The Potential of Using Temperate–Tropical Crossbreds and Agricultural by-Products, Associated with Heat Stress Management for Dairy Production in the Tropics: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Temperate–Tropical Crossbreeding Endeavors in Developing Countries in the Tropics
3. Managing Feed Resources
3.1. Strategic Manipulation of Agricultural by Product
3.2. Economic Benefits through Strategic Use of Agricultural by-Products
4. Heat Stress Impact and Mitigation
5. Climate Change and Optimization of Dairy Production for Sustainable Farming in the Tropics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision. In ESA Working Paper No. 12-03; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Thornton, P.K. Livestock Production: Recent Trends, Future Prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [Green Version]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The Dimensions of Global Urban Expansion: Estimates and Projections for All Countries, 2000–2050. Prog. Plann. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- McDermott, J.J.; Staal, S.J.; Freeman, H.A.; Herrero, M.; Van de Steeg, J.A. Sustaining Intensification of Smallholder Livestock Systems in the Tropics. Livestig. Sci. 2010, 130, 95–109. [Google Scholar] [CrossRef]
- FAO. Conducting National Feed Assessments; Animal Production and Health Manual No. 15; Michael, B.C., Harinder, P.S.M., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Ahuja, V. Asian Livestock: Challenges, opportunities and the response. In Proceedings of the International Policy Forum, Animal Production and Health Commission for Asia and the Pacific, International Livestock Research Institute and Food and Agriculture Organization of the United Nations, Bangkok, Thailand, 16–17 August 2013. [Google Scholar]
- FAO. Overview of Global Dairy Market Developments in 2019; Animal Production and Health Division Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; Available online: http://www.fao.org/3/ca8341en/CA8341EN.pdf (accessed on 18 October 2021).
- Herrero, M.; Havlik, P.; McIntire, J.; Palazzo, A.; Valin, H. African Livestock Futures: Realizing the Potential of Livestock for Food Security, Poverty Reduction and the Environment in Sub-Saharan Africa; Office of the Special Representative of the UN Secretary General for Food Security and Nutrition and the United Nations System Influenza Coordination (UNSIC): Geneva, Switzerland, 2014. [Google Scholar]
- Britt, J.H.; Cushman, R.A.; Dechow, C.D.; Dobson, H.; Humblot, P.; Hutjens, M.F.; Jones, G.A.; Ruegg, P.S.; Sheldon, I.M.; Stevenson, J.S. Invited Review: Learning from the Future—A Vision for Dairy Farms and Cows in 2067. J. Dairy Sci. 2018, 101, 3722–3741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenet, A.; Yimegnuhal, A.; Fernandez-Rivera, S.; Tegegne, A.; Osuji, P.O.; McCrabb, G.; Kreuzer, M. Long-Term Response to Feeding Level in Lactational Performance of Boran (Bos Indicus) and Boran X Holstein Cows. Anim. Sci. 2004, 78, 331–343. [Google Scholar] [CrossRef]
- Vance, E.R.; Ferris, C.P.; Elliott, C.T.; Hartley, H.M.; Kilpatrick, D.J. Comparison of the Performance of Holstein-Friesian and Jersey × Holstein-Friesian Crossbred Dairy Cows within Three Contrasting Grassland-Based Systems of Milk Production. Livestig. Sci. 2013, 151, 66–79. [Google Scholar] [CrossRef]
- Pongpiachan, P.; Rodtian, P.; Ota, K. Lactation in Cross and Purebreed Friesian Cows in Northern Thailand and Analyses on Effects of Tropical Climate on Their Lactation. Asian Australas. J. Anim. Sci. 2000, 13, 1316–1322. [Google Scholar] [CrossRef]
- Berman, A. Invited Review: Are Adaptations Present to Support Dairy Cattle Productivity in Warm Climates? J. Dairy Sci. 2011, 94, 2147–2158. [Google Scholar] [CrossRef]
- Galukande, E.; Mulindwa, H.; Wurzinger, M.; Roschinsky, R.; Mwai, A.O.; Sölkner, J. Cross-Breeding Cattle for Milk Production in the Tropics: Achievements, Challenges and Opportunities. Anim. Genet. Resour. Génétiques Anim. Genéticos Anim. 2013, 52, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Fivaz, B.H.; de Waal, D.T.; Lander, K. Indigenous and Crossbred Cattle—A Comparison of Resistance to Ticks and Implications for Their Strategic Control in Zimbabwe. Trop. Anim. Health Prod. 1992, 24, 81–89. [Google Scholar] [CrossRef]
- Glass, E.J.; Preston, P.M.; Springbett, A.; Craigmile, S.; Kirvar, E.; Wilkie, G.; Duncan, B.C.G. Bos Taurus and Bos Indicus (Sahiwal) Calves Respond Differently to Infection with Theileriaannulata and Produce Markedly Different Levels of Acute Phase Proteins. Int. J. Parasitol. 2005, 35, 337–347. [Google Scholar] [CrossRef]
- Jian, W.; Duangjinda, M.; Vajrabukka, C.; Katawatin, S. Differences of Skin Morphology in Bos Indicus, Bos Taurus, and Their Crossbreds. Int. J. Biometeorol. 2014, 58, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Ndambi, O.; Hemme, T.; Uddin, M. Benchmarking Cost of Milk Production in 46 Countries. J. Rev. Glob. Econ. 2014, 3, 254–270. [Google Scholar] [CrossRef] [Green Version]
- Mare, F.; Bahta, Y.T.; Van Niekerk, W. The Impact of Drought on Commercial Livestock Farmers in South Africa. Dev. Pract. 2018, 28, 884–898. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Bio-Processing of Agro-Byproducts to Animal Feed. Crit. Rev. Biotechnol. 2012, 32, 382–400. [Google Scholar] [CrossRef]
- Yang, K.; Qing, Y.; Yu, Q.; Tang, X.; Chen, G.; Fang, R.; Liu, H. By-Product Feeds: Current Understanding and Future Perspectives. Agriculture 2021, 11, 207. [Google Scholar] [CrossRef]
- West, J.W. Effects of Heat-Stress on Production in Dairy Cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Yanti, Y.; Yayota, M. Agricultural By-Products As Feed for Ruminants in Tropical Area: Nutritive Value and Mitigating Methane Emission. Rev. Agric. Sci. 2017, 5, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Medina, J.V.; Ku-Vera, J.C.; Magana-Monforte, J.G. Estimation of Metabolizable Energy Requirements for Maintenance and Energetic Efficiency of Weight Gain in Bos Taurus and Bos Indicus Cows in Tropical Mexico. J. Anim. Vet. Adv. 2010, 9, 421–428. [Google Scholar] [CrossRef]
- Hammami, H.; Bormann, J.; M’hamdi, N.; Montaldo, H.H.; Gengler, N. Evaluation of Heat Stress Effects on Production Traits and Somatic Cell Score of Holsteins in a Temperate Environment. J. Dairy Sci. 2013, 96, 1844–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nganga, S.K.; Kungu, J.; de Ridder, N.; Herrero, M. Profit Efficiency among Kenyan Smallholders Milk Producers: A Case Study of Meru-South District, Kenya. Afr. J. Agric. Res. 2010, 5, 332–337. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Gerber, P.; Reid, R.S. Livestock, Livelihoods and the Environment: Understanding the Trade-Offs. Curr. Opin. Environ. Sustain. 2009, 1, 111–120. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Hernández-Castellano, L.E.; Nally, J.E.; Lindahl, J.; Wanapat, M.; Alhidary, I.A.; Fangueiro, D.; Grace, D.; Ratto, M.; Bambou, J.C.; de Almeida, A.M. Dairy Science and Health in the Tropics: Challenges and Opportunities for the next Decades. Trop. Anim. Health Prod. 2019, 51, 1009–1017. [Google Scholar] [CrossRef] [Green Version]
- Madalena, F.E.; Agyemang, K.; Cardellino, R.C.; Jain, G.L. Genetic Improvement in Medium to Low-Input Systems of Animal Production. Experiences to Date. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002; pp. 331–340. [Google Scholar]
- Leroy, G.; Baumung, R.; Boettcher, P.; Scherf, B.; Hoffmann, I. Review: Sustainability of Crossbreeding in Developing Countries; Definitely Not like Crossing a Meadow. Animal 2015, 10, 262–273. [Google Scholar] [CrossRef] [Green Version]
- Kahi, A.K.; Nitter, G.; Thorpe, W.; Gall, C.F. Crossbreeding for Dairy Production in the Lowland Tropics of Kenya. II. Prediction of Performance of Alternative Crossbreeding Strategies. Livestig. Prod. Sci. 2000, 63, 55–63. [Google Scholar] [CrossRef]
- Syrstad, O. Dairy Cattle Crossbreeding in the Tropics: Choice of Crossbreeding Strategy. Trop. Anim. Health Prod. 1996, 28, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Madalena, F.E.; Teodoro, R.L.; Lemos, A.M.; Monteiro, J.B.N.; Barbosa, R.T. Evaluation of Strategies for Crossbreeding of Dairy Cattle in Brazil. J. Dairy Sci. 1990, 73, 1887–1901. [Google Scholar] [CrossRef]
- Dickerson, G.E. Inbreeding and Heterosis in Animals. J. Anim. Sci. 1973, 1973, 54–77. [Google Scholar] [CrossRef]
- Hanchai, U.; Surachai, C.; Prachom, I.; Anant, S.; Sayan, T.; Chanvit, V. Effect of Seasonal Variations on Production of Australian Friesian Sahiwal (AFS3) Cows in Thailand. Kasetsart J. Nat. Sci. 2001, 35, 293–298. [Google Scholar]
- Sanh, M.V.; Wiktorsson, H.; Ly, L.V. Effect of Feeding Level on Milk Production, Body Weight Change, Feed Conversion and Postpartum Oestrus of Crossbred Lactating Cows in Tropical Conditions. Livestig. Prod. Sci. 2002, 77, 331–338. [Google Scholar] [CrossRef]
- Darlene dos Santos, D.; da Silva, M.V.G.B.; Telo da Gama, L.; Machado, J.D.; Kern, E.L.; Campos, G.S.; Panetto, J.C.D.C.; Cobuci, J.A. Estimates of Genetic and Crossbreeding Parameters for 305-Day Milk Yield of Girolando Cows. Ital. J. Anim. Sci. 2020, 19, 86–94. [Google Scholar] [CrossRef]
- McDowell, R.E.; Wilk, J.C.; Talbott, C.W. Economic Viability of Crosses of Bos Taurus and Bos Indicus for Dairying in Warm Climates. J. Dairy Sci. 1996, 79, 1292–1303. [Google Scholar] [CrossRef]
- Mohanty, B.S.; Verma, M.R.; Sharma, V.B.; Roy, P.K. Comparative Study of Lactation Curve Models in Crossbred Dairy Cows. Int. J. Agric. Stat. Sci. 2017, 13, 545–551. [Google Scholar]
- Haile, A.; Joshi, B.K.; Ayalew, W.; Tegegne, A.; Singh, A. Genetic Evaluation of Ethiopian Boran Cattle and Their Crosses with Holstein Friesian in Central Ethiopia: Milk Production Traits. Animal 2009, 3, 486–493. [Google Scholar] [CrossRef] [Green Version]
- Palladino, R.A.; Buckley, F.; Prendiville, R.; Murphy, J.J.; Callan, J.; Kenny, D.A. A Comparison between Holstein-Friesian and Jersey Dairy Cows and Their F1 Hybrid on Milk Fatty Acid Composition under Grazing Conditions. J. Dairy Sci. 2010, 93, 2176–2184. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.S. Meta-Analysis of Feeding Trials to Estimate Energy Requirements of Dairy Cows under Tropical Condition. Anim. Feed Sci. Technol. 2015, 210, 94–103. [Google Scholar] [CrossRef]
- Honig, H.; Miron, J.; Lehrer, H.; Jackoby, S.; Zachut, M.; Zinou, A.; Portnick, Y.; Moallem, U. Performance and Welfare of High-Yielding Dairy Cows Subjected to 5 or 8 Cooling Sessions Daily under Hot and Humid Climate. J. Dairy Sci. 2012, 95, 3736–3742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilatsia, E.D.; Muasya, T.K.; Muhuyi, W.B.; Kahi, A.K. Milk Production and Reproductive Performance of Sahiwal Cattle in Semi-Arid Kenya. Trop. Sci. 2007, 47, 120–127. [Google Scholar] [CrossRef]
- Mohanty, B.S.; Verma, M.R.; Singh, S.; Sharma, V.B.; Kumar, S.; Ardhan, D.; Roy, P. Modeling of Lactation Curves of Red Sindhi Dairy Cows. Indian J. Anim. Sci. 2017, 87, 1278–1281. [Google Scholar]
- Santos, D.J.A.; Peixoto, M.G.C.D.; Borquis, R.R.A.; Verneque, R.S.; Panetto, J.C.C.; Tonhati, H. Genetic Parameters for Test-Day Milk Yield, 305-Day Milk Yield, and Lactation Length in Guzerat Cows. Livestig. Sci. 2013, 152, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Musa, L.M.A.; Ahmed, M.K.A.; Peters, K.J.; Zumbach, B.; Gubartalla, K.E.A. The Reproductive and Milk Performance Merit of Butana Cattle in Sudan. Arch. Anim. Breed. 2005, 48, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Madalena, F.E. A Note on the Effect of Variation of Lactation Length on the Efficiency of Tropical Cattle Selection for Milk Yield. Theor. Appl. Genet. 1988, 76, 830–834. [Google Scholar] [CrossRef]
- FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; Scherf, B.D., Pilling, D., Eds.; Commission on Genetic Resources for Food and Agriculture Assessments; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Wongpom, B.; Koonawootrittriron, S.; Elzo, M.A.; Suwanasopee, T. Milk Yield, Fat Yield and Fat Percentage Associations in a Thai Multibreed Dairy Population. Agric. Nat. Resour. 2017, 51, 218–222. [Google Scholar] [CrossRef]
- Paim, T.D.P.; Hay, E.H.A.; Wilson, C.; Thomas, M.G.; Kuehn, L.A.; Paiva, S.R.; McManus, C.; Blackburn, H.D. Dynamics of Genomic Architecture during Composite Breed Development in Cattle. Anim. Genet. 2020, 51, 224–234. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.S.; Rothschild, M.F. Genomic Adaptation of Admixed Dairy Cattle in East Africa. Front. Genet. 2014, 5, 443. [Google Scholar] [CrossRef] [Green Version]
- Sivarajasingam, S.; Kumar, A.R. Comparative Performance of Malaysian, Australian and New Zealand F1 Friesian Crossbreds. Livestig. Prod. Sci. 1993, 36, 299–310. [Google Scholar] [CrossRef]
- Silva, A.L.; Marcondes, M.I.; Detmann, E.; Campos, M.M.; Machado, F.S.; Filho, S.C.V.; Castro, M.M.D.; Dijkstra, J. Determination of Energy and Protein Requirements for Crossbred Holstein × Gyr Preweaned Dairy Calves. J. Dairy Sci. 2017, 100, 1170–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Araujo Carvalho, P.H.; Da Costa Cruz Borges, A.L.; Reis E Silva, R.; Lage, H.F.; Vivenza, P.A.D.; Ruas, J.R.M.; Filho, E.J.F.; Palhano, R.L.A.; Gonçalves, L.C.; Borges, I.; et al. Energy Metabolism and Partition of Lactating Zebu and Crossbred Zebu Cows in Different Planes of Nutrition. PLoS ONE 2018, 13, e0202088. [Google Scholar] [CrossRef]
- Castro, M.M.D.; Albino, R.L.; Rodrigues, J.P.P.; Sguizzato, A.L.L.; Santos, M.M.F.; Rotta, P.P.; Caton, J.S.; Moraes, L.E.F.D.; Silva, F.F.; Marcondes, M.I. Energy and Protein Requirements of Holstein × Gyr Crossbred Heifers. Animal 2020, 14, 1857–1866. [Google Scholar] [CrossRef]
- Fraga, A.B.; de Lima Silva, F.; Hongyu, K.; Da Silva Santos, D.; Murphy, T.W.; Lopes, F.B. Multivariate Analysis to Evaluate Genetic Groups and Production Traits of Crossbred Holstein × Zebu Cows. Trop. Anim. Health Prod. 2016, 48, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Burrow, H.W. Utilization of Diverse Breed Resources for Tropical Beef Production. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, 13–18 August 2006; pp. 32–33. [Google Scholar]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural Expansion and Its Impacts on Tropical Nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef]
- FAO. Biofuel Co-Products as Livestock Feed—Opportunities and Challenge; Harinder, P.S.M., Ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- National Research Council—NRC. Nutrient Requirements of Domestic Animals: Nutrient Requirement of Beef Cattle, 8th ed.; National Academy of Sciences: Washington, DC, USA, 2016; pp. 25–178. [Google Scholar]
- Thomas, L.; Larroche, C.; Pandey, A. Current Developments in Solid-State Fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Sruamsiri, S. Agricultural Wastes as Dairy Feed in Chiang Mai: Review Article. Anim. Sci. J. 2007, 78, 335–341. [Google Scholar] [CrossRef]
- Gunun, P.; Wanapat, M.; Anantasook, N. Effects of Physical Form and Urea Treatment of Rice Straw on Rumen Fermentation, Microbial Protein Synthesis and Nutrient Digestibility in Dairy Steers. Asian Australas. J. Anim. Sci. 2013, 26, 1689–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenwood, R.H.; Morrill, J.L.; Titgemeyer, E.C.; Kennedy, G.A. A New Method of Measuring Diet Abrasion and Its Effect on the Development of the Forestomach. J. Dairy Sci. 1997, 80, 2534–2541. [Google Scholar] [CrossRef]
- National Research Council—NRC. Nutrient Requirements of Domestic Animals: Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy of Sciences: Washington, DC, USA, 2001; pp. 13–248. [Google Scholar]
- White, R.R.; Roman-Garcia, Y.; Firkins, J.L.; VandeHaar, M.J.; Armentano, L.E.; Weiss, W.P.; McGill, T.; Garnett, R.; Hanigan, M.D. Evaluation of the National Research Council (2001) Dairy Model and Derivation of New Prediction Equations. 1. Digestibility of Fiber, Fat, Protein, and Nonfiber Carbohydrate. J. Dairy Sci. 2017, 100, 3591–3610. [Google Scholar] [CrossRef] [PubMed]
- White, R.R.; Roman-Garcia, Y.; Firkins, J.L.; Kononoff, P.; VandeHaar, M.J.; Tran, H.; McGill, T.; Garnett, R.; Hanigan, M.D. Evaluation of the National Research Council (2001) Dairy Model and Derivation of New Prediction Equations. 2. Rumen Degradable and Undegradable Protein. J. Dairy Sci. 2017, 100, 3611–3627. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Fox, D.G.; Pell, A.N.; Lanna, D.P.D.; Boin, C. Development and Evaluation of a Tropical Feed Library for the Cornell Net Carbohydrate and Rrotein System Model. Sci. Agric. 2002, 59, 1–18. [Google Scholar] [CrossRef]
- Detmann, E.; Valadares Filho, S.C.; Pina, D.S.; Henriques, L.T.; Paulino, M.F.; Magalhães, K.A.; Silva, P.A.; Chizzotti, M.L. Prediction of the Energy Value of Cattle Diets Based on the Chemical Composition of the Feeds under Tropical Conditions. Anim. Feed Sci. Technol. 2008, 143, 127–147. [Google Scholar] [CrossRef]
- Tamminga, S. The Effect of the Supply of Rumen Degradable Protein and Metabolisable Protein on Negative Energy Balance and Fertility in Dairy Cows. Anim. Reprod. Sci. 2006, 96, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Lemosquet, S.; Guinard-Flament, J.; Raggio, G.; Hurtaud, C.; Van Milgen, J.; Lapierre, H. How Does Increasing Protein Supply or Glucogenic Nutrients Modify Mammary Metabolism in Lactating Dairy Cows? In Proceedings of the 3rd EAAP International Symposium on Energy and Protein Metabolism and Nutrition, Parma, Italy, 6–10 September 2010; pp. 175–185. [Google Scholar]
- Brun-Lafleur, L.; Delaby, L.; Husson, F.; Faverdin, P. Predicting Energy × Protein Interaction on Milk Yield and Milk Composition in Dairy Cows. J. Dairy Sci. 2010, 93, 4128–4143. [Google Scholar] [CrossRef] [Green Version]
- Huhtanen, P.; Hristov, A.N. Effects of Energy and Protein Supply on Milk Protein Yield Responses in Dairy Cows. In Proceedings of the 3rd EAAP International Symposium on Energy and Protein Metabolism and Nutrition, Parma, Italy, 6–10 September 2010; Matteo, G.C., Ed.; pp. 287–299. [Google Scholar]
- Widi, T.S.M. Mapping the Impact of Crossbreeding in Smallholder Cattlesystems in Indonesia. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2015. [Google Scholar]
- Vandehaar, M.J.; Armentano, L.E.; Weigel, K.; Spurlock, D.M.; Tempelman, R.J.; Veerkamp, R. Harnessing the Genetics of the Modern Dairy Cow to Continue Improvements in Feed Efficiency 1. J. Dairy Sci. 2016, 99, 4941–4954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, L.P.F.; Cabrita, A.R.J.; Dewhurst, R.J.; Vicente, T.E.J.; Lopes, Z.M.C.; Fonseca, A.J.M. Evaluation of Palm Kernel Meal and Corn Distillers Grains in Corn Silage-Based Diets for Lactating Dairy Cows. J. Dairy Sci. 2006, 89, 2705–2715. [Google Scholar] [CrossRef]
- Promkot, C.; Wanapat, M. Effect of Level of Crude Protein and Use of Cottonseed Meal in Diets Containing Cassava Chips and Rice Straw for Lactating Dairy Cows. Asian Australas. J. Anim. Sci. 2005, 18, 502–511. [Google Scholar] [CrossRef]
- Kraiprom, T.; Prasanpanich, S.; Kungmun, P.; Sivijchai, S.; Tumwasorn, S. Effect of Fermented By-Product and Rice Straw on Milk Yield and Fatty Acid Composition in Dairy Cows. Kasetsart J. Nat. Sci. 2013, 47, 217–227. [Google Scholar]
- Pang, D.; Yan, T.; Trevisi, E.; Krizsan, S.J. Effect of Grain- or by-Product-Based Concentrate Fed with Early- or Late-Harvested First-Cut Grass Silage on Dairy Cow Performance. J. Dairy Sci. 2018, 101, 7133–7145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duguma, B.; Janssens, G.P.J. Assessment of Feed Resources, Feeding Practices and Coping Strategies to Feed Scarcity by Smallholder Urban Dairy Producers in Jimma Town, Ethiopia. Springerplus 2016, 5, 717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravagnolo, O.; Misztal, I.; Hoogenboom, G. Genetic Component of Heat Stress in Dairy Cattle, Development of Heat Index Function. J. Dairy Sci. 2000, 83, 2120–2125. [Google Scholar] [CrossRef]
- Chaiyabutr, N.; Chanpongsang, S.; Suadsong, S. Effects of Evaporative Cooling on the Regulation of Body Water and Milk Production in Crossbred Holstein Cattle in a Tropical Environment. Int. J. Biometeorol. 2008, 52, 575–585. [Google Scholar] [CrossRef]
- Rhoads, M.L.; Rhoads, R.P.; VanBaale, M.J.; Collier, R.J.; Sanders, S.R.; Weber, W.J.; Crooker, B.A.; Baumgard, L.H. Effects of Heat Stress and Plane of Nutrition on Lactating Holstein Cows: I. Production, Metabolism, and Aspects of Circulating Somatotropin. J. Dairy Sci. 2009, 92, 1986–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauly, M.; Bollwein, H.; Breves, G.; Brügemann, K.; Dänicke, S.; Daş, G.; Demeler, J.; Hansen, H.; Isselstein, J.; König, S.; et al. Future Consequences and Challenges for Dairy Cow Production Systems Arising from Climate Change in Central Europe—A Review. Animal 2013, 7, 843–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huhtanen, P. Critical Aspects of Feed Protein Evaluation Systems for Ruminants. J. Anim. Feed Sci. 2005, 14 (Suppl. S1), 145–170. [Google Scholar] [CrossRef] [Green Version]
- Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to Hot Climate and Strategies to Alleviate Heat Stress in Livestock Production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.H.; Huber, J.T.; Theurer, C.B.; Armstrong, D.V.; Wanderley, R.C.; Simas, J.M.; Chan, S.C.; Sullivan, J.L. Effect of Protein Quality and Evaporative Cooling on Lactational Performance of Holstein Cows in Hot Weather. J. Dairy Sci. 1993, 76, 819–825. [Google Scholar] [CrossRef]
- Van Soest, P. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: New York, NY, USA, 1994. [Google Scholar]
- Orskov ER, R.M. Energy Nutrition in Ruminants; Elsevier Science Publ. Ltd.: Cambridge, UK, 1998. [Google Scholar]
- National Research Council—NRC. Effect of Environment on Nutrient Requirements of Domestic Animals; The National Academics Press: Washington, DC, USA, 1981. [Google Scholar]
- Fox, D.G.; Tylutki, T.P. Accounting for the Effects of Environment on the Nutrient Requirements of Dairy Cattle. J. Dairy Sci. 1998, 81, 3085–3095. [Google Scholar] [CrossRef]
- Berman, A. Effects of Body Surface Area Estimates on Predicted Energy Requirements and Heat Stress. J. Dairy Sci. 2003, 86, 3605–3610. [Google Scholar] [CrossRef]
- Herbut, P.; Angrecka, S.; Walczak, J. Environmental Parameters to Assessing of Heat Stress in Dairy Cattle—A Review. Int. J. Biometeorol. 2018, 62, 2089–2097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purwanto, B.P.; Abo, Y.; Sakamoto, R.; Yamamoto, S.; Furumoto, F. Diurnal Patterns of Heat Production and Heart Rate under Thermoneutral Conditions in Holstein Friesian Cows Differing in Milk Production. J. Agric. Sci. 1990, 114, 139–142. [Google Scholar] [CrossRef]
- Carabaño, M.J.; Bachagha, K.; Ramón, M.; Díaz, C. Modeling Heat Stress Effect on Holstein Cows under Hot and Dry Conditions: Selection Tools. J. Dairy Sci. 2014, 97, 7889–7904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dikmen, S.; Khan, F.A.; Huson, H.J.; Sonstegard, T.S.; Moss, J.I.; Dahl, G.E.; Hansen, P.J. The SLICK Hair Locus Derived from Senepol Cattle Confers Thermotolerance to Intensively Managed Lactating Holstein Cows. J. Dairy Sci. 2014, 97, 5508–5520. [Google Scholar] [CrossRef] [Green Version]
- FAO. Greenhouse Gas Emissions from the Dairy Sector—A Life Cycleassessment; Gerber, P., Vellinga, T., Opio, C., Henderson, B., Henning, S., Eds.; Animal Production and Health Division; Food and Agriculture Organization Of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Thornton, P.K.; Herrero, M. Potential for Reduced Methane and Carbon Dioxide Emissions from Livestock and Pasture Management in the Tropics. In Proceedings of the National Academy of Sciences of the United States of America, Washington, DC, USA, 16 November 2010; Volume 107, pp. 19667–19672. [Google Scholar] [CrossRef] [Green Version]
- Sahai, S.; Sharma, C.; Singh, S.K.; Gupta, P.K. Assessment of Trace Gases, Carbon and Nitrogen Emissions from Field Burning of Agricultural Residues in India. Nutr. Cycl. Agroecosyst. 2011, 89, 143–157. [Google Scholar] [CrossRef]
- Valenti, F.; Liao, W.; Porto, S.M.C. Life Cycle Assessment of Agro-Industrial by-Product Reuse: A Comparison between Anaerobic Digestion and Conventional Disposal Treatments. Green Chem. 2020, 22, 7119–7139. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of Climate Changes on Animal Production and Sustainability of Livestock Systems. Livestig. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Li, G.; Xie, S.P.; Du, Y.; Luo, Y. Effects of Excessive Equatorial Cold Tongue Bias on the Projections of Tropical Pacific Climate Change. Part I: The Warming Pattern in CMIP5 Multi-Model Ensemble. Clim. Dyn. 2016, 47, 3817–3831. [Google Scholar] [CrossRef]
- Chapman, S.C.; Chakraborty, S.; Dreccer, M.F.; Howden, S.M. Plant Adaptation to Climate Change—Opportunities and Priorities in Breeding. Crop Pasture Sci. 2012, 63, 251–268. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate Change and Livestock: Impacts, Adaptation, and Mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Falkner, R. The Paris Agreement and the New Logic of International Climate Politics. Int. Aff. 2016, 92, 1107–1125. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. In Proceedings of the National Academy of Sciences of the United States of America, Washington, DC, USA, 10 July 2017; Volume 114, pp. 9326–9331. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.G.; Thornton, P.K. The Potential Impacts of Climate Change on Maize Production in Africa and Latin America in 2055. Glob. Environ. Chang. 2003, 13, 51–59. [Google Scholar] [CrossRef]
- Peden, D.; Tadesse, G.; Misra, A.K.; Ahmed, F.A.; Astatke, A.; Ayalneh, W.; Herrero, M.; Kiwuwa, G.; Kumsa, T.; Mati, B.; et al. Chapter 13: Water for Livestock and Human Development. Comprehensive Assessment of Water Management in Agriculture. In Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Earthscan: London, UK, 2006; pp. 485–594. [Google Scholar]
- T Tedeschi, L.O. Asn-Asas Symposium: Future of Data Analytics in Nutrition: Mathematical Modeling in Ruminant Nutrition: Approaches and Paradigms, Extant Models, and Thoughts for Upcoming Predictive Analytics1,2. J. Anim. Sci. 2019, 97, 1921–1944. [Google Scholar] [CrossRef]
- Moraes, L.E.; Wilen, J.E.; Robinson, P.H.; Fadel, J.G. A Linear Programming Model to Optimize Diets in Environmental Policy Scenarios. J. Dairy Sci. 2012, 95, 1267–1282. [Google Scholar] [CrossRef]
- Angadi, U.B.; Anandan, S.; Gowda, N.K.S.; Rajendran, D.; Devi, L.; Elangovan, A.V.; Jash, S. “Feed Assist”—An Expert System on Balanced Feeding for Dairy Animals. Agris On-Line Pap. Econ. Inform. 2016, 8, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Souza, V.L.; Drackley, J.K.; Almeida, R.; Bittar, C.M.M.; Albertini, T.Z.; Morrison, S.Y.; Lanna, D.P.D. Evaluation of Nutrition Models to Estimate Performance of Young Dairy Calves: A Meta-Analytical Study under Tropical Conditions. Animal 2016, 10, 1965–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedeschi, L.O.; Fox, D.G.; Fonseca, M.A.; Cavalcanti, L.F.L. Models of Protein and Amino Acid Requirements for Cattle. Rev. Bras. Zootec. 2015, 44, 109–132. [Google Scholar] [CrossRef] [Green Version]
- FAO. FAO Ration Tool for Dairy Cows; Animal Production and Health Division Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; Available online: https://www.feedipedia.org/node/23164 (accessed on 14 September 2021).
- Bohmanova, J.; Misztal, I.; Cole, J.B. Temperature-Humidity Indices as Indicators of Milk Production Losses Due to Heat Stress. J. Dairy Sci. 2007, 90, 1947–1956. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michael, P.; de Cruz, C.R.; Mohd Nor, N.; Jamli, S.; Goh, Y.M. The Potential of Using Temperate–Tropical Crossbreds and Agricultural by-Products, Associated with Heat Stress Management for Dairy Production in the Tropics: A Review. Animals 2022, 12, 1. https://doi.org/10.3390/ani12010001
Michael P, de Cruz CR, Mohd Nor N, Jamli S, Goh YM. The Potential of Using Temperate–Tropical Crossbreds and Agricultural by-Products, Associated with Heat Stress Management for Dairy Production in the Tropics: A Review. Animals. 2022; 12(1):1. https://doi.org/10.3390/ani12010001
Chicago/Turabian StyleMichael, Predith, Clement Roy de Cruz, Norhariani Mohd Nor, Saadiah Jamli, and Yong Meng Goh. 2022. "The Potential of Using Temperate–Tropical Crossbreds and Agricultural by-Products, Associated with Heat Stress Management for Dairy Production in the Tropics: A Review" Animals 12, no. 1: 1. https://doi.org/10.3390/ani12010001
APA StyleMichael, P., de Cruz, C. R., Mohd Nor, N., Jamli, S., & Goh, Y. M. (2022). The Potential of Using Temperate–Tropical Crossbreds and Agricultural by-Products, Associated with Heat Stress Management for Dairy Production in the Tropics: A Review. Animals, 12(1), 1. https://doi.org/10.3390/ani12010001