Recognition of Coat Pattern Variation and Broken Tail Phenomenon in the Asiatic Golden Cat (Catopuma temminckii)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Camera-Trap Survey Method
2.3. Camera-Trap Data Processing
2.3.1. Camera-Trap Data Identification
2.3.2. Determination of Coat Pattern Variation among Asian Golden Cats
3. Results
3.1. Camera Trap Results
3.2. Color Type Categories and Proportions
- (a)
- Cinnamon form: Distinguished by the entire body being cinnamon (Figure 2a).
- (b)
- Brown form: Distinguished by the fur color being darker than cinnamon. The entire body is brown (Figure 2b).
- (c)
- Common form: White or yellowish-white stripes present on each of the inner corners of the eyes, and back hair turns reddish-brown. Obvious markings on the sides and back are lacking. This form corresponds to the common name and to the trade name “sesame leopard” used in early fur acquisitions (Figure 2c). This color type was the most common type in the study area, as well as in China, and it is, therefore, often referred to as the “common color type”.
- (d)
- Ocelot form: Entire body is red with red cloud-like patches darker than the body color (Figure 2d).
- (e)
- Reddish-brown long hair: The overall coat is bright red, similar to that of Muntiacus vaginalis, with darker extremities. No visible spots on the body. This form corresponds to the common name or trade names “red gold cat” and “red tone leopard” in early fur acquisitions. Body hair is longer, and the coat is thicker than those in other color types (Figure 2e).
- (f)
- Brown short hair: Body color is lighter orange, and body hair is shorter than that of the reddish-brown type (Figure 2f).
- (g)
- Gray form: Entire body is lead-gray, lacking markings on the whole body except the head (Figure 2g).
- (h)
- Blackening form: This color form is regarded as a gradually darkening gray form, that never reaches black. The color is intermediate between the gray and black forms, with a mosaic of black tile-like patches on the limbs around the abdomen (Figure 2h).
- (i)
- Melanistic form: The overall coat color is jet black or dark gray-black, without obvious markings. This type corresponds to the common name or the trade names “black leopard” and “clouded leopard” in early fur acquisitions (Figure 2i).
- (j)
- Pure black form: The entire body is jet black and has none of the above-mentioned common characteristics (Figure 2j).
3.3. Broken Tail Phenomenon in the Asian Golden Cats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, W.L.; Cuthill, I.C.; Scott-Samuel, N.E.; Baddeley, R. Why the leopard got its spots: Relating pattern development to ecology in felids. Proc. R Soc. B 2011, 278, 1373–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caro, T. The adaptive significance of coloration in mammals. BioScience 2005, 55, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Küntzel, A.; Nelson, G.; David, V.A.; Schaffer, A.A.; Eizirik, E.; Roelke, M.E.; Kehler, J.S.; Hannah, S.S.; O’Brien, S.J.; Menotti-Raymond, M. A domestic cat X chromosome linkage map and the sex-linked orange locus: Mapping of orange, multiple origins and epistasis over nonagouti. Genetics 2009, 181, 1415–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cott, H.B. Adaptive Coloration in Animals; Methuen: London, UK, 1940. [Google Scholar]
- Searle, A.G. Comparative Genetics of Coat Color in Mammals; Logos Press: London, UK, 1968. [Google Scholar]
- Ortolani, A.; Caro, T.M. The adaptive significance of color patterns in carnivores: Phylogenetic test of classic hypotheses. In Carnivore Behavior, Ecology, and Evolution; Gittleman, J.L., Ed.; Cornell University Press: New York, NY, USA, 1996; pp. 132–188. [Google Scholar]
- Oyehaug, L.; Plahte, E.; Vage, D.I.; Omholt, S.W. The regulatory basis of melanogenic switching. J. Theor. Biol. 2002, 215, 449–468. [Google Scholar] [CrossRef]
- Tinbergen, N. On aims and methods of Ethology. Ethology 1963, 20, 410–433. [Google Scholar]
- Bard, J.B.L. A model for generating aspects of zebra and other mammalian coat patterns. J. Theor. Biol. 1981, 93, 363–385. [Google Scholar] [CrossRef]
- Murray, J.D.; Oster, G.F. Generation of biological pattern and form. IMA J. Math. Appl. Med. Biol. 1984, 1, 51–75. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Liu, W.L.; Zhu, X.L.; Li, B.Z. Coat pattern variation and activity rhythm of Asiatic golden cat (Catopuma temminckii) in Yarlung Zangbo Grand Canyon National Nature Reserve of Tibet, China. Biodiv. Sci. 2019, 27, 638–647. [Google Scholar]
- Vernes, K.; Sangay, T.; Rajaratnam, R.; Singye, R. Social interaction and co-occurrence of colour morphs of the Asiatic golden cat, Bhutan. Cat News 2015, 62, 18–20. [Google Scholar]
- Nijhawan, S.; Mitapo, I.; Pulu, J.; Carbone, C.; Rowcliffe, J.M. Does polymorphism make the Asiatic golden cat the most adaptable predator in the Eastern Himalayas? Ecology 2019, 100, e02768. [Google Scholar] [CrossRef] [Green Version]
- Luke, H. Wild Cats of the World, 1st ed.; Bloomsbury Publishing: London, UK, 2015. [Google Scholar]
- Driscoll, C.A.; Menotti-Raymond, M.; Roca, A.L.; Hupe, K.; Johnson, W.E.; Geffen, E.; Harley, E.H.; Delibes, M.; Pontier, D.; Kitchener, A.C.; et al. The near eastern origin of cat domestication. Science 2007, 317, 519–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eizirik, E.; Yuhki, N.; Johnson, W.E.; Menotti-Raymond, M.; Hannah, S.S.; O’Brien, S.J. Molecular genetics and evolution of melanism in the cat family. Curr. Biol. 2003, 13, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Küntzel, A.; Eizirik, E.; O’Brien, S.J.; Menotti-Raymond, M. Tyrosinase and Tyrosinase related protein 1 alleles specify domestic cat coat color phenotypes of the albino and brown loci. J. Hered. 2005, 4, 289–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, Y.; David, V.A.; Eizirik, E.; Schaffer, A.A.; Neelam, B.A.; Roelke, M.E.; Hannah, S.S.; O’Brien, S.J.; Menotti-Raymond, M. A homozygous single-base deletion in MLPH causes the dilute coat color phenotype in the domestic cat. Genomics 2006, 88, 698–705. [Google Scholar] [CrossRef] [Green Version]
- Lyons, L.A.; Imes, D.L.; Rah, H.C.; Grahn, R.A. Tyrosinase mutations associated with Siamese and Burmese patterns in the domestic cat (Felis catus). Anim. Genet. 2005, 36, 119–126. [Google Scholar] [CrossRef]
- Imes, D.L.; Geary, L.A.; Grahn, R.A.; Lyons, L.A. Albinism in the domestic cat (Felis catus) is associated with a tyrosinase (TYR) mutation. Anim. Genet. 2006, 37, 175–178. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, S.J.; Haskins, M.E.; Winkler, C.A.; Nash, W.G.; Patterson, D.F. Chromosomal mapping of beta-globin and albino loci in the domestic cat: A conserved mammalian chromosome group. J. Hered. 1986, 77, 374–378. [Google Scholar] [CrossRef]
- Vella, C.M.; Shelton, L.M.; McGonagle, J.J.; Stanglein, T.W. Robinson’s Genetics for Cat Breeders and Veterinarians; Butterworth-Heinemann: Oxford, UK; Boston, MA, USA, 1999. [Google Scholar]
- Zeuner, F.E. A History of Domesticated Animals; Hutchinson: London, UK, 1963. [Google Scholar]
- Gao, Y.T.; Wang, S.; Zhang, M.L.; Ye, Z.Y.; Zhou, J.D. Fauna Sinica Mammalia Vol.8: Carnivora; Science Press: Beijing, China, 1987. [Google Scholar]
- Wang, S. China Red Data Book of Endangered Animals; Science Press: Beijing, China, 1998. [Google Scholar]
- Smith, A.T.; Xie, Y.A. Guide to the Mammals of China; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Liu, S.Y.; Wu, Y. Handbook of the Mammals of China; The Straits Publishing & Distributing Group: Fuzhou, China, 2019. [Google Scholar]
- Doncaster, L. On the inheritance of tortoiseshell and related colors in cats. Proc. Camb. Philos. Soc. 1904, 13, 35–38. [Google Scholar]
- Godfrey, D.; Lythgoe, J.N.; Rumball, D.A. Zebra stripes and tiger stripes: The spatial frequency distribution of the pattern compared to that of the background is significant in display and crypsis. Biol. J. Linn. Soc. 1987, 32, 427–433. [Google Scholar] [CrossRef]
- Kiltie, R.A.; Fan, J.; Laine, A.F. A wavelet-based metric for visual texture discrimination with applications in evolutionary ecology. Math. Biosci. 1994, 126, 21–39. [Google Scholar] [CrossRef]
- Stevens, M.; Cuthill, I.C. Disruptive coloration, crypsis and edge detection in early visual processing. Proc. R. Soc. B 2006, 273, 2141–2147. [Google Scholar] [CrossRef] [Green Version]
- Stevens, M.; Parraga, C.A.; Cuthill, I.C.; Partridge, J.C.; Troscianko, T.S. Using digital photography to study animal coloration. Biol. J. Linn. Soc. 2007, 90, 211–237. [Google Scholar] [CrossRef] [Green Version]
- Stoddard, M.C.; Stevens, M. Pattern mimicry of host eggs by the common cuckoo, as seen through a bird’s eye. Proc. R. Soc. B 2010, 277, 1387–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, R. Genetics for Cat Breeders; Pergamon Press: London, UK, 1977. [Google Scholar]
- Robinson, R. Inheritance of black form of the leopard Panthera pardus. Genetica 1970, 41, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R. Gene Mapping in Laboratory Mammals. Part B. Linkage in Mammalian Species; Plenum Press: London, UK, 1972. [Google Scholar]
- Robinson, R. Acromelanic albinism in mammals. Genetica 1973, 44, 454–458. [Google Scholar] [CrossRef]
- Uphyrkina, O.; Miquelle, D.; Quigley, H.; Driscoll, C.; O’Brien, S.J. Conservation genetics of the far eastern leopard (Panthera pardus orientalis). J. Hered. 2002, 5, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Pocock, R.I. Catalogue of the Genus Felis; British Museum (National History): London, UK, 1951. [Google Scholar]
- Weigel, I. Das Fellmuster der Wildlebenden Katzenarten und der Hauskatze in Vergleichender und Stammesgeschichtlicher Hinsicht. In Säugetierkundliche Mitteilungen; WorldCat: Dublin, OH, USA, 1961; p. 120. [Google Scholar]
- Ewer, R.F. The Carnivores; Weiden and Nicolson: London, UK, 1973. [Google Scholar]
- Massicotte, R.; Whitelaw, E.; Angers, B. DNA methylation: A source of random variation in natural populations. Epigenetics 2011, 6, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Sun, K.; Jiang, T.; Feng, J. Natural epigenetic variation in bats and its role in evolution. J. Exp. Biol. 2015, 218, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Salehi, E.L.; Schrey, A.; Andrew, S.C.; Ragsdale, A.; Griffith, S.C. Epigenetic and genetic variation among three separate introductions of the house sparrow (Passer domesticus) into Australia. R. Soc. Open Sci. 2018, 5, 172185. [Google Scholar]
- Wang, F.; Zhang, Z.X.; Li, C.; Sun, G.; Zhao, X.; Lu, Z. Add Himalaya’s Grand Canyon to China’s first national parks. Nature 2021, 592, 353. [Google Scholar] [CrossRef]
No. | Survey Areas | Number of Camera Stations | Elevation Range | Trap Nights | Number of Photographs | Number of Independent Captures of Asian Golden Cat | RAI * |
---|---|---|---|---|---|---|---|
1 | Bixiri | 11 | 2235–3479 m | 2794 | 12,294 | 34 | 1.22 |
2 | South bank of the Yarlung Zangbo River | 10 | 582–668 m | 1880 | 16,751 | 0 | 0.00 |
3 | Uma Mountain | 6 | 1751–3145 m | 1374 | 6942 | 0 | 0.00 |
4 | Raj Mountain | 8 | 1631–2086 m | 1968 | 8467 | 12 | 0.61 |
5 | DanGeZhuo | 3 | 954–1434 m | 630 | 684 | 2 | 0.32 |
6 | GeDang Ditch | 27 | 2160–2470 m | 3081 | 19,876 | 105 | 3.41 |
7 | MeiYuLunBa | 2 | 1751–2315 m | 294 | 5172 | 1 | 0.34 |
8 | XiGong River | 6 | 1124–1590 m | 1080 | 6532 | 3 | 0.28 |
9 | GeYang Ditch | 8 | 815–1294 m | 1360 | 6359 | 3 | 0.22 |
10 | DaMu | 15 | 2001–3160 m | 5850 | 8369 | 53 | 0.91 |
11 | SaSong River | 5 | 2023–2523 m | 1950 | 8264 | 16 | 0.82 |
12 | North of the Grand Canyon | 40 | 1880–2980 m | 14,600 | 20,456 | 55 | 0.38 |
13 | DeErGong | 120 | 1750–2890 m | 45,100 | 38,001 | 201 | 0.45 |
14 | Gongdui Mountain | 22 | 2105–2780 m | 8030 | 9080 | 135 | 1.68 |
Total | 283 | 582–3479 m | 89,991 | 167,247 | 620 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, D.; Dunzhu, P.; Liu, W.; Feng, L.; Jin, K. Recognition of Coat Pattern Variation and Broken Tail Phenomenon in the Asiatic Golden Cat (Catopuma temminckii). Animals 2022, 12, 1420. https://doi.org/10.3390/ani12111420
Wang Y, Li D, Dunzhu P, Liu W, Feng L, Jin K. Recognition of Coat Pattern Variation and Broken Tail Phenomenon in the Asiatic Golden Cat (Catopuma temminckii). Animals. 2022; 12(11):1420. https://doi.org/10.3390/ani12111420
Chicago/Turabian StyleWang, Yuan, Dajiang Li, Pubu Dunzhu, Wulin Liu, Limin Feng, and Kun Jin. 2022. "Recognition of Coat Pattern Variation and Broken Tail Phenomenon in the Asiatic Golden Cat (Catopuma temminckii)" Animals 12, no. 11: 1420. https://doi.org/10.3390/ani12111420
APA StyleWang, Y., Li, D., Dunzhu, P., Liu, W., Feng, L., & Jin, K. (2022). Recognition of Coat Pattern Variation and Broken Tail Phenomenon in the Asiatic Golden Cat (Catopuma temminckii). Animals, 12(11), 1420. https://doi.org/10.3390/ani12111420