Insects in Pet Food Industry—Hope or Threat?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Nutritional Value
2.1. Protein and Amino Acids
2.2. Fat and Fatty Acids
Fatty Acids | Mealworm Larvae [69] | House Cricket Imago [44] | Black Soldier Fly Larvae [61] | Chicken (Breast) [70] | Beef (Intercostal Muscle) [71] | Pork (Longissimus dorsi muscle) [49] |
---|---|---|---|---|---|---|
C10:0 | 0.02 | 0.03 | <0.5 | 0.73 | 0.05 | 0.16 |
C12:0 | 0.37 | 0.18 | 28.6 | 1.80 | 0.07 | 0.13 |
C14:0 | 3.13 | 0.86 | 6.1 | 3.62 | 3.15 | 1.67 |
C16:0 | 19.50 | 31.20 | 12.6 | 23.99 | 30.39 | 26.22 |
C18:1, n-9 | 44.60 | 25.80 | 25.10 | 31.81 | 41.02 | 23.65 |
C18:2, n-6 | 24.00 | 27.90 | 12.50 | 16.62 | 2.51 | 23.43 |
C18:3, n-3 | 0.91 | 1.39 | 3.40 | 0.89 | 0.23 | 0.45 |
C20:5, n-3 | 0.13 | 0.12 | 1.70 | 0.17 | 0.05 | 0.21 |
C22:6, n-3 | 0.07 | 0.00 | 0.70 | 0.00 | 0.05 | 0.44 |
SFA | 28.20 | 42.30 | 49.60 | 43.14 | 49.92 | 39.95 |
UFA | 71.60 | 56.30 | 50.50 | 57.16 | 50.08 | 60.04 |
MUFA | 46.50 | 26.80 | 31.80 | 36.96 | 46.10 | 24.49 |
PUFA | 25.10 | 29.50 | 18.70 | 20.27 | 3.98 | 35.55 |
2.3. Minerals
2.4. Chitin
2.5. Health Properties
3. Digestibility
4. Palatability Tests
5. Acceptance by Consumers
6. Hazards
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Legendre, T.S.; Baker, M.A. Legitimizing edible insects for human consumption: The impacts of trust, risk–benefit, and purchase activism. J. Hosp. Tour. Res. 2020, 46, 467–489. [Google Scholar] [CrossRef]
- Tomiyama, J.M.; Takagi, D.; Kantar, M.B. The effect of acute and chronic food shortage on human population equilibrium in a subsistence setting. Agric. Food Secur. 2020, 9, 6. [Google Scholar] [CrossRef]
- Baker, M.A.; Shin, J.T.; Kim, Y.W. An exploration and investigation of edible insect consumption: The impacts of image and description on risk perceptions and purchase intent. Psychol. Mark. 2016, 33, 94–112. [Google Scholar] [CrossRef]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; FAO: Rome, Italy, 2013. [Google Scholar]
- Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food. 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Alexander, P.; Rounsevell, M.D.A.; Dislich, C. Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy. Glob. Environ. Chang. 2015, 35, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Steinfeld, H.; Gerber, P.; Wassenaar, T. Livestock’s Long Shadow: Environmental Issues and Options; FAO: Rome, Italy, 2006. [Google Scholar]
- Guyomard, H.; Bouamra-Mechemache, Z.; Chatellier, V.; Delaby, L.; Détang-Dessendre, C.; Peyraud, J.L.; Réquillart, V. Review: Why and how to regulate animal production and consumption: The case of the European Union. Animal 2021, 1, 100283–100295. [Google Scholar] [CrossRef]
- A European Green Deal. 2022. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 3 April 2022).
- Summary Report of the EAT-Lancet Commission. Healthy Diets from Sustainable Food Systems. Available online: https://thelancet.com/commissions/EAT (accessed on 3 April 2022).
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The impacts of dietary change on greenhouse gas emissions, land use, water use, and health. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef] [Green Version]
- Boerema, A.; Peeters, S.; Swolfs, F.; Vandevenne, S.; Jacobs, J.; Staes, P. Meire soybean trade: Balancing environmental and socio-economic impacts of an intercontinental market. PLoS ONE 2016, 11, e0155222. [Google Scholar] [CrossRef]
- Frewer, L.J.; Van der Lans, I.A.; Fischer, A.R.H.; Reinders, M.J.; Menozzi, D.; Zhang, X.; Van den Berg, I.; Zimmermann, K.L. Public perceptions of agri-food applications of genetic modification—A systematic review and meta-analysis. Trends Food Sci. Technol. 2013, 30, 142–152. [Google Scholar] [CrossRef]
- Weinrich, R.; Busch, G. Consumer knowledge about protein sources and consumers’ openness to feeding micro-algae and insects to pigs and poultry. Future Foods 2021, 4, 100100–100107. [Google Scholar] [CrossRef]
- Janocha, A.; Milczarek, A.; Pietrusiak, D.; Łaski, K.; Saleh, M. Efficiency of soybean products in broiler chicken nutrition. Animals 2022, 12, 294. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, T.B.; Khanam, F.; Mathivanan, G.P.; Vetter, S.; Hussain, S.G.; Pilat, A.L.; Shahrin, S.; Hossain, M.K.; Sarker, N.R.; Krupnik, T.J. Quantifying opportunities for greenhouse gas emissions mitigation using big data from smallholder crop and livestock farmers across Bangladesh. Sci. Total Environ. 2021, 786, 147344–147360. [Google Scholar] [CrossRef] [PubMed]
- Calvez, J.; Gaudichon, C. Insects on the menu: Characterization of protein quality to evaluate potential as an alternative protein source for human consumption. Am. J. Clin. Nutr. 2021, 114, 833–834. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Horne, C.R.; Hirst, A.G.; Atkinson, D. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecol. Lett. 2015, 18, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Cassi, X.; Supeanu, A.; Jansson, A.; Boqvist, S.; Vagsholm, I. Novel foods: A risk profile for the house cricket (Acheta domesticus). EFSA J. 2019, 16, e16082. [Google Scholar] [CrossRef]
- Halloran, A.; Muenke, C.; Vantomme, P.; Van Huis, A. Insects in the human food chain: Global status and opportunities. Food Chain 2014, 4, 103–118. [Google Scholar] [CrossRef]
- Tubiello, F.N.N.; Salvatore, M.; Cóndor Golec, R.D.D.; Ferrara, A.; Rossi, S.; Biancalani, R.; Federici, S.; Jacobs, H.; Flammini, A. Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks; FAO: Rome, Italy, 2014. [Google Scholar] [CrossRef]
- Marberg, A.; Van Kranenburg, H.; Korzilius, H. The big bug: The legitimation of the edible insect sector in the Netherlands. Food Policy 2017, 71, 111–123. [Google Scholar] [CrossRef]
- Maes, J.; Jacobs, S. Nature-based solutions for Europe’s sustainable development. Conserv. Lett. 2017, 10, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Van Huis, A.; Oonincx, D. The environmental sustainability of insects as food and feed. Agron. Sustain. Dev. 2017, 37, 43–57. [Google Scholar] [CrossRef] [Green Version]
- FCI. The Fédération Cynologique Internationale. Available online: http://www.fci.be/en/ (accessed on 8 November 2021).
- The European Pet Food Industry Federation. Annual Report. The Europeran Pet Food Industry; FEDIAF: Bruxelles, Belgium, 2020. [Google Scholar]
- Kępińska-Pacelik, J.; Biel, W. Microbiological hazards in dry dog chews and feeds. Animals 2021, 11, 631. [Google Scholar] [CrossRef] [PubMed]
- Bosch, G.; Zhang, S.; Oonincx, D.G.; Hendriks, W.H. Protein quality of insects as potential ingredients for dog and cat foods. J. Nutr. Sci. 2014, 3, e29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poyarkov, A.D.; Ovsianikov, N.G. Status Survey and Conservation Action Plan Canids: Foxes, Wolves, Jackals and Dogs. In Canids: Foxes, Wolves, Jackals and Dogs. Status Survey and Conservation Action Plan, 1st ed.; Sillero, C., Hoffmann, M., Macdonald, D., Eds.; Information Press: Oxford, UK, 2004; pp. 1–430. [Google Scholar]
- Nowak, S.; Mysłajek, R.; Kłosińska, A.; Gabrys, G. Diet and prey selection of wolves Canis lupus ecolonizing Western and Central Poland. Mamm. Biol. 2011, 76, 709–715. [Google Scholar] [CrossRef]
- Kuntzsch, V.; Nel, J.A.J. Diet of bat-eared foxes Otocyon megalotis in the Karoo. Koedoe 1992, 35, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Brahmi, K.; El Amine, K.; Mostéfaoui, O.; Baziz, B.; Aulagnier, S. First quantitative data on the diet of the fennec fox, Vulpes zerda (Canidae, Carnivora), in Algeria. Folia Zool. 2012, 61, 61–70. [Google Scholar] [CrossRef]
- McCusker, S.; Buff, P.R.; Yu, Z.; Fascetti, A.J. Amino acid content of selected plant, algae and insect species: A search for alternative protein sources for use in pet foods. J. Nutr. Sci. 2014, 3, e39. [Google Scholar] [CrossRef] [Green Version]
- Janssen, R.H.; Vincken, J.P.; Van den Broek, L.A.; Fogliano, V.; Lakemond, C.M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
- Homska, N.; Kowalska, J.; Bogucka, J.; Ziółkowska, E.; Rawski, M.; Kierończyk, B.; Mazurkiewicz, J. Dietary fish meal replacement with Hermetia illucens and Tenebrio molitor larval meals improves the growth performance and nutriphysiological status of ide (Leuciscus idus) juveniles. Animals 2022, 12, 1227. [Google Scholar] [CrossRef]
- Mæhre, H.K.; Dalheim, L.; Edvinsen, G.K.; Elvevoll, E.O.; Jensen, I.J. Protein determination-method matters. Foods 2018, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Basto, A.; Matos, E.; Valente, L.M.P. Nutritional value of different insect larvae meals as protein sources for European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 2020, 521, 735085. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schluter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Elorduy, J.; Pino Moreno, J.M.; Correa, S.C. Edible insects of the state of Mexico and determination of their nutritive values. Zoologia 1998, 69, 65–104. [Google Scholar]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Intern. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Józefiak, D.; Józefiak, A.; Kierończyk, B.; Rawski, M.; Świątkiewicz, S.; Długosz, J.; Engberg, R.M. Insects—A natural nutrient source for poultry—A review. Ann. Anim. Sci. 2016, 16, 297–313. [Google Scholar] [CrossRef] [Green Version]
- Vaga, M.; Berggren, A.; Jansson, A. Growth, survival and development of house crickets (Acheta domesticus) fed flowering plants. J. Insects Food Feed 2020, 7, 151–161. [Google Scholar] [CrossRef]
- Udomsil, N.; Imsoonthornruksa, S.; Gosalawit, C.; Ketudat-Cairns, M. Nutritional values and functional properties of house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus). Food Sci. Technol. Res. 2019, 25, 597–605. [Google Scholar] [CrossRef]
- Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Effect of diet on the growth performance, feed conversion, and nutrient content of the house cricket. J. Insect Sci. 2020, 20, 10. [Google Scholar] [CrossRef]
- Huang, C.; Feng, W.; Xiong, J.; Wang, T.; Wang, W.; Wang, C.; Yang, F. Impact of drying method on the nutritional value of the edible insect protein from black soldier fly (Hermetia illucens L.) larvae: Amino acid composition, nutritional value evaluation, in vitro digestibility, and thermal properties. Eur. Food Res. Technol. 2019, 245, 11–21. [Google Scholar] [CrossRef]
- Wu, R.A.; Ding, Q.; Yin, L.; Chi, X.; Sun, N.; He, R.; Li, Z. Comparison of the nutritional value of mysore thorn borer (Anoplophora chinensis) and mealworm larva (Tenebrio molitor): Amino acid, fatty acid, and element profiles. Food Chem. 2020, 323, 126818–126826. [Google Scholar] [CrossRef]
- Matin, N.; Utterback, P.; Parsons, C.M. True metabolizable energy and amino acid digestibility in black soldier fly larvae meals, cricket meal, and mealworms using a precision-fed rooster assay. Poult. Sci. J. 2021, 100, 101146–101153. [Google Scholar] [CrossRef]
- Gan, M.; Shen, L.; Chen, L.; Jiang, D.; Jiang, Y.; Li, Q.; Chen, Y.; Ge, G.; Liu, Y.; Xu, X.; et al. Meat quality, amino acid, and fatty acid composition of liangshan pigs at different weights. Animals 2020, 10, 822. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Cross, H.R.; Gehring, K.B.; Savell, J.W.; Arnold, A.N.; McNeill, S.H. Composition of free and peptide-bound amino acids in beef chuck, loin, and round cuts. Anim. Sci. J. 2016, 94, 2603–2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalle Zotte, A.; Ricci, R.; Cullere, M.; Serva, L.; Tenti, S.; Marchesini, G. Effect of chicken genotype and white striping–wooden breast condition on breast meat proximate composition and amino acid profile. Poult. Sci. J. 2020, 99, 1797–1803. [Google Scholar] [CrossRef] [PubMed]
- Imelda, J.; Bhatnagar, D. Effect of solid-state fermentation on nutrient composition of selected feed ingredients. Indian J. Fish. 2008, 55, 327–332. [Google Scholar]
- Li, P.; Wu, G. Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 2020, 52, 523–542. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Tian, J.; Hao, Z.; Zhang, W. Protein content and amino acid composition in grains of wheat-related species. Agric. Sci. China. 2008, 7, 272–279. [Google Scholar] [CrossRef]
- Ghosh, S.; Lee, S.M.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Zheng, L.; Hou, Y.; Li, W.; Yang, S.; Li, Q.; Yu, Z. Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy 2012, 47, 225–229. [Google Scholar] [CrossRef]
- Feng, W.L.; Qian, L.; Wang, W.G.; Wang, T.L.; Deng, Z.K.; Yang, F.; Xiong, J.; Wang, C.W. Exploring the potential of lipids from black soldier fly: New paradigm for biodiesel production (II)—Extraction kinetics and thermodynamic. Renew. Energy 2018, 119, 12–18. [Google Scholar] [CrossRef]
- Wang, C.W.; Qian, L.; Wang, W.K.; Wang, T.L.; Deng, Z.K.; Yang, F.; Xiong, J.; Feng, W.L. Exploring the potential of lipids from black soldier fly: New paradigm for biodiesel production (I). Renew. Energy 2017, 111, 749–756. [Google Scholar] [CrossRef]
- Chia, S.Y.; Tanga, C.M.; Osuga, I.M.; Cheseto, X.; Ekesi, S.; Dicke, M.; Van Loon, J.J. Nutritional composition of black soldier fly larvae feeding on agro-industrial by-products. Entomol. Exp. Appl. 2020, 168, 472–481. [Google Scholar] [CrossRef]
- Kipkoech, C.; Kinyuru, J.N.; Imathiu, S.; Roos, N. Use of house cricket to address food security in Kenya: Nutrient and chitin composition of farmed crickets as influenced by age. Afr. J. Agric. Res. 2017, 12, 3189–3197. [Google Scholar] [CrossRef] [Green Version]
- Ewald, N.; Vidakovic, A.; Langeland, M.; Kiessling, A.; Sampels, S.; Lalander, C. Fatty acid composition of black soldier fly larvae (Hermetia illucens)—Possibilities and limitations for modification through diet. Waste Manag. 2020, 102, 40–47. [Google Scholar] [CrossRef]
- Skřivanová, E.; Marounek, M.; Benda, V.; Brezina, P. Susceptibility of Escherichia coli, Salmonella sp. and Clostridium perfringens to organic acids and monolaurin. Vet. Med. 2006, 51, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Finke, M.D. Complete nutrient content of four species of feeder insects. Zoo Biol. 2013, 32, 27–36. [Google Scholar] [CrossRef]
- Kim, Y.B.; Kim, D.H.; Jeong, S.B. Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Poult. Sci. 2020, 99, 3133–3143. [Google Scholar] [CrossRef]
- Jayanegara, A.; Gustanti, R.; Ridwan, R.; Widyastuti, Y. Fatty acid profiles of some insect oils and their effects on in vitro bovine rumen fermentation and methanogenesis. Ital. J. Anim. Sci. 2020, 19, 1310–1317. [Google Scholar] [CrossRef]
- Cheseto, X.; Baleba, S.B.S.; Tanga, C.M.; Kelemu, S.; Torto, B. Chemistry and sensory characterization of a bakery product prepared with oils from african edible insects. Foods 2020, 9, 800. [Google Scholar] [CrossRef]
- Almeida, J.C.D.; Perassolo, M.S.; Camargo, J.L.; Bragagnolo, N.; Gross, J.L. Fatty acid composition and cholesterol content of beef and chicken meat in Southern Brazil. Braz. J. Pharm. Sci. 2006, 42, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Seo, K.; Cho, H.-W.; Chun, J.; Jeon, J.; Kim, C.; Kim, M.; Park, K.; Kim, K. Evaluation of fermented oat and black soldier fly larva as food ingredients in senior dog diets. Animals 2021, 11, 3509. [Google Scholar] [CrossRef]
- Jajic, I.; Popovic, A.; Urosevic, M.; Krstović, S.; Petrović, M.; Guljaš, D.; Samardzic, M. Fatty and amino acid profile of mealworm larvae (Tenebrio molitor L.). Biotechnol. Anim. Husb. 2020, 36, 167–180. [Google Scholar] [CrossRef]
- Zaki, E. Fatty acids profile and quality characteristics of broiler chicken meat fed different dietary oil sources with some additives. Int. J. Health Anim. Sci. Food Saf. 2018, 5, 40–51. [Google Scholar] [CrossRef]
- Flowers, S.; Hamblen, H.; Leal-Gutiérrez, J.D.; Elzo, M.A.; Johnson, D.D.; Mateescu, R.G. Fatty acid profile, mineral content and palatability of beef from a multibreed Angus-Brahman population. Anim. Sci. J. 2018, 96, 4264–4275. [Google Scholar] [CrossRef]
- Finke, M.D. Nutrient content of insects. In Encyclopedia of Entomology, 2nd ed.; Capineira, L., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 2687–2710. [Google Scholar]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Finke, M.D. Nutritional value of insects and ways to manipulate their composition. J. Insects Food Feed 2020, 7, 639–659. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; Rehman, K.; Li, W. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef] [Green Version]
- Mlcek, J.; Rop, O.; Borkovcova, M.; Bednarova, M. A comprehensive look at the possibilities of edible insects as food in Europe—A review. Polish J. Food Nutr. Sci. 2014, 64, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Ravzanaadii, N.; Kim, S.H.; Choi, W.H.; Hong, S.J.; Kim, N.J. Nutritional value of mealworm Tenebrio molitor as food source. Int. J. Ind. Entomol. 2012, 25, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Finke, M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Ionita, L.; Popescu-Micloșanu, E.; Roibu, C.; Custură, I. Bibliographical study regarding the quails’ meat quality in comparison to the chicken and duck meat. Lucr. Ştiinţifice 2011, 56, 224–228. [Google Scholar]
- Kim, D.H.; Kim, K.W.; Kim, Y.H.; Kim, J.A.; Kim, J.; Moon, K.D. Nutritional composition of horsemeat compared to white meat (chicken and duck). Korean J. Food Preserv. 2015, 22, 644–651. [Google Scholar] [CrossRef]
- Tomović, V.M.; Petrović, L.S.; Tomović, M.S.; Kevrešan, Ž.S.; Džinić, N.R. Determination of mineral contents of semimembranosus muscle and liver from pure and crossbred pigs in Vojvodina (northern Serbia). Food Chem. 2011, 124, 342–348. [Google Scholar] [CrossRef]
- Sharipova, A.; Khaziev, D.; Kanareikina, S.; Kanareikin, V.; Rebezov, M.; Kazanina, M.; Andreeva, A.; Okuskhanova, E.; Yessimbekov, Z.; Bykova, O. The effects of a probiotic dietary supplementation on the amino acid and mineral composition of broilers meat. Annu. Res. Rev. Biol. 2018, 21, 1–7. [Google Scholar] [CrossRef]
- Purchas, R.W.; Wilkinson, B.H.P.; Carruthers, F.; Jackson, F. A comparison of the nutrient content of uncooked and cooked lean from New Zealand beef and lamb. J. Food Compost. Anal. 2014, 35, 75–82. [Google Scholar] [CrossRef]
- Hahn, T.; Tafi, E.; Paul, A.; Salvia, R.; Falabella, P.; Zibek, S. Current state of chitin purification and chitosan production from insects. J. Chem. Technol. Biotechnol. 2020, 95, 2775–2795. [Google Scholar] [CrossRef]
- Henriques, B.S.; Garcia, E.S.; Azambuja, P.; Genta, F.A. Determination of chitin content in insects: An alternate method based on calcofluor staining. Front. Physiol. 2020, 11, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Smets, R.; Verbinnen, B.; Van De Voorde, I.; Aerts, G.; Claes, J.; Van Der Borght, M. Sequential extraction and characterisation of lipids, proteins, and chitin from black soldier fly (Hermetia illucens) larvae, prepupae, and pupae. Waste Biomass Valorization 2020, 11, 6455–6466. [Google Scholar] [CrossRef]
- Jayanegara, A.; Haryati, R.P.; Nafisah, A.; Suptijah, P.; Ridla, M.; Laconi, E.B. Derivatization of chitin and chitosan from black soldier fly (Hermetia illucens) and their use as feed additives: An in vitro study. Adv. Anim. Vet. Sci. 2020, 8, 472–477. [Google Scholar] [CrossRef]
- Kulma, M.; Kouřimská, L.; Plachý, V.; Božik, M.; Adámková, A.; Vrabec, V. Effect of sex on the nutritional value of house cricket, Acheta domestica L. Food Chem. 2019, 272, 267–272. [Google Scholar] [CrossRef]
- Wu, Q.; Patočka, J.; Kuča, K. Insect antimicrobial peptides, a mini review. Toxins 2018, 10, 461. [Google Scholar] [CrossRef]
- Borrelli, L.; Varriale, L.; Dipineto, L.; Pace, A.; Menna, L.F.; Fioretti, A. Insect derived lauric acid as promising alternative strategy to antibiotics in the antimicrobial resistance scenario. Front. Microbiol. 2021, 12, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007, 26, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Gasco, L.; Finke, M.; Van Huis, A. Can diets containing insects promote animal health? J. Insects Food Feed 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Mouithys-Mickalad, A.; Schmitt, E.; Dalim, M.; Franck, T.; Tome, N.M.; Van Spankeren, M.; Serteyn, D.; Paul, A. Black soldier fly (Hermetia illucens) larvae protein derivatives: Potential to promote animal health. Animals 2020, 10, 941. [Google Scholar] [CrossRef]
- Di Mattia, C.; Battista, N.; Sacchetti, G.; Serafini, M. Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects and invertebrates. Front. Nutr. 2019, 6, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Klinger, C.; Gedon, N.; Udraite, L.; Hiltenkamp, K.; Mueller, R.; Böhm, T. Effekt eines Insektenprotein-basierten Futters auf die Symptomatik von futtermittelallergischen Hunden. Tierarztl. Prax. Ausg. K Kleintiere Heimtiere 2018, 46, 297–302. [Google Scholar] [CrossRef]
- Premrov Bajuk, B.; Zrimšek, P.; Kotnik, T.; Leonardi, A.; Križaj, I.; Jakovac Strajn, B. Insect protein-based diet as potential risk of allergy in dogs. Animals 2021, 11, 1942. [Google Scholar] [CrossRef]
- Beynen, A.C. Insect-based petfood. Creat. Companion 2018, 8, 40–41. [Google Scholar]
- Leriche, I.; Fournel, S.; Chala, V. Assessment of the digestive tolerance in cats of a new diet based on insects as the protein source. J. Feline Med. Surg. 2017, 19, 961–969. [Google Scholar] [CrossRef]
- Kröger, S.; Heide, C.; Zentek, J. Influence of proteins from the black soldier fly (Hermetia illucens) on nutrient digestibility and faecal and immunological parameters in dogs. In Proceedings of the 21st European Society of Veterinary and Comparative Nutrition Congress, Cirencester, UK, 20–23 September 2017; p. 170. [Google Scholar]
- Abd El-Wahab, A.; Meyer, L.; Kölln, M.; Chuppava, B.; Wilke, V.; Visscher, C.; Kamphues, J. Insect larvae meal (Hermetia illucens) as a sustainable protein source of canine food and its impacts on nutrient digestibility and fecal quality. Animals 2021, 11, 2525. [Google Scholar] [CrossRef]
- Penazzi, L. In vivo and in vitro digestibility of an extruded complete dog food containing black soldier fly (Hermetia illucens) larvae meal as protein source. Front. Vet. Sci. 2021, 8, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Freel, T.A.; McComb, A.; Koutsos, E.A. Digestibility and safety of dry black soldier fly larvae (BSFL) meal and BSFL oil in dogs. J. Anim. Sci. 2021, 99, skab047. [Google Scholar] [CrossRef] [PubMed]
- Areerat, S.; Chundang, P.; Lekcharoensuk, C.; Kovitvadhi, A. Possibility of using house cricket (Acheta domesticus) or mulberry silkworm (Bombyx mori) pupae meal to replace poultry meal in canine diets based on health and nutrient digestibility. Animals 2021, 11, 2680. [Google Scholar] [CrossRef] [PubMed]
- Bosch, G.; Swanson, K. Effect of using insects as feed on animals: Pet dogs and cats. J. Insects Food Feed 2020, 7, 795–805. [Google Scholar] [CrossRef]
- Kierończyk, B.; Rawski, M.; Pawełczyk, P.; Różyńska, J.; Golusik, J.; Mikołajczak, Z.; Józefiak, D. Do insects smell attractive to dogs? A comparison of dog reactions to insects and commercial feed aromas—A preliminary study. Ann. Anim. Sci. 2018, 18, 795–800. [Google Scholar] [CrossRef] [Green Version]
- Kilburn, L.R.; Carlson, A.T.; Lewis, E.; Rossoni Serao, M.C. Cricket (Gryllodes sigillatus) meal fed to healthy adult dogs does not affect general health and minimally impacts apparent total tract digestibility. J. Anim. Sci. 2020, 98, skaa083. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, J.; Rawski, M.; Homska, N.; Mikołajczak, Z.; Kierończyk, B.; Świątkiewicz, S.; Wachowiak, R.; Hetmańczyk, K.; Mazurkiewicz, J. The first insight into full-fat superworm (Zophobas morio) meal in guppy (Poecilia reticulata) diets: A study on multiple-choice feeding preferences and growth performance. Ann. Anim. Sci. 2022, 22, 371–384. [Google Scholar] [CrossRef]
- Rawski, M.; Mazurkiewicz, J.; Kierończyk, B.; Józefiak, D. Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals 2020, 10, 2119. [Google Scholar] [CrossRef]
- Sungmun, B.; Seulbi, L.; Jongwon, K.; Yeonhyeon, H. Analysis of consumer receptivity to pet food containing edible insects in South Korea. J. Appl. Entomol. 2020, 59, 139–143. [Google Scholar] [CrossRef]
- Naranjo-Guevara, N.; Fanter, M.; Conconi, A.M.; Floto-Stammen, S. Consumer acceptance among Dutch and German students of insects in feed and food. Food Sci. Nutr. 2021, 9, 414–428. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Correia, P.; Coelho, C.; Costa, C.A. The role of edible insects to mitigate challenges for sustainability. Open Agric. 2021, 6, 24–36. [Google Scholar] [CrossRef]
- Broekman, H.C.H.P.; Knulst, A.C.; De Jong, G.; Gaspari, M.; Den Hartog Jager, C.F.; Houben, G.F.; Verhoeckx, K.C.M. Is mealworm or shrimp allergy indicative for food allergy to insects? Mol. Nutr. Food Res. 2017, 61, 1601061. [Google Scholar] [CrossRef] [PubMed]
- De Martinis, M.; Sirufo, M.M.; Suppa, M.; Ginaldi, L. New perspectives in food allergy. Int. J. Mol. Sci. 2020, 21, 1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Gier, S.; Verhoeckx, K. Insect (food) allergy and allergens. Mol. Immunol. 2018, 100, 82–106. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Klein, G. Microbiology of cooked and dried edible Mediterranean field crickets (Gryllus bimaculatus) and superworms (Zophobas atratus) submitted to four different heating treatments. Food Sci. Technol. Int. 2017, 23, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Channaiah, L.H.; Subramanyam, B.; Mckinney, L.J.; Zurek, L. Stored-product insects carry antibiotic-resistant and potentially virulent enterococci. FEMS Microbiol. Ecol. 2010, 74, 464–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmatinezhad, B.; Ommi, D.; Hafshejani, T.T.; Khamesipour, F. Molecular detection and antimicrobial resistance of Pseudomonas aeruginosa from houseflies (Musca domestica) in Iran. J. Venom. Anim. Toxins Incl. Trop. Dis. 2015, 21, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Lowe, C.F.; Romney, M.G. Bedbugs as vectors for drugresistant bacteria. Emerg. Infect. Dis. 2011, 17, 1132–1134. [Google Scholar] [CrossRef]
- Tian, B.; Fadhil, N.H.; Powell, J.E.; Kwong, W.K.; Moran, N.A. Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees. mBio 2012, 3, e00377-12. [Google Scholar] [CrossRef] [Green Version]
- Amonkar, S.V.; Nair, K.K. Pathogenicity of Aspergillus flavus link to Musca domestica nebulo fabricius. J. Invertebr. Pathol. 1965, 7, 513–514. [Google Scholar] [CrossRef]
- Davis, G.R.F.; Schiefer, H.B. Effects of dietary T-2 toxin concentrations fed to larvae of the yellow mealworm at three dietary protein levels. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1982, 73, 13–16. [Google Scholar] [CrossRef]
- Davis, G.R.F. Growth of larvae of Tenebrio molitor L. fed diets containing penicillic acid, aflatoxin B, ochratoxin A, or rubratoxin B at three dietary protein levels. Arch. Int. Physiol. Biochim. 1982, 90, 297–300. [Google Scholar]
- Bednarska, A.J.; Opyd, M.; Żurawicz, E.; Laskowski, R. Regulation of body metal concentrations: Toxicokinetics of cadmium and zinc in crickets. Ecotoxicol. Environ. Saf. 2015, 119, 9–14. [Google Scholar] [CrossRef] [PubMed]
- European Commission (EC). Commission Regulation (EC) No.1881/2006 of 19 December 2006 on setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union L 2006, 634, 5–24. [Google Scholar]
- European Commission (EC). Commission Regulation (EC) No. 1275/2013 of 6 December 2013 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for arsenic, cadmium, lead, nitrites, volatile mustard oil and harmful botanical impurities. Off. J. Eur. Union L 2013, 328, 86–92. [Google Scholar]
- Wu, N.; Wang, X.; Xu, X.; Cai, R.; Xie, S. Effects of heavy metals on the bioaccumulation, excretion and gut microbiome of black soldier fly larvae (Hermetia illucens). Ecotoxicol. Environ. Saf. 2020, 192, 110323–110332. [Google Scholar] [CrossRef]
- Proc, K.; Bulak, P.; Wiącek, D.; Bieganowski, A. Hermetia illucens exhibits bioaccumulative potential for 15 different elements—Implications for feed and food production. Sci. Total Environ. 2020, 723, 138125–138133. [Google Scholar] [CrossRef]
- Bessa, L.W.; Pieterse, E.; Marais, J.; Dhanani, K.; Hoffman, L.C. Food safety of consuming black soldier fly (Hermetia illucens) larvae: Microbial, heavy metal and cross-reactive allergen risks. Foods 2021, 10, 1934. [Google Scholar] [CrossRef]
Species | Percentage of Diet/Chimney Content | Genus of Insects |
---|---|---|
Atelocynus microtis (Sclater, 1883) [30] | 17% of intestine content | Coleoptera |
Canis lupus (Linnaeus, 1758) [31] | 1.2% of manure biomass | - |
Otocyon megalotis (Desmarest, 1822) [32] | 61.2% of diet | Isoptera, Coleoptera, Orthoptera |
Vulpes zerda (Zimmermann, 1780) [33] | 5.5% of manure biomass | Coleoptera, Hymenoptera, Isoptera |
Lycalopex culpaeus (Molina, 1782) [30] | 20% of diet | Coleoptera, Hymenoptera, Orthoptera |
Species | Life Stage | Crude Protein | Crude Fat | Crude Fiber | Crude Ash | Gross Energy |
---|---|---|---|---|---|---|
Black soldier fly [18] | Larvae | 42.35 | 24.90 | 7.00 | 21.50 | 22.10 |
Mealworm [39] | Larvae | 53.75 | 37.10 | - | 2.75 | 26.85 |
Imago | 65.30 | 14.88 | 20.20 | 3.30 | 1.60 | |
Banded cricket [40] | Imago | 70.00 | 18.23 | 3.65 | 4.74 | 1.90 |
House cricket [41] | Nymph | 67.25 | 14.41 | 15.72 | 4.80 | 17.32 |
Imago | 67.57 | 20.68 | - | 4.33 | 19.10 | |
Field cricket [42] | Imago | 56.40 | 28.80 | 7.00 | 6.40 | 21.50 |
Item | Mealworm Larvae [47] | Black Soldier Fly Larvae [48] | House Cricket Imago [48] | Pork (longissimus dorsi muscle) [49] | Beef (Chuck) [50] | Chicken (Breast) [51] | Soybean Meal [52] | Fish Meal (Peruvian anchovy) [53] |
---|---|---|---|---|---|---|---|---|
Protein (g/100 g DM) | 52.23 | 45.2 | 67.4 | 19.09 | 68.00 | 21.3 | 45.97 | 68.77 |
Arg | 3.61 | 4.78 | 6.19 | 2.72 | 7.04 | 8.83 | 5.67 | 5.21 |
Val | 3.62 | 9.03 | 9.36 | 3.67 | 6.59 | 4.79 | 4.33 | 5.38 |
Leu | 4.22 | 7.23 | 8.00 | 4.27 | 9.09 | 7.09 | 8.04 | 7.66 |
Ile | 2.51 | 4.73 | 4.91 | 2.39 | 5.65 | 3.90 | 4.00 | 4.00 |
Phe | 2.51 | 4.38 | 3.77 | 3.1 | 4.54 | 3.71 | 5.99 | 3.36 |
Phe + tyr | 6.62 | 10.58 | 11.77 | 4.82 | 8.53 | 6.81 | 9.21 | 6.28 |
Met | 1.15 | 1.53 | 1.68 | 2.61 | 3.49 | 4.98 | 1.11 | 3.14 |
Met + Cys | 3.42 | 2.79 | 2.76 | 2.81 | 4.97 | 6.01 | 2.05 | 4.19 |
Lys | 3.03 | 7.43 | 6.41 | 3.96 | 9.79 | 9.95 | 5.44 | 7.63 |
His | 1.60 | 3.21 | 2.63 | 2.6 | 4.32 | 3.47 | 3.00 | 2.08 |
Trp | 0.57 | 1.46 | 1.04 | 0.23 | 1.37 | 2.07 | 1.65 | 0.99 |
Thr | 2.42 | 4.18 | 3.90 | 3.05 | 5.04 | 4.93 | 4.81 | 4.14 |
Sum EAA | 31.62 | 55.42 | 59.96 | 38.15 | 62.40 | 57.84 | 48.20 | 47.56 |
Item | Black Soldier Fly (Larvae) [73,75] | House Cricket (Adult) [44] | Mealworm (Larvae) [77,78] | Duck (Breast) [79,80] | Pork (Semimembranosus Muscle) [81] | Chicken (Muscle) [82] | Lamb (Lean Lamb) [83] | Beef (Intercostal Muscles) [83] |
---|---|---|---|---|---|---|---|---|
Macroelements | ||||||||
Ca | 2900 | 140.3 | 43.5 | 8.2 | 11.8 | 11.1 | 16.1 | 6.1 |
P | 350 | 842.4 | 706 | 205.7 | 225 | 134.4 | 195 | 182 |
Ca:P | 8:1 | 1:6 | 1:16 | 1:25 | 1:19 | 1:12 | 1:12 | 1:29 |
K | 57 | 365.3 | 947.9 | 227.2 | 280 | 206.4 | 303 | 266 |
Mg | 24.5 | 127.9 | 202.7 | 21.4 | 26.6 | 17.9 | 23.5 | 21.2 |
Na | 100 | 95 | 364.5 | 101.4 | 59.8 | 78.3 | 68.3 | 39.8 |
Microelements | ||||||||
Zn | 61.4 | 18.4 | 10.4 | 1.2 | 2.7 | 1.1 | 4.2 | 5.2 |
Fe | 200 | 8.2 | 6.7 | 3.3 | 1.4 | 1.4 | 1.8 | 2.6 |
Mn | 2 | 4.1 | 0.5 | 0.4 | 0.02 | 0.01 | 10.7 | 11.9 |
Cu | 0.1 | 4.6 | 1.3 | 0.2 | 0.3 | 0.06 | 0.1 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kępińska-Pacelik, J.; Biel, W. Insects in Pet Food Industry—Hope or Threat? Animals 2022, 12, 1515. https://doi.org/10.3390/ani12121515
Kępińska-Pacelik J, Biel W. Insects in Pet Food Industry—Hope or Threat? Animals. 2022; 12(12):1515. https://doi.org/10.3390/ani12121515
Chicago/Turabian StyleKępińska-Pacelik, Jagoda, and Wioletta Biel. 2022. "Insects in Pet Food Industry—Hope or Threat?" Animals 12, no. 12: 1515. https://doi.org/10.3390/ani12121515
APA StyleKępińska-Pacelik, J., & Biel, W. (2022). Insects in Pet Food Industry—Hope or Threat? Animals, 12(12), 1515. https://doi.org/10.3390/ani12121515