Promoting Judicious Antimicrobial Use in Beef Production: The Role of Quarantine
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Specialized Fattening System in Italian Beef Cattle
2.2. Experimental Design and Treatment Groups
2.3. Quantification of Antimicrobial Use
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics of Performance Traits
3.2. Effects of Farm, Quarantine, and Season on Performance Traits
3.3. Descriptive Statistics of Antimicrobial Use
3.4. Effects of Farm, Quarantine, and Season on Antimicrobial Use in Males
4. Discussion
4.1. Effects of Farm, Quarantine and Season on Performance Traits
4.2. Effects of Farm, Quarantine, and Season on Antimicrobial Use
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Page, S.W.; Gautier, P. Use of antimicrobial agents in livestock. Rev. Sci. Tech. 2012, 31, 145–188. [Google Scholar] [CrossRef]
- Rushton, J.; Pinto Ferreira, J.; Stärk, K.D.C. Antimicrobial resistance: The use of antimicrobials in the livestock sector. OECD Food Agric. Fish. Work. Pap. 2014, 68, 1–37. [Google Scholar] [CrossRef]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Strategic and Technical Advisory Group on Antimicrobial Resistance (STAG-AMR): Report of the Second Meeting. 2014. Available online: https://apps.who.int/iris/handle/10665/128675 (accessed on 22 October 2020).
- European Medicines Agency (EMA). Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2017. (EMA/294674/2019). 2019. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2017_en.pdf (accessed on 22 October 2020).
- Inglis, G.D.; McAllister, T.A.; Busz, H.W.; Yanke, L.J.; Morck, D.W.; Olson, M.E.; Read, R.R. Effects of subtherapeutic administration of antimicrobial agents to beef cattle on the prevalence of antimicrobial aesistance in Campylobacter jejuni and Campylobacter hyointestinalis. Appl. Environ. Microb. 2005, 71, 3872–3881. [Google Scholar] [CrossRef] [Green Version]
- Cameron, A.; McAllister, T.A. Antimicrobial usage and resistance in beef production. J. Anim. Sci. Biotechnol. 2016, 7, 68. [Google Scholar] [CrossRef] [Green Version]
- Cazera, C.L.; Eldermireb, E.R.B.; Lhermiea, G.; Murrayc, S.A.; Scott, H.M.; Gröhna, Y.T. The effect of tylosin on antimicrobial resistance in beef cattle enteric bacteria: A systematic review and meta-analysis. Prev. Vet. Med. 2020, 176, 104934. [Google Scholar] [CrossRef]
- Thacker, P.A. Alternatives to antibiotics as growth promoters for use in swine production: A review. J. Anim. Sci. Biotechnol. 2013, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, T.L.; Kalchayanand, N.; Bosilevac, J.M. Pre- and post-harvest interventions to reduce pathogen contamination in the U.S. beef industry. Meat Sci. 2014, 98, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Sharma, C.; Rokana, N.; Chandra, M.; Singh, B.P.; Gulhane, R.D.; Gill, J.P.S.; Ray, P.; Puniya, A.K.; Panwar, H. Antimicrobial resistance: Its surveillance, impact, and alternative management strategies in dairy animals. Front. Vet. Sci. 2018, 4, 237. [Google Scholar] [CrossRef]
- Postma, M.; Vanderhaeghen, W.; Sarrazin, S.; Maes, D.; Dewulf, J. Reducing antimicrobial usage in pig production without jeopardizing production parameters. Zoonoses Public Health 2016, 64, 63–74. [Google Scholar] [CrossRef]
- Pinto Ferreira, J. Why antibiotic use data in animals needs to be collected and how this can be facilitated. Front. Vet. Sci. 2017, 4, 213. [Google Scholar] [CrossRef] [Green Version]
- Timmerman, T.; Dewulf, J.; Catry, B.; Feyen, B.; Opsomer, G.; De Kruif, A.; Maes, D. Quantification and evaluation of antimicrobial drug use in group treatments for fattening pigs in Belgium. Prev. Vet. Med. 2006, 74, 251–263. [Google Scholar] [CrossRef]
- AACTING. Guidelines for Collection, Analysis and Reporting of Farm-Level Antimicrobial Use, in the Scope of Antimicrobial Stewardship. Version 1.2_2019-07-02. 2019. Available online: https://aacting.org/swfiles/files/AACTING_Guidelines_V1.2_2019.07.02_54.pdf (accessed on 22 October 2020).
- Laanen, M.; Persoons, D.; Ribbens, S.; De Jong, E.; Callens, B.; Strubbe, M.; Maes, D.; Dewulf, J. Relationship between biosecurity and production/antimicrobial treatment characteristics in pig herds. Vet. J. 2013, 198, 508–512. [Google Scholar] [CrossRef]
- Dewulf, J.; Van Immerseel, F. General principles of biosecurity in animal production and veterinary medicine. In Biosecurity in Animal Production and Veterinary Medicine: From Principles to Practice, 1st ed.; Dewulf, J., Van Immerseel, F., Eds.; ACCO: Leuven, Belgium, 2018; pp. 63–76. [Google Scholar]
- Sibley, D. Biosecurity in the beef herd. In Pract. 2014, 36, 238–248. [Google Scholar] [CrossRef]
- Stokstad, M.; Klem, T.B.; Myrmel, M.; Oma, V.S.; Toftaker, I.; Østerås, O.; Nødtvedt, A. Using biosecurity measures to combat respiratory disease in cattle: The Norwegian control program for bovine respiratory syncytial virus and bovine coronavirus. Front. Vet. Sci. 2020, 7, 167. [Google Scholar] [CrossRef]
- Damiaans, B.; Sarrazin, S.; Heremans, E.; Dewulf, J. Perception, motivators and obstacles of biosecurity in cattle production. Vlaams Diergen. Tijds. 2018, 87, 150–163. [Google Scholar] [CrossRef]
- Sanderson, M.W.; Dargatz, D.A.; Garry, F.B. Biosecurity practices of beef cow-calf producers. J. Am. Vet. Med. Assoc. 2000, 217, 185–189. [Google Scholar] [CrossRef]
- Postma, M.; Dewulf, J. Biosecurity and its relationship with health, production and antimicrobial use. In Biosecurity in Animal Production and Veterinary Medicine: From Principles to Practice, 1st ed.; Dewulf, J., Van Immerseel, F., Eds.; ACCO: Leuven, Belgium, 2018; pp. 77–94. [Google Scholar]
- Lava, M.; Schüpbach-Regula, G.; Steiner, A.; Meylan, M. Antimicrobial drug use and risk factors associated with treatment incidence and mortality in Swiss veal calves reared under improved welfare conditions. Prev. Vet. Med. 2016, 126, 121–130. [Google Scholar] [CrossRef]
- Schnyder, P.; Schönecker, L.; Schüpbach-Regula, G.; Meylan, M. Effects of management practices, animal transport and barn climate on animal health and antimicrobial use in Swiss veal calf operations. Prev. Vet. Med. 2019, 167, 146–157. [Google Scholar] [CrossRef]
- Becker, J.; Schüpbach-Regula, G.; Steiner, A.; Perreten, V.; Wüthrich, D.; Hausherr, A.; Meylana, M. Effects of the novel concept ‘outdoor veal calf’ on antimicrobial use, mortality and weight gain in Switzerland. Prev. Vet. Med. 2020, 176, 104907. [Google Scholar] [CrossRef]
- Gallo, L.; De Marchi, M.; Bittante, G. A survey on feedlot performance of purebred and crossbred European young bulls and heifers managed under intensive conditions in Veneto, northeast Italy. Ital. J. Anim. Sci. 2014, 13, 3285. [Google Scholar] [CrossRef]
- Cozzi, G.; Ricci, R.; Dorigo, M.; Zanet, D. Growth performance, cleanliness and lameness of finishing Charolais bulls housed in littered pens of different design. Ital. J. Anim. Sci. 2005, 4, 251–253. [Google Scholar] [CrossRef]
- Sturaro, E.; Quassolo, M.; Ramanzin, M. Factors affecting growth performance in beef production: An on farm survey. Ital. J. Anim. Sci. 2005, 4, 128–131. [Google Scholar] [CrossRef] [Green Version]
- Currin, J.; Whittie, W.D. Recognition and Treatment of Bovine Respiratory Disease Complex. Virginia Cooperative Extension (VCE). 2009. Available online: https://pubs.ext.vt.edu/400/400-008/400-008_pdf (accessed on 22 October 2020).
- Benavides, B.; Casal, J.; Diéguez, J.F.; Yus, E.; Moya, S.J.; Armengol, R.; Allepuz, A. Development of a quantitative risk assessment of bovine viral diarrhea virus and bovine herpesvirus-1 introduction in dairy cattle herds to improve biosecurity. J. Dairy Sci. 2020, 103, 6454–6472. [Google Scholar] [CrossRef]
- Diana, A.; Penasa, M.; Santinello, M.; Scali, F.; Magni, E.; Alborali, G.L.; Bertocchi, L.; De Marchi, M. Exploring potential risk factors of antimicrobial use in beef cattle. Animal 2021, 15, 100091. [Google Scholar] [CrossRef]
- Herve, L.; Bareille, N.; Cornette, B.; Loiseau, P.; Assié, S. To what extent does the composition of batches formed at the sorting facility influence the subsequent growth performance of young beef bulls? A French observational study. Prev. Vet. Med. 2020, 176, 104936. [Google Scholar] [CrossRef]
- Griffin, D. The monster we don’t see: Subclinical BRD in beef cattle. Anim. Health Res. Rev. 2014, 15, 138–141. [Google Scholar] [CrossRef]
- Snowder, G.D.; Van Vleck, L.D.; Cundiff, L.V.; Bennett, G.L. Bovine respiratory disease in feedlot cattle: Environmental, genetic, and economic factors. J. Anim. Sci. 2006, 84, 1999–2008. [Google Scholar] [CrossRef] [Green Version]
- Cusack, P.M.V.; McMeniman, N.P.; Lean, I.J. Feedlot entry characteristics and climate: Their relationship with cattle growth rate, bovine respiratory disease and mortality. Aust. Vet. J. 2007, 85, 311–316. [Google Scholar] [CrossRef]
- Taylor, L.F.; Fulton, R.W.; Lehenbauer, T.W.; Step, D.L.; Confer, A.W. The epidemiology of bovine respiratory disease: What is the evidence for predisposing factors? Can. Vet. J. 2010, 51, 1095–1102. [Google Scholar]
- Galyean, M.L.; Perino, L.J.; Duff, G.C. Interaction of cattle health/immunity and nutrition. J. Anim. Sci. 1999, 77, 1120–1134. [Google Scholar] [CrossRef] [Green Version]
- Fluharty, F.L.; Loerch, S.C. Effects of dietary energy source and level on performance of newly arrived feedlot calves. J. Anim. Sci. 1996, 74, 504–513. [Google Scholar] [CrossRef]
- Renaud, D.L.; Duffield, T.F.; LeBlanc, S.J.; Haley, D.B.; Kelton, D.F. Management practices for male calves on Canadian dairy farms. J. Dairy Sci. 2017, 100, 6862–6871. [Google Scholar] [CrossRef]
- Carroll, J.A.; Forsberg, N.E. Influence of stress and nutrition on cattle immunity. Vet. Clin. N. Am. Food Anim. Pract. 2007, 23, 105–149. [Google Scholar] [CrossRef]
- Berton, M.; Agabriel, J.; Gallo, L.; Lherm, M.; Ramanzin, M.; Sturaro, E. Environmental footprint of the integrated France–Italy beef production system assessed through a multi-indicator approach. Agric. Syst. 2017, 155, 33–42. [Google Scholar] [CrossRef]
- Fike, K.; Spire, M.F. Transportation of Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2006, 22, 305–320. [Google Scholar] [CrossRef]
- Santinello, M.; Diana, A.; De Marchi, M.; Penasa, M. Sources of variation of antimicrobial use in Charolaise and Limousine beef breeds in Veneto region (Italy). Acta Fytotechn. Zootech. 2020, 23, 180–189. [Google Scholar] [CrossRef]
- Vestergaard, M.; Paulander, W.; Marvig, R.L.; Clasenc, J.; Jochumsend, N.; Molin, S.; Jelsbak, L.; Ingmer, H.; Folkesson, A. Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2016, 47, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, T.M.; Levy, S.B. The impact of antibiotic use on resistance development and persistence. Drug Resist. Updates 2000, 3, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Compiani, R.; Rossi, C.A.S.; Baldi, G.; Desrochers, A. Dealing with lameness in Italian beef cattle rearing. Large Anim. Rev. 2014, 20, 239–247. [Google Scholar]
- Magrin, L.; Gottardo, F.; Brscic, M.; Contiero, B.; Cozzi, G. Health behaviour and growth performance of Charolais and Limousin bulls fattened on different types of flooring. Animal 2019, 13, 2603–2611. [Google Scholar] [CrossRef] [Green Version]
- Cernicchiaro, N.; White, B.J.; Renter, D.G.; Babcock, A.H.; Kelly, L.; Slattery, R. Associations between the distance traveled from sale barns to commercial feedlots in the United States and overall performance, risk of respiratory disease, and cumulative mortality in feeder cattle during 1997 to 2009. J. Anim. Sci. 2012, 90, 1929–1939. [Google Scholar] [CrossRef]
- Visschers, V.H.M.; Iten, D.M.; Riklin, A.; Hartmann, S.; Sidler, X.; Siegrist, M. Swiss pig farmers’ perception and usage of antibiotics during the fattening period. Livest. Sci. 2014, 162, 223–232. [Google Scholar] [CrossRef]
- Van Engen, N.; Coetzee, J. Effects of transportation on cattle health and production: A review. Anim. Health Res. Rev. 2018, 19, 142–154. [Google Scholar] [CrossRef]
Diet Composition 2 | Female-Rearing Farms 1 | Male-Rearing Farms 1 |
---|---|---|
Total ingestion, kg | 16.9 | 16.5 |
DM, kg | 9.0 | 9.9 |
ME, UFC | 8.6 | 10.0 |
PDI, g | 820.7 | 966.6 |
PDIN, g | 796.2 | 890.4 |
Concentrates, % | 54.2 | 63.7 |
Forages, % | 45.8 | 36.3 |
Chemical Composition | ||
Moisture, % | 45.8 | 39.9 |
CP, % | 13.7 | 13.4 |
EE, % | 4.2 | 3.9 |
CF, % | 17.3 | 14.2 |
Ash, % | 5.2 | 4.9 |
NDF, % | 36.8 | 32.1 |
Starch, % | 29.5 | 33.9 |
Sex | n | Trait | Mean | SD | Minimum | Maximum |
---|---|---|---|---|---|---|
Female | 630 | BW0, kg | 320.6 | 20.0 | 267 | 380 |
BW30, kg | 366.9 | 27.5 | 260 | 443 | ||
BWfinal, kg | 559.6 | 41.4 | 405 | 712 | ||
LFC, days | 194.9 | 7.8 | 183 | 208 | ||
ADG30, kg/day | 1.47 | 0.54 | −1.25 | 2.49 | ||
ADGtot, kg/day | 1.23 | 0.2 | 0.39 | 1.87 | ||
Male | 576 | BW0, kg | 403.4 | 19.1 | 343.0 | 460.0 |
BW30, kg | 470.2 | 27.0 | 394 | 552 | ||
BWfinal, kg | 719.6 | 49.1 | 570 | 870 | ||
LFC, days | 191.2 | 5.4 | 117 | 207 | ||
ADG30, kg/day | 1.99 | 0.65 | −1.17 | 3.19 | ||
ADGtot, kg/day | 1.65 | 0.24 | 0.74 | 2.65 |
Effect | Category | BW30, kg | BWfinal, kg | ADG30, kg/day | ADGtot, kg/day | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LSM | SE | p-Value | LSM | SE | p-Value | LSM | SE | p-Value | LSM | SE | p-Value | ||
Farm | 1 | 470.3 a | 1.45 | 0.0313 | 727.4 a | 2.93 | 0.0001 | 1.97 a | 0.04 | 0.4399 | 1.68 a | 0.02 | 0.0236 |
2 | 465.4 b | 1.80 | 709.7 b | 3.68 | 1.93 a | 0.05 | 1.62 b | 0.02 | |||||
Group 2 | NO-QUA | 464.6 b | 1.68 | 0.0068 | 713.4 b | 3.42 | 0.0333 | 1.85 b | 0.05 | 0.0020 | 1.62 b | 0.02 | 0.0204 |
QUA | 471.1 a | 1.68 | 723.7 a | 3.44 | 2.05 a | 0.05 | 1.68 a | 0.02 | |||||
Season of arrival | Autumn | 461.9 b | 2.32 | <0.0001 | 705.3 b | 4.65 | 0.0001 | 1.65 c | 0.06 | <0.0001 | 1.58 b | 0.02 | <0.0001 |
Winter | 464.2 b | 3.48 | 727.0 b | 7.12 | 1.94 a,b,c | 0.09 | 1.69 a,b | 0.04 | |||||
Spring | 476.2 a | 1.86 | 729.3 a | 3.77 | 2.21 a | 0.05 | 1.72 a | 0.02 | |||||
Summer | 469.0 b | 1.60 | 712.5 b | 3.27 | 2.01 b | 0.04 | 1.61 b | 0.02 |
Effect | Category | BW30, kg | BWfinal, kg | ADG30, kg/day | ADGtot, kg/day | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LSM | SE | p-Value | LSM | SE | p-Value | LSM | SE | p-Value | LSM | SE | p-Value | ||
Farm | 1 | 359.4 b | 1.39 | <0.0001 | 565.6 a,b | 2.74 | 0.0026 | 1.31 b | 0.04 | <0.0001 | 1.21 a | 0.01 | 0.0244 |
2 | 372.2 a | 1.41 | 571.4 b | 3.28 | 1.57 a | 0.04 | 1.26 a | 0.02 | |||||
3 | 370.2 a | 1.43 | 556.8 a | 2.78 | 1.56 a | 0.04 | 1.26 a | 0.01 | |||||
Group 2 | NO-QUA | 367.6 a | 1.16 | 0.6595 | 565.7 a | 2.41 | 0.5079 | 1.48 a | 0.03 | 0.9870 | 1.25 a | 0.01 | 0.5698 |
QUA | 366.9 a | 1.13 | 563.5 a | 2.36 | 1.48 a | 0.03 | 1.24 a | 0.01 | |||||
Season of arrival | Autumn | 361.0 b | 1.60 | <0.0001 | 556.4 b | 3.13 | <0.0001 | 1.40 b | 0.05 | 0.0015 | 1.24 b | 0.02 | <0.0001 |
Winter | 365.9 b | 2.11 | 589.2 a | 4.21 | 1.53 a,b | 0.06 | 1.33 a | 0.02 | |||||
Spring | 366.3 b | 1.58 | 561.0 b | 3.94 | 1.40 b | 0.05 | 1.20 b | 0.02 | |||||
Summer | 375.8 a | 1.37 | 551.8 b | 2.66 | 1.59 a | 0.04 | 1.21 b | 0.01 |
Class of Antimicrobial | Total | QUA | NO-QUA | |||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
Penicillins | 223 | 29.2 | 116 | 15.2 | 107 | 14.0 |
Amphenicols | 150 | 19.7 | 56 | 7.3 | 94 | 12.3 |
Fluoroquinolones | 120 | 15.7 | 45 | 5.9 | 75 | 9.8 |
Aminopenicillins | 106 | 13.9 | 31 | 4.1 | 75 | 9.8 |
Penicillins (antistaphylococcal) 2 | 57 | 7.5 | 22 | 2.9 | 35 | 4.6 |
Sulfonamides | 48 | 6.3 | 24 | 3.2 | 24 | 3.2 |
Tetracyclines | 41 | 5.4 | 27 | 3.5 | 14 | 1.8 |
Aminoglycosides | 11 | 1.4 | 3 | 0.4 | 8 | 1.1 |
Lincosamides | 7 | 0.9 | 0 | 0.0 | 7 | 0.9 |
Total | 763 | 100.0 | 324 | 42.5 | 439 | 57.6 |
Class of Antimicrobial | Respiratory | Locomotor | Other | Total |
---|---|---|---|---|
n | n | n | n | |
Penicillins | 0 | 220 | 3 | 223 |
Amphenicols | 141 | 0 | 9 | 150 |
Fluoroquinolones | 45 | 73 | 2 | 120 |
Aminopenicillins | 47 | 58 | 1 | 106 |
Penicillins (antistaphylococcal) 1 | 0 | 57 | 0 | 57 |
Sulfonamides | 2 | 2 | 44 | 48 |
Tetracyclines | 2 | 39 | 0 | 41 |
Aminoglycosides | 11 | 0 | 0 | 11 |
Lincosamides | 7 | 0 | 0 | 7 |
Total | 255 | 449 | 59 | 763 |
Group 1 | Locomotor | Respiratory | Other | Total |
---|---|---|---|---|
NO-QUA | 197 a | 165 a | 23 a | 385 a |
QUA | 194 a | 82 b | 14 a | 290 b |
Effect | Category | TI100it | ||
---|---|---|---|---|
LSM | SE | p-Value | ||
Farm | 1 | 3.39 b | 0.10 | 0.006 |
2 | 3.84 a | 0.14 | ||
Group 1 | NO-QUA | 3.76 a | 0.12 | 0.033 |
QUA | 3.46 b | 0.10 | ||
Season of arrival | Autumn | 4.13 a | 0.20 | 0.002 |
Winter | 3.67 a,b | 0.25 | ||
Spring | 3.38 b | 0.12 | ||
Summer | 3.31 b | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santinello, M.; Diana, A.; De Marchi, M.; Scali, F.; Bertocchi, L.; Lorenzi, V.; Alborali, G.L.; Penasa, M. Promoting Judicious Antimicrobial Use in Beef Production: The Role of Quarantine. Animals 2022, 12, 116. https://doi.org/10.3390/ani12010116
Santinello M, Diana A, De Marchi M, Scali F, Bertocchi L, Lorenzi V, Alborali GL, Penasa M. Promoting Judicious Antimicrobial Use in Beef Production: The Role of Quarantine. Animals. 2022; 12(1):116. https://doi.org/10.3390/ani12010116
Chicago/Turabian StyleSantinello, Matteo, Alessia Diana, Massimo De Marchi, Federico Scali, Luigi Bertocchi, Valentina Lorenzi, Giovanni Loris Alborali, and Mauro Penasa. 2022. "Promoting Judicious Antimicrobial Use in Beef Production: The Role of Quarantine" Animals 12, no. 1: 116. https://doi.org/10.3390/ani12010116
APA StyleSantinello, M., Diana, A., De Marchi, M., Scali, F., Bertocchi, L., Lorenzi, V., Alborali, G. L., & Penasa, M. (2022). Promoting Judicious Antimicrobial Use in Beef Production: The Role of Quarantine. Animals, 12(1), 116. https://doi.org/10.3390/ani12010116