.; Oliveira, A.C.R.; Carnevale, R.F.; Leal, D.F.; Monteiro, M.S.; Poor, A.P.; Pereira, F.A.; de Souza, L.J.; Ferreira, J.B.; Almond, G.W.; et al. Altrenogest Supplementation during Early Pregnancy Improves Reproductive Outcome in Pigs. Animals 2022, 12, 1801. https://doi.org/10.3390/ani12141801
Muro BBD, Oliveira ACR, Carnevale RF, Leal DF, Monteiro MS, Poor AP, Pereira FA, de Souza LJ, Ferreira JB, Almond GW, et al. Altrenogest Supplementation during Early Pregnancy Improves Reproductive Outcome in Pigs. Animals. 2022; 12(14):1801. https://doi.org/10.3390/ani12141801
Chicago/Turabian StyleMuro, Bruno Bracco Donatelli, Ana Clara Rodrigues Oliveira, Rafaella Fernandes Carnevale, Diego Feitosa Leal, Matheus Saliba Monteiro, André Pegoraro Poor, Francisco Alves Pereira, Leury Jesus de Souza, Juliana Bonin Ferreira, Glen William Almond, and et al. 2022. "Altrenogest Supplementation during Early Pregnancy Improves Reproductive Outcome in Pigs" Animals 12, no. 14: 1801. https://doi.org/10.3390/ani12141801
APA StyleMuro, B. B. D., Oliveira, A. C. R., Carnevale, R. F., Leal, D. F., Monteiro, M. S., Poor, A. P., Pereira, F. A., de Souza, L. J., Ferreira, J. B., Almond, G. W., & Garbossa, C. A. P. (2022). Altrenogest Supplementation during Early Pregnancy Improves Reproductive Outcome in Pigs. Animals, 12(14), 1801. https://doi.org/10.3390/ani12141801