The Duration of the Trial Influences the Effects of Mineral Deficiency and the Effective Phytase Dose in Broilers’ Diets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Experimental Diets
2.3. Growth Performance
2.4. Nutrient Retention
2.5. Bone and Blood Sampling
2.6. Analytical Methods
2.7. Statistical Analyses
3. Results
3.1. Growth Performance
3.2. Nutrient Utilization
3.3. Bone Mineralization and Blood Analyses
4. Discussion
4.1. Mineral Levels
4.2. Phytase Level
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gomes, P.C.; Runho, R.C.; Dagostini, P.; Rostagno, H.S.; Albino, L.F.T.; Lopes, P.S. Available phosphorus requirement for male and female cutting berries from 22 to 42 and from 43 to 53 days of age. Braz. J. Zootech. 2004, 33, 1734–1746. [Google Scholar]
- Babatunde, O.O.; Bello, A.; Dersjant-Li, Y.; Adeola, O. Evaluation of the responses of broiler chickens to varying concentrations of phytate phosphorus and phytase. Ⅱ. Grower phase (day 12–23 post hatching). Poult. Sci. 2022, 101, 101616. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.R.; Raju, M.V.L.N.; Reddy, M.R.; Pavani, P. Interaction between dietary calcium and non-phytate phosphorus levels on growth, bone mineralization and mineral excretion in commercial broilers. Anim. Feed Sci. Technol. 2006, 131, 135–150. [Google Scholar]
- Letourneau-Montimy, M.P.; Narcy, A.; Lescoat, P.; Magnin, M.; Bernier, J.F.; Sauvant, D.; Jondreville, C.; Pomar, R. Modelling the fate of dietary phosphorus in the digestive tract of growing pigs. J. Anim. Sci. 2011, 89, 3596–3611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, V.; Ferrari, F.; White, P.J.; Rodrigues, A. Phytic acid accumulation in plants: Biosynthesis pathway regulation and role in human diet. Plant Physiol. Biochem. 2021, 164, 132–146. [Google Scholar]
- Olukosi, O.A.; Cowieson, A.J.; Adeola, O. Age-related influence of a cocktail of xylanase, amylase, and protease or phytase individually or in combination in broilers. Poult. Sci. 2007, 86, 77–86. [Google Scholar] [CrossRef]
- Rutherfurd, S.M.; Chung, T.K.; Thomas, D.V.; Zou, M.L.; Moughan, P.J. Effect of a novel phytase on growth performance, apparent metabolizable energy, and the availability of minerals and amino acids in a low-phosphorus corn-soybean meal diet for broilers. Poult. Sci. 2012, 91, 1118–1127. [Google Scholar] [CrossRef]
- Chen, Y.P.; Duan, W.G.; Wang, L.L.; Zhang, S.L.; Zhou, Y.M. Effects of thermostable phytase supplementation on the growth performance and nutrient digestibility of broilers. Int. J. Poult. Sci. 2013, 12, 441–444. [Google Scholar] [CrossRef] [Green Version]
- Bougouin, A.; Appuhamy, J.A.D.R.N.; Kebreab, E.; Dijkstra, J.; Kwakkel, R.P.; France, J. Effects of phytase supplementation on phosphorus retention in broilers and layers: A meta-analysis. Poult. Sci. 2014, 93, 1981–1992. [Google Scholar] [CrossRef]
- Babatunde, O.; Adeola, O. Additivity of apparent and standardised ileal digestibility of phosphorus in corn and canola meal mixed diets; basal endogenous loss of phosphorus responses to phytase and age in broiler chickens. Br. Poult. Sci. 2021, 62, 244–250. [Google Scholar] [CrossRef]
- Wang, J.; Patterson, R.; Kim, W.K. Effects of phytase and multicarbohydrase on growth performance, bone mineralization, and nutrient digestibility in broilers fed a nutritionally reduced diet. J. Appl. Poult. Res. 2021, 30, 100146. [Google Scholar] [CrossRef]
- Selle, P.; Ravindran, V. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 2007, 135, 1–41. [Google Scholar] [CrossRef]
- Babatunde, O.O.; Bello, A.; Dersjant-Li, Y.; Adeola, O. Evaluation of the responses of broiler chickens to varying concentrations of phytate phosphorus and phytase. Ⅰ. Starter phase (day 1–11 post hatching). Poult. Sci. 2021, 100, 101396. [Google Scholar] [CrossRef] [PubMed]
- Kriseldi, R.; Johnson, J.A.; Walk, C.L.; Bedford, M.R.; Dozier, W.A. Influence of exogenous phytase supplementation on phytate degradation, plasma inositol, alkaline phosphatase, and glucose concentrations of broilers at 28 days of age. Poult. Sci. 2021, 100, 224–234. [Google Scholar] [CrossRef]
- Alam, S.; Masood, S.; Zaneb, H.; Rabbani, I.; Khan, R.U.; Shah, M.; Ashraf, S.; Alhidary, I.A. Effect of Bacillus cereus and phytase on the expression of musculoskeletal strength and gut health in japanese quail (Coturnix japonica). J. Poult. Sci. 2020, 57, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Simons, P.C.M.; Versteegh, H.A.J.; Jongbloed, A.W.; Kemme, P.A.; Slump, P.; Bos, K.D.; Wolters, M.G.E. Improvement of phosphorus availability by microbial phytase in broiler and pigs. Br. J. Nutr. 1990, 64, 525–540. [Google Scholar] [CrossRef] [Green Version]
- Denbow, D.M.; Ravindran, V.; Kornegay, E.T.; Yi, Z.; Hulet, R.M. Improving phosphorus availability in soybean meal for broilers by supplemental phytase. Poult. Sci. 1995, 74, 1831–1842. [Google Scholar] [CrossRef]
- Shirley, R.B.; Edwards Jr, H.M. Graded levels of phytase past industry standards improve broiler performance. Poult. Sci. 2003, 82, 671–680. [Google Scholar] [CrossRef]
- Babatunde, O.O.; Cowieson, A.J.; Wilson, J.W.; Adeola, O. Influence of age and duration of feeding low-phosphorus diet on phytase efficacy in broiler chickens during the starter phase. Poult. Sci. 2019, 98, 2588–2597. [Google Scholar] [CrossRef]
- Babatunde, O.O.; Cowieson, A.J.; Wilson, J.W.; Adeola, O. The impact of age and feeding length on phytase efficacy during the starter phase of broiler chickens. Poult. Sci. 2019, 98, 6742–6750. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Alagawany, M.; Arif, M.; Emam, M. The uses of microbial phytase as a feed additive in poultry nutrition-A review. Ann. Anim. Sci. 2018, 18, 639–658. [Google Scholar] [CrossRef] [Green Version]
- Javadi, M.; Pascual, J.J.; Cambra-López, M.; Macías-Vidal, J.; Donadeu, A.; Dupuy, J.; Carpintero, L.; Ferrer, P.; Cerisuelo, A. Effect of dietary mineral content and phytase dose on nutrient utilization, performance, egg traits and bone mineralization in laying hens from 22 to 31 weeks of age. Animals 2021, 11, 1495. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Angel, R.; Ashwell, C.; Mitchell, A.; Christman, M. Evaluation of the broiler’s ability to adapt to an early moderate deficiency of phosphorus and calcium. Poult. Sci. 2005, 84, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Walk, C.; Berti, J.O.; Cowieson, A.J.; Stamatopoulos, K. Comparative effects of two phytases on growth performance, bone mineralization, nutrient digestibility and phytate-P hydrolysis of broilers. J. Appl. Poult. Res. 2022, 31, 100247. [Google Scholar] [CrossRef]
- FEDNA. Necesidades Nutricionales Para Avicultura: Normas FEDNA, 2nd ed.; Fundación Española Para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2018; ISBN 978-84-09-06529-5. [Google Scholar]
- Salaet, I.; Marques, R.; Yance-Chávez, T.; Macías-Vidal, J.; Gimémez-Zaragoza, D.; Aligue, R. Novel long-term phytase from Serratia odorifera: Cloning, expression, and characterization. Food Sci. Technol. 2021, 1, 689–697. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Evans, C.; Kumar, A. Effect of phytase dose and reduction in dietary calcium on performance, nutrient digestibility, bone ash and mineralization in broilers fed corn-soybean meal-based diets with reduced nutrient density. Anim. Feed Sci. Technol. 2018, 242, 95–110. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemist (AOAC). Official Methods of Analysis, 17th ed.; AOAC: Arlington, VA, USA, 2000. [Google Scholar]
- Cambra-López, M.; Cerisuelo, A.; Ferrer, P.; Ródenas, L.; Aligué, R.; Moset, V.; Pascual, J.J. Age influence on effectiveness of a novel 3-phytase in barley-wheat based diets for pigs from 12 to 108 kg under commercial conditions. Anim. Feed Sci. Technol. 2020, 267, 114549. [Google Scholar] [CrossRef]
- Haug, W.; Lantzsch, H.J. Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric. 1983, 34, 1423–1426. [Google Scholar] [CrossRef]
- Li, W.; Angel, R.; Kim, S.W.; Jiménez-Moreno, E.; Proszkowiec-Weglarz, M.; Plumstead, P.W. Age and adaptation to Ca and P deficiencies: 2. Impacts on amino acid digestibility and phytase efficacy in broilers. Poult. Sci. 2015, 94, 2917–2931. [Google Scholar] [CrossRef]
- Karami, M.; Karimian, A.; Sadeghi, A.A.; Zentekb, J.; Goodarzi Boroojeni, F. Effects of phytase and benzoic acid supplementation on growth performance, nutrient digestibility, tibia mineralization and serum traits in male broiler chickens. Livest. Sci. 2020, 242, 104258. [Google Scholar] [CrossRef]
- Sens, R.F.; Bassi, L.S.; Almeida, L.M.; Rosso, D.F.; Teixeira, L.V.; Maiorka, A. Effect of different doses of phytase and protein content of soybean meal on growth performance, nutrient digestibility, and bone characteristics of broilers. Poult. Sci. 2021, 100, 100917. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.W.Z.; Yang, H.; Cao, Y.; Zhu, X.; Zhao, Y. Effects of phytase supplementation on growth performance, slaughter performance, growth of internal organs and small intestine, and serum biochemical parameters of broilers. Open J. Anim. Sci. 2013, 3, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Ravindran, V.; Cabahug, S.; Ravindran, G.; Selle, P.H.; Bryden, W.L. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorus levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Br. Poult. Sci. 2000, 41, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V.; Selle, P.H.; Ravindran, G.; Morel, P.C.H.; Kies, A.K.; Bryden, W.L. Microbial phytase improves performance, apparent metabolisable energy and ileal amino acid digestibility of broilers fed a lysine-deficient diet. Poult. Sci. 2001, 80, 338–344. [Google Scholar] [CrossRef] [PubMed]
Short-Term Trial | Long-Term Trial | |||||
---|---|---|---|---|---|---|
Grower Feed | Starter Feed | Grower Feed | ||||
PC | NC | PC | NC | PC | NC | |
Ingredients % | ||||||
Corn grain | 25.6 | 25.7 | 19.1 | 19.3 | 25.6 | 25.9 |
Wheat grain | 34.6 | 35.0 | 34.6 | 35 | 34.6 | 35.0 |
Soybean meal 44% CP | 15 | 15.1 | 21.2 | 21.3 | 15 | 15.1 |
Extruded soybean meal | 17.9 | 18 | 14.9 | 15 | 17.9 | 18 |
Soybean oil | 2.81 | 2.81 | 5.6 | 5.6 | 2.81 | 2.81 |
L-lysine | 0.41 | 0.41 | 0.5 | 0.5 | 0.41 | 0.41 |
DL-methionine | 0.28 | 0.28 | 0.35 | 0.35 | 0.28 | 0.28 |
L-threonine | 0.10 | 0.10 | 0.13 | 0.13 | 0.10 | 0.10 |
Calcium carbonate | 0.88 | 0.78 | 0.73 | 0.63 | 0.74 | 0.64 |
Dicalcium phosphate | 1.65 | 0.95 | 1.8 | 1.1 | 1.65 | 0.95 |
Salt | 0.23 | 0.23 | 0.21 | 0.21 | 0.23 | 0.23 |
Sodium bicarbonate | 0.22 | 0.22 | 0.3 | 0.3 | 0.22 | 0.22 |
Vitamin–mineral premix 1 | 0.4 | 0.4 | 0.6 | 0.6 | 0.4 | 0.4 |
Chemical composition % | ||||||
Dry matter | 89.7 | 89.4 | 90.8 | 90.5 | 90.7 | 90.7 |
Ash | 5.25 | 4.62 | 5.01 | 4.66 | 4.89 | 4.56 |
Crude protein | 18.1 | 17.8 | 22.6 | 23.1 | 22.3 | 22.3 |
Ether extract | 3.47 | 4.10 | 3.98 | 3.67 | 3.28 | 4.16 |
Gross energy (kcal/kg) | 4119 | 4206 | 4150 | 4244 | 4020 | 4202 |
AME (kcal/kg) 2 | 2863 | 2917 | 2884 | 2943 | 2794 | 2914 |
Calcium | 0.91 | 0.68 | 0.97 | 0.73 | 0.98 | 0.70 |
Phosphorous | 0.60 | 0.50 | 0.65 | 0.58 | 0.66 | 0.52 |
Phytate–phosphorous 3 | 0.21 | 0.18 | 0.24 | 0.23 | 0.23 | 0.24 |
Dietary Treatment | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
PC | NC | P250 | P500 | P1000 | SEM | Treatment | Linear | |
BW, 21 d | 897 | 867 | 853 | 861 | 855 | 16 | 0.375 | 0.191 |
BW, 38 d | 2477 | 2486 | 2421 | 2419 | 2530 | 59 | 0.455 | 0.912 |
ADG, 28 to 38 d | 98.0 | 99.1 | 94.9 | 95.4 | 99.0 | 4.6 | 0.940 | 0.768 |
ADFI, 28 to 38 d | 163 | 162 | 155 | 153 | 161 | 7.0 | 0.766 | 0.977 |
FCR, 28 to 38 d | 1.67 | 1.64 | 1.64 | 1.62 | 1.63 | 0.03 | 0.793 | 0.390 |
Dietary Treatment | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
PC | NC | P250 | P500 | P1000 | SEM | Treatment | Linear | |
BW, 1 d | 45.2 | 44.8 | 44.6 | 45.6 | 45.4 | 0.327 | 0.161 | 0.087 |
BW, 42 d | 3297 | 3366 | 3324 | 3329 | 3328 | 41 | 0.808 | 0.648 |
Starter period, 1 to 21 d: | ||||||||
ADG | 48.6 b | 45.6 a | 43.4 a | 45.8 a | 46.9 ab | 0.734 | <0.001 | 0.035 |
ADFI | 65.3 c | 62.1 b | 61.3 b | 56.3 a | 57.0 a | 0.794 | <0.001 | <0.001 |
FCR | 1.34 b | 1.36 b | 1.41 c | 1.23 a | 1.22 a | 0.013 | <0.001 | <0.001 |
Growing period, 22 to 42 d: | ||||||||
ADG | 105.7 | 110.2 | 110.9 | 109.1 | 107.4 | 1.8 | 0.252 | 0.185 |
ADFI | 168.8 | 174.3 | 172.2 | 166.9 | 172.1 | 2.86 | 0.388 | 0.880 |
FCR | 1.60 | 1.58 | 1.55 | 1.53 | 1.60 | 0.024 | 0.158 | 0.197 |
Global period, 1 to 42 d: | ||||||||
ADG | 75.2 | 75.5 | 74.6 | 75.2 | 74.8 | 0.99 | 0.965 | 0.777 |
ADFI | 113.7 b | 114.0 b | 112.6 ab | 107.8 a | 110.3 ab | 1.6 | 0.051 | 0.130 |
FCR | 1.51 b | 1.51 b | 1.51 b | 1.43 a | 1.47 ab | 0.02 | 0.013 | 0.116 |
Dietary Treatment | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
PC | NC | P250 | P500 | P1000 | SEM | Treatment | Linear | |
Short-term trial: | ||||||||
DM CR | 67.4 ab | 66.2 a | 68.8 b | 68.7 b | 68.2 b | 0.4 | <0.001 | 0.011 |
OM CR | 70.0 ab | 68.4 a | 70.3 b | 70.9 b | 70.1 b | 0.4 | 0.006 | 0.026 |
CP CR | 58.9 ab | 56.0 a | 61.0 b | 61.0 b | 58.3 ab | 0.9 | 0.001 | 0.312 |
GE CR | 70.2 ab | 69.3 a | 70.6 ab | 71.5 b | 70.9 ab | 0.6 | 0.146 | 0.077 |
Ca CR | 28.8 a | 33.6 a | 41.0 b | 43.0 b | 40.7 b | 1.9 | <0.001 | 0.014 |
Ca retention | 0.46 ab | 0.40 a | 0.52 bc | 0.55 c | 0.54 bc | 0.03 | 0.004 | 0.004 |
Ca excretion | 1.16 b | 0.71 a | 0.75 a | 0.73 a | 0.79 a | 0.05 | <0.001 | 0.748 |
P CR | 34.2 a | 38.8 a | 46.3 b | 46.6 b | 45.3 ab | 2.0 | <0.001 | 0.058 |
P retention | 0.35 a | 0.33 a | 0.41 ab | 0.42 b | 0.42 b | 0.02 | 0.019 | 0.023 |
P excretion | 0.72 b | 0.51 a | 0.47 a | 0.48 a | 0.51 a | 0.04 | <0.001 | 0.920 |
Long-term trial: | ||||||||
DM CR | 68.4 | 67.9 | 69.3 | 68.2 | 68.0 | 0.6 | 0.435 | 0.656 |
OM CR | 70.1 | 68.8 | 70.6 | 69.7 | 69.5 | 0.6 | 0.278 | 0.800 |
CP CR | 60.4 | 59.0 | 59.7 | 57.9 | 58.1 | 0.9 | 0.193 | 0.266 |
GE CR | 68.8 | 69.4 | 70.4 | 68.0 | 69.1 | 0.7 | 0.258 | 0.443 |
Ca CR | 31.1 a | 36.0 ab | 34.6 ab | 41.8 b | 39.4 b | 2.0 | 0.005 | 0.090 |
Ca retention | 0.59 b | 0.47 a | 0.50 a | 0.68 c | 0.63 bc | 0.03 | <0.001 | <0.001 |
Ca excretion | 1.31 b | 0.85 a | 0.94 a | 0.96 a | 0.96 a | 0.05 | <0.001 | 0.149 |
P CR | 36.8 a | 42.1 b | 40.2 ab | 46.9 c | 45.8 bc | 1.4 | <0.001 | 0.010 |
P retention | 0.46 ab | 0.43 a | 0.40 a | 0.50 b | 0.48 ab | 0.02 | 0.009 | 0.009 |
P excretion | 0.81 b | 0.56 a | 0.59 a | 0.57 a | 0.60 a | 0.03 | <0.001 | 0.387 |
Dietary Treatment | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
PC | NC | P250 | P500 | P1000 | SEM | Treatment | Linear | |
Short-term trial: | ||||||||
Tibia weight, g | 5.27 | 4.72 | 4.74 | 4.57 | 4.91 | 0.26 | 0.348 | 0.591 |
Tibia weight, % body weight | 0.22 | 0.19 | 0.20 | 0.18 | 0.19 | 0.01 | 0.330 | 0.886 |
Ash in tibia, g | 2.80 | 2.44 | 2.49 | 2.38 | 2.60 | 0.13 | 0.193 | 0.434 |
Ash in tibia, % dry matter | 53.1 | 51.8 | 52.5 | 52.2 | 52.8 | 0.4 | 0.155 | 0.107 |
Ca in tibia, g | 1.05 | 0.91 | 0.92 | 0.89 | 0.98 | 0.05 | 0.157 | 0.344 |
Ca in tibia, % dry matter | 19.0 | 19.4 | 19.5 | 19.4 | 19.7 | 0.2 | 0.187 | 0.223 |
P in tibia, g | 0.49 | 0.44 | 0.44 | 0.41 | 0.44 | 0.03 | 0.386 | 0.891 |
P in tibia, % dry matter | 9.24 | 9.28 | 9.18 | 9.07 | 9.00 | 0.134 | 0.514 | 0.113 |
Long-term trial: | ||||||||
Tibia weight, g | 4.82 b | 4.21 a | 4.85 b | 4.93 b | 4.91 b | 0.14 | 0.005 | 0.005 |
Tibia weight, % body weight | 0.18 ab | 0.17 a | 0.18 b | 0.19 b | 0.18 ab | 0.01 | 0.061 | 0.138 |
Ash in tibia, g | 2.60 b | 2.23 a | 2.61 b | 2.55 b | 2.62 b | 0.08 | 0.005 | 0.007 |
Ash in tibia, % dry matter | 53.9 | 53.0 | 53.9 | 53.2 | 53.3 | 0.4 | 0.295 | 0.902 |
Ca in tibia, g | 0.99 b | 0.86 a | 1.00 b | 1.01 b | 1.00 b | 0.04 | 0.016 | 0.016 |
Ca in tibia, % dry matter | 20.7 | 20.3 | 20.5 | 20.3 | 20.4 | 0.181 | 0.385 | 0.835 |
P in tibia, g | 0.47 b | 0.40 a | 0.47 b | 0.48 b | 0.48 b | 0.02 | 0.008 | 0.009 |
P in tibia, % dry matter | 9.71 | 9.54 | 9.73 | 9.70 | 9.67 | 0.09 | 0.512 | 0.424 |
Minerals in blood: | ||||||||
Ca, mg/dL | 11.9 | 12.1 | 11.8 | 12.5 | 11.7 | 0.4 | 0.510 | 0.575 |
P, mg/dL | 9.2 | 10.4 | 9.3 | 9.8 | 10.2 | 0.4 | 0.173 | 0.876 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javadi, M.; Cerisuelo, A.; Cambra-López, M.; Macías-Vidal, J.; Donadeu, A.; Dupuy, J.; Carpintero, L.; Ferrer, P.; Pascual, J.J. The Duration of the Trial Influences the Effects of Mineral Deficiency and the Effective Phytase Dose in Broilers’ Diets. Animals 2022, 12, 1418. https://doi.org/10.3390/ani12111418
Javadi M, Cerisuelo A, Cambra-López M, Macías-Vidal J, Donadeu A, Dupuy J, Carpintero L, Ferrer P, Pascual JJ. The Duration of the Trial Influences the Effects of Mineral Deficiency and the Effective Phytase Dose in Broilers’ Diets. Animals. 2022; 12(11):1418. https://doi.org/10.3390/ani12111418
Chicago/Turabian StyleJavadi, Mehran, Alba Cerisuelo, María Cambra-López, Judit Macías-Vidal, Andrés Donadeu, Javier Dupuy, Laura Carpintero, Pablo Ferrer, and Juan José Pascual. 2022. "The Duration of the Trial Influences the Effects of Mineral Deficiency and the Effective Phytase Dose in Broilers’ Diets" Animals 12, no. 11: 1418. https://doi.org/10.3390/ani12111418
APA StyleJavadi, M., Cerisuelo, A., Cambra-López, M., Macías-Vidal, J., Donadeu, A., Dupuy, J., Carpintero, L., Ferrer, P., & Pascual, J. J. (2022). The Duration of the Trial Influences the Effects of Mineral Deficiency and the Effective Phytase Dose in Broilers’ Diets. Animals, 12(11), 1418. https://doi.org/10.3390/ani12111418