Effects of Calving Body Condition Score on Blood Acid–Base Balance of Primiparous Holstein-Friesian Dairy Cows in a Commercial Dairy Farm: A Case Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wathes, D.C.; Cheng, Z.; Bourne, N.; Taylor, V.J.; Coffey, M.P.; Brotherstone, S. Differences between primiparous and multiparous dairy cows in the inter-relationships between metabolic traits, milk yield and body condition score in the periparturient period. Domest. Anim. Endocrinol. 2007, 33, 203–225. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Badilla, G.; Salazar-Carranza, M.; Murillo-Herrera, J.; Romero-Zuñiga, J.J. Efecto de la edad al primer parto sobre parámetros productivos en vacas Jersey de Costa Rica. Agron. Mesoam. 2013, 24, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Cooke, J.S.; Cheng, Z.; Bourne, N.E.; Wathes, D.C. Association between growth rates, age at first calving and subsequent fertility, milk production and survival in Holstein-Friesian heifers. Open J. Anim. Sci. 2013, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, K.; Penno, J.; Bryant, A.; Roche, J. Effect of Feeding Level Pre- and Post-Puberty and Body Weight at First Calving on Growth, Milk Production, and Fertility in Grazing Dairy Cows. J. Dairy Sci. 2005, 88, 3363–3375. [Google Scholar] [CrossRef] [Green Version]
- Abuelo, A.; Hernández, J.; Benedito, J.L.; Castillo, C. Redox Biology in Transition Periods of Dairy Cattle: Role in the Health of Periparturient and Neonatal Animals. Antioxidants 2019, 8, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, C.; Benedito, J.; Pereira, V.; Vázquez, P.; Gutiérrez, C.; Hernández, J. Acid–base status and serum l-lactate in growing/finishing bull calves fed different high-grain diets. Livest. Sci. 2009, 120, 66–74. [Google Scholar] [CrossRef]
- Bernabucci, U.; Ronchi, B.; Lacetera, N.; Nardone, A. Influence of Body Condition Score on Relationships Between Metabolic Status and Oxidative Stress in Periparturient Dairy Cows. J. Dairy Sci. 2005, 88, 2017–2026. [Google Scholar] [CrossRef] [Green Version]
- Puppel, K.; Kuczyńska, B. Metabolic profiles of cow’s blood; a review. J. Sci. Food Agric. 2016, 96, 4321–4328. [Google Scholar] [CrossRef]
- Chapel, J.M.; Muiño, R.; Pereira, V.; Castillo, C.; Hernández, J.; Benedito, J.L. Relationship of BCS prepartum with reproductive performance and lipomobilization in Holstein dairy cows. Pakistan. Vet. J. 2017, 37, 215–219. [Google Scholar]
- Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A Body Condition Scoring Chart for Holstein Dairy Cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Real Decreto 53/2013, de 1 de Febrero, por el que se Establecen las Normas Básicas Aplicables Para la Protección de los Animales utilizados en Experimentación y otros Fines Científicos, Incluyendo la Docencia. Boletin Oficial del Estado del Gobierno de España 34. Available online: https://www.boe.es/eli/es/rd/2013/02/01/53 (accessed on 23 May 2021).
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Norme Française NF V18-120, Dosage de l’azote par Combustion (Dumas); ANFOR: Paris, France, 1997.
- Duffield, T.F. Monitoring strategies for metabolic disease in transition dairy cows. In Proceedings of the 23rd World Buiatrics Congress, Ontario, QC, Canada, 16 July 2004. [Google Scholar]
- Richardt, W. Milk composition as an indicator of nutrition and health. Breeding 2004, 11, 26–27. [Google Scholar]
- Ali, A.K.A.; Shook, G.E. An Optimum Transformation for Somatic Cell Concentration in Milk. J. Dairy Sci. 1980, 63, 487–490. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Lme4: Linear Mixed-Effects Models Using Eigen and S4. R Package Version 1.1-8. 2015. Available online: http://CRAN.R-project.org/package=lme4 (accessed on 20 February 2021).
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.r-project.org/ (accessed on 20 February 2021).
- Vernon, R.G. Lipid metabolism during lactation: A review of adipose tissue-liver interactions and the development of fatty liver. J. Dairy Res. 2005, 72, 460–469. [Google Scholar] [CrossRef]
- Adrien, M.; Mattiauda, D.; Artegoitia, V.; Carriquiry, M.; Motta, G.; Bentancur, O.; Meikle, A. Nutritional regulation of body condition score at the initiation of the transition period in primiparous and multiparous dairy cows under grazing conditions: Milk production, resumption of post-partum ovarian cyclicity and metabolic parameters. Animal 2012, 6, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Vesna, G.; Potonik, K.; Jovanovac, S. Test-day records as a tool for subclinical ketosis detection. Acta Vet. 2009, 59, 185–191. [Google Scholar] [CrossRef]
- Pirlo, G.; Miglior, F.; Speroni, M. Effect of Age at First Calving on Production Traits and on Difference Between Milk Yield Returns and Rearing Costs in Italian Holsteins. J. Dairy Sci. 2000, 83, 603–608. [Google Scholar] [CrossRef]
- Mayne, C.S.; Mackey, D.R.; Verner, M.; McCaughey, W.J.; Gordon, F.J.; McCoy, M.A.; Lennox, S.D.; Catney, D.C.; Wylie, A.R.G.; Kennedy, B.W. Fertility of dairy cows in Northern Ireland. Vet. Rec. 2002, 150, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Hare, E.; Norman, H.; Wright, J. Trends in Calving Ages and Calving Intervals for Dairy Cattle Breeds in the United States. J. Dairy Sci. 2006, 89, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Nagy, O.; Seidel, H.; Kováč, G.; Paulíková, I. Acid-base balance and blood gases in calves in relation to age and nutrition Czech. J. Anim. Sci. 2003, 48, 61–68. [Google Scholar]
- Gärtner, T.; Zoche-Golob, V.; Redlberger, S.; Reinhold, P.; Donat, K. Acid-base assessment of post-parturient German Holstein dairy cows from jugular venous blood and urine: A comparison of the strong ion approach and traditional blood gas analysis. PLoS ONE 2019, 14, e0210948. [Google Scholar] [CrossRef] [PubMed]
- Cole, N.A.; Greene, L.W.; Mccollum, F.T.; Montgomery, T.; McBride, K. Influence of oscillating dietary crude protein concentration on performance, acid-base balance, and nitrogen excretion of steers1,2,3. J. Anim. Sci. 2003, 81, 2660–2668. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Liu, J.; Xu, G.; Ye, J. Calcium homeostasis, acid–base balance, and health status in periparturient Holstein cows fed diets with low cation–anion difference. Livest. Sci. 2008, 117, 7–14. [Google Scholar] [CrossRef]
- Zebeli, Q.; Mansmann, D.; Steingass, H.; Ametaj, B. Balancing diets for physically effective fibre and ruminally degradable starch: A key to lower the risk of sub-acute rumen acidosis and improve productivity of dairy cattle. Livest. Sci. 2010, 127, 1–10. [Google Scholar] [CrossRef]
- Calamari, L.; Abeni, F.; Calegari, F.; Stefanini, L. Metabolic conditions of lactating Friesian cows during the hot season in the Po valley. 2. Blood minerals and acid-base chemistry. Int. J. Biometeorol. 2007, 52, 97–107. [Google Scholar] [CrossRef]
- Afzaal, D.; Nisa, M.; Khan, M.A.; Sarwar, M.A. review on acid base status in dairy cows: Implications of dietary cation-anion balance. Pakistan. Vet. J. 2004, 24, 199–202. [Google Scholar]
- Hernandez, J.; Benedito, J.L.; Castillo, C. Relevance of the study of metabolic profiles in sheep and goat flock. Present and future: A review. Span. J. Agric. Res. 2020, 18, e06R01. [Google Scholar] [CrossRef]
- Müller, K.; Gentile, A.; Klee, W.; Constable, P. Importance of the Effective Strong Ion Difference of an Intravenous Solution in the Treatment of Diarrheic Calves with Naturally Acquired Acidemia and Strong Ion (Metabolic) Acidosis. J. Vet. Intern. Med. 2012, 26, 674–683. [Google Scholar] [CrossRef] [Green Version]
- Iwaniuk, M.; Weidman, A.; Erdman, R. The effect of dietary cation-anion difference concentration and cation source on milk production and feed efficiency in lactating dairy cows. J. Dairy Sci. 2015, 98, 1950–1960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chemical Composition (g kg−1 DM) | BC a | AC |
---|---|---|
Crude protein (CP) | 142.7 | 171.5 |
Neutral detergent fibre (NDF) | 433.1 | 307.9 |
Acid detergent fibre (ADF) | 301.2 | 191.6 |
Starch | 126.8 | 246.8 |
Milk forage unit (UFL) | 0.76 | 0.97 |
Parameter | Group a | Samplings | p-Value | |||
---|---|---|---|---|---|---|
1 Week AC b | 1 Month AC | T | BCS | T*BCS | ||
Milk yield | BCS < 3.5 | 34.1 ± 3.5 | 41.5 ± 3.5 | 0.026 | 0.638 | 0.609 |
Kg | BCS > 3.5 | 37.1 ± 2.4 | 41.9 ± 2.4 | |||
Fat | BCS < 3.5 | 4.12 ± 0.30 | 4.26 ± 1.53 | 0.495 | 0.941 | 0.168 |
(%) | BCS > 3.5 | 4.42 ± 0.30 | 4.01 ± 0.20 | |||
Protein | BCS < 3.5 | 3.52 ± 0.13 | 3.32 ± 0.09 | 0.016 | 0.400 | 0.722 |
(%) | BCS > 3.5 | 3.44 ± 0.13 | 3.19 ± 0.09 | |||
F/P ratio | BCS < 3.5 | 1.17 ± 0.08 | 1.28 ± 0.05 | 0.483 | 0.519 | 0.242 |
BCS > 3.5 | 1.29 ± 0.08 | 1.26 ± 0.05 | ||||
SCCn c | BCS <- 3.5 | 2.87 ± 0.57 | 2.33 ± 0.39 | 0.088 | 0.659 | 0.623 |
BCS > 3.5 | 2.82 ± 0.57 | 1.88 ± 0.39 |
Parameter | Group a | Samplings | p-Value | |||||
---|---|---|---|---|---|---|---|---|
1 Month BC b | 1 Week BC | 1 Week AC c | 1 Month AC | T | BCS | T*BCS | ||
Venous | BCS < 3.5 | 7.41 ± 0.01 | 7.43 ± 0.02 | 7.44 ± 0.01 | 7.44 ± 0.01 | 0.085 | 0.594 | 0.836 |
pH | BCS > 3.5 | 7.42 ± 0.01 | 7.44 ± 0.01 | 7.44 ± 0.01 | 7.44 ± 0.01 | |||
pCO2 | BCS < 3.5 | 43.8 ± 1.92 | 40.8 ± 2.25 | 44.2 ± 0.01 ± 1.16 | 43.7 ± 1.07 | 0.073 | 0.809 | 0.868 |
(mm Hg) | BCS > 3.5 | 42.3 ± 0.93 | 40.6 ± 0.87 | 45.0 ± 1.28 | 43.4 ± 1.36 | |||
HCO3− | BCS < 3.5 | 27.7 ± 1.53 | 27.0 ± 0.96 | 30.3 ± 2.02 | 29.6 ± 2.05 | <0.001 | 0.899 | 0.919 |
(mmol/L) | BCS > 3.5 | 27.3 ± 1.85 | 27.7 ± 1.93 | 30.4 ± 1.43 | 29.5 ± 1.68 | |||
BE d | BCS < 3.5 | 3.2 ± 1.03 | 3.0 ± 1.19 | 6.4 ± 0.62 | 5.4 ± 0.54 | <0.001 | 0.941 | 0.937 |
(mmol/L) | BCS > 3.5 | 2.8 ± 0.50 | 3.6 ± 0.46 | 6.2 ± 0.69 | 5.2 ± 0.73 | |||
TCO2 | BCS < 3.5 | 29.0 ± 1.77 | 28.0 ± 2.05 | 31.8 ± 1.07 | 30.8 ± 0.98 | 0.32 | 0.396 | 0.370 |
(mmol/L) | BCS > 3.5 | 28.5 ± 0.86 | 28.8 ± 0.79 | 31.7 ± 1.18 | 27.5 ± 1.25 |
Parameter | Group a | Samplings | p-Value | |||||
---|---|---|---|---|---|---|---|---|
1 Month BC b | 1 Week BC | 1 Week AC c | 1 Month AC | T | BCS | T*BCS | ||
Na+ | BCS < 3.5 | 142.2 ± 0.9 | 143.0 ± 1.0 | 142.4 ± 0.5 | 139.9 ± 0.5 | <0.001 | 0.933 | 0.705 |
(mmol/l) | BCS > 3.5 | 142.7 ± 0.4 | 143.7 ± 0.5 | 141.7 ± 0.6 | 139.6 ± 0.6 | |||
K+ | BCS < 3.5 | 3.8 ± 0.1 | 4.5 ± 0.2 | 3.5 ± 0.1 | 3.5 ± 0.08 | <0.001 | 0.403 | 0.235 |
(mm Hg) | BCS > 3.5 | 3.8 ± 0.1 | 3.9 ± 0.1 | 3.5 ± 0.1 | 3.6 ± 0.1 | |||
Cl− | BCS < 3.5 | 100.7 ± 1.2 | 103.3 ± 1.4 | 100.6 ± 0.7 | 98.4 ± 0.7 | <0.001 | 0.568 | 0.493 |
(mmol/L) | BCS > 3.5 | 101.8 ± 0.6 | 103.4 ± 0.5 | 99.7 ± 0.8 | 99.6 ± 0.9 | |||
AG d | BCS < 3.5 | 17.5 ± 0.9 | 16.7 ± 1.0 | 14.8 ± 0.5 | 15.4 ± 0.5 | <0.001 | 0.435 | 0.580 |
(mmol/L) | BCS > 3.5 | 17.2 ± 0.4 | 16.5 ± 0.4 | 15.1 ± 0.6 | 14.1 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muiño, R.; Hernández, J.; Benedito, J.L.; Castillo, C. Effects of Calving Body Condition Score on Blood Acid–Base Balance of Primiparous Holstein-Friesian Dairy Cows in a Commercial Dairy Farm: A Case Study. Animals 2021, 11, 2075. https://doi.org/10.3390/ani11072075
Muiño R, Hernández J, Benedito JL, Castillo C. Effects of Calving Body Condition Score on Blood Acid–Base Balance of Primiparous Holstein-Friesian Dairy Cows in a Commercial Dairy Farm: A Case Study. Animals. 2021; 11(7):2075. https://doi.org/10.3390/ani11072075
Chicago/Turabian StyleMuiño, Rodrigo, Joaquín Hernández, José L. Benedito, and Cristina Castillo. 2021. "Effects of Calving Body Condition Score on Blood Acid–Base Balance of Primiparous Holstein-Friesian Dairy Cows in a Commercial Dairy Farm: A Case Study" Animals 11, no. 7: 2075. https://doi.org/10.3390/ani11072075
APA StyleMuiño, R., Hernández, J., Benedito, J. L., & Castillo, C. (2021). Effects of Calving Body Condition Score on Blood Acid–Base Balance of Primiparous Holstein-Friesian Dairy Cows in a Commercial Dairy Farm: A Case Study. Animals, 11(7), 2075. https://doi.org/10.3390/ani11072075