Thermal Comfort Index for Lactating Water Buffaloes under Hot and Humid Climate
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Location and Agro-Climatic Conditions
2.2. Animal Management and Housing
2.3. Recording of Meteorological Data
2.4. Measurement of Physiological Parameters of Buffalo
2.5. Development of Thermal Comfort Index
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dunshea, F.R.; Leury, B.J.; Fahri, F.; Digiacomo, K.; Hung, A.; Chauhan, S.; Clarke, I.J.; Collier, R.; Little, S.; Baumgard, L.; et al. Amelioration of thermal stress impacts in dairy cows. Anim. Prod. Sci. 2013, 53, 965–975. [Google Scholar] [CrossRef]
- NASA. NOAA Find 2014 Warmest Year in Modern Record; NASA Goddard Institute for Space Studies: New York, NY, USA, 2015.
- Dunne, J.P.; Stouffer, R.J.; John, J.G. Reductions in labour capacity from heat stress under climate warming. Nat. Clim. Chang. 2013. [Google Scholar] [CrossRef]
- Shafie, M. Physiological responses and adaptation of water buffalo. Stress Physiology in Livestock; CRC Press: Boca Raton, FL, USA, 1985; Volume II, pp. 67–80. [Google Scholar]
- Nagarcenkar, R.; Sethi, R. Association of adaptive traits with performance traits in buffaloes. Ind. J. Ani. Sci. 1981, 51, 1121–1123. [Google Scholar]
- Shafie, M.; El-Khair, M.A. Activity of the sebaceous glands of bovines in hot climates. U. A. R. J. Anim. Prod. 1970, 10, 81–98. [Google Scholar]
- da Silva, J.A.R.; de Araújo, A.A.; Júnior, L.; de Brito, J.; de Fátima Alves dos Santos, N.; Viana, R.B.; Garcia, A.R.; Rondina, D.; Grise, M.M. Hormonal changes in female buffaloes under shading in tropical climate of Eastern Amazon, Brazil. Rev. Bras. Zootec. 2014, 43, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Marai, I.; Haeeb, A. Buffalo’s biological functions as affected by heat stress—A review. Livest. Sci. 2010, 127, 89–109. [Google Scholar] [CrossRef]
- Aggarwal, A.; Upadhyay, R. Heat Stress and Animal Productivity; Springer: New York, NY, USA, 2013. [Google Scholar]
- Yáez, A.; Cruz-Cruz, L.; Morales, A.; Roldan-Santiago, P.; Orozco-Gregorio, H. Physiological and behavioral changes of water buffalo in hot and cold systems: Review. J. Buffalo Sci. 2020, 9, 110–120. [Google Scholar]
- Das, K.S.; Singh, J.; Singh, G.; Upadhyay, R.; Malik, R.; Oberoi, P. Heat stress alleviation in lactating buffaloes: Effect on physiological response, metabolic hormone, milk production and composition. Indian J. Anim. Sci. 2014, 84, 275–280. [Google Scholar]
- Purwanto, B.P.; Abo, Y.; Sakamoto, R.; Furumoto, F.; Yamamoto, S. Diurnal patterns of heat production and heart rate under thermoneutral conditions in Holstein Friesian cows differing in milk production. J. Agric. Sci. 1990, 114, 139–142. [Google Scholar] [CrossRef]
- de Ablas, D.S.; Titto, E.A.L.; Pereira, A.M.F.; Titto, C.G.; Leme, T.M. Behavior of buffalo bulls in pasture against the availability of shadow and water for immersion. Braz. Anim. Sci. 2007, 8, 167–176. [Google Scholar]
- Khongdee, T.; Sripoon, S.; Vajrabukka, C. The effects of high temperature and roof modification on physiological responses of swamp buffalo (Bubalus bubalis) in the tropics. Inter. J. Biomet. 2013, 57, 349–354. [Google Scholar] [CrossRef]
- da Silva, J.A.; de Araújo, A.A.; Lourenço Júnior Jde, B.; dos Santos Nde, F.; Garcia, A.R.; de Oliveira, R.P. Thermal comfort indices of female Murrah buffaloes reared in the Eastern Amazon. Inter. J. Biomet. 2015, 59, 1261–1267. [Google Scholar] [CrossRef]
- Thom, E.C. The discomfort index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Buffington, D.; Collazo-Arocho, A.; Canton, G.; Pitt, D.; Thatcher, W.; Collier, R. Black globe-humidity index (BGHI) as comfort equation for dairy cows. Trans. ASAE 1981, 24, 711–714. [Google Scholar] [CrossRef]
- Benezra, M. A new index for measuring the adaptability of cattle to tropical conditions. J. Anim. Sci. 1954, 13, 1015. [Google Scholar]
- Rhoad, A.O. The Iberia heat tolerance test for cattle. Trop. Agric. 1944, 21, 162–164. [Google Scholar]
- Brandon, R.N. Adaptation and Environment; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Piggins, D.; Phillips, C. Farm. Animals and the Environment; CAB International: Wallingford, UK, 1992. [Google Scholar]
- Martello, L.S.; da Luz ESilva, S.; da Costa Gomes, R.; da Silva Corte, R.R.; Leme, P.R. Infrared thermography as a tool to evaluate body surface temperature and its relationship with feed efficiency in Bos indicus cattle in tropical conditions. Int. J. Biomet. 2016, 60, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Hahn, G. Dynamic responses of cattle to thermal heat loads. J. Anim. Sci. 1999, 77 (Suppl. 2), 10–20. [Google Scholar] [CrossRef]
- Martello, L.S.; Junior, H.S.; Silva, S.L.; Balieiro, J.C.C. Alternative body sites for heat stress measurement in milking cows under tropical conditions and their relationship to the thermal discomfort of the animals. Int. J. Biomet. 2010, 54, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.J.; Dahl, G.; VanBaale, M. Major advances associated with environmental effects on dairy cattle. J. Dairy Sci. 2006, 89, 1244–1253. [Google Scholar] [CrossRef]
- Marcheto, F.G.; de Alencar Nääs, I.; Salgado, D.D.; de Souza, S.R.L. Evaluating the dry bulb and black globe temperatures and temperature and humidity index effect in dairy cows lodged in free-stall system. Braz. J. Vet. Res. Anim. Sci. 2002, 39, 320–323. [Google Scholar] [CrossRef]
- Laloni, A.; Nääs, I.; Macari, M.; Pereira, D.; Pinheiro, M. Model for predicting milk production in Jersey cows in hot weather. In Proceedings of the Fifth International Dairy Housing Conference for 2003, Fort Worth, TX, USA, 29–31 January 2003; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2003; pp. 320–324. [Google Scholar]
- Da Costa, L.A.B. Indices of Thermal Comfort and Adaptability of Buffalo Females Grazing in the Wild of Pernambuco. Ph.D. Thesis, Federal Rural University of Pernambuco, Recife, Brazil, 2007; p. 52. [Google Scholar]
- da Silva, J.A.R.; de Araujo, A.A.; Lourenço Júnior, J.D.B.; Santos, N.; Garcia, A.R.; Nahúm, B.D.S. Thermal comfort of female buffaloes in a silvipasture system in the eastern Amazon. Pesqui. Agropecuária Bras. 2011, 46, 1364–1371. [Google Scholar]
- de Andrade Pantoja, M.H.; da Silva, J.A.R.; da Barbosa, A.V.C.; Martorano, L.G.; Garcia, A.R.; de Brito Lourenço Júnior, J. Assessment of indices of thermal stress indicators among male buffaloes reared in the Eastern Brazilian Amazon. Acta Sci. Anim. Sci. 2018, 40, 37831. [Google Scholar] [CrossRef]
- Athaíde, L.G.; Joset, W.C.L.; de Almeida, J.C.F.; de Andrade Pantoja, M.H.; de Paula Pacheco Noronha, R.; Bezerra, A.S.; Barbosa, A.V.C.; Martorano, L.G.; da Silva, J.A.R.; de Brito Lourenço Júnior, J. Thermoregulatory and behavioral responses of buffaloes with and without direct sun exposure during abnormal environmental condition in Marajó Island, Pará, Brazil. Front. Vet. Sci. 2020, 7, 877. [Google Scholar] [CrossRef] [PubMed]
- Berman, A.; Horovitz, T.; Kaim, M.; Gacitua, H. A comparison of THI indices leads to a sensible heat-based heat stress index for shaded cattle that aligns temperature and humidity stress. Int. J. Biometeorol. 2016, 60, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
Animal Status | Range |
---|---|
Comfort | ≤M |
Danger | M~M + SD |
Stress | M + SD~M+2 × SD |
Emergency | ≥M+2 × SD |
S. No | Name of the Model | Formula | Reference |
---|---|---|---|
1 | Thermal humidity index (THI) | THI = AT + 0.36 DPT + 41.5 | [16] |
2 | Black ball temperature and humidity index (GTHI) | GTHI = BGT + 0.36 DPT + 41.5 | [17] |
3 | Benezra’s thermal comfort index (BTCI) | BTCI = (RT/38.8) + (RR/23) | [18] |
4 | Rhoad’s heat resistance index (IHTI) | IHTI = 100 − 18 (RT − 38.33) | [19] |
Items | AT | RH | BGT | WBT | DPT | BST | RT | RR |
---|---|---|---|---|---|---|---|---|
AT | 1 | |||||||
RH | −0.1799 | 1 | ||||||
BGT | 0.9748 ** | −0.2064 | 1 | |||||
WBT | 0.9566 ** | 0.0064 | 0.9311 ** | 1 | ||||
DPT | 0.8962 ** | 0.1071 | 0.8660 ** | 0.9846 ** | 1 | |||
BST | 0.9213 ** | −0.0657 | 0.9064 ** | 0.8888 ** | 0.8319 ** | 1 | ||
RT | 0.6614 ** | −0.3956 ** | 0.6291 ** | 0.5741 ** | 0.5082 ** | 0.6517 ** | 1 | |
RR | 0.8749 ** | 0.0043 | 0.8807 ** | 0.8523 ** | 0.8084 ** | 0.8554 ** | 0.5033 ** | 1 |
Model | Typical Correlation Coefficient | Typical Correlation Coefficient Squared | Chi-SQ | Degrees of Freedom | p Value |
---|---|---|---|---|---|
General | 0.9520 | 0.9063 | 197.814 | 15.00 | 0.001 |
0.5190 | 0.2693 | 28.044 | 8.00 | 0.001 | |
0.2740 | 0.0750 | 5.573 | 3.00 | 0.134 | |
Effective | 0.9500 | 0.9025 | 192.764 | 9.00 | 0.001 |
0.5190 | 0.2693 | 23.797 | 4.00 | 0.001 | |
0.1210 | 0.0146 | 1.076 | 1.00 | 0.300 | |
Practical | 0.9450 | 0.8930 | 165.623 | 4.00 | 0.001 |
0.1270 | 0.0161 | 1.204 | 1.00 | 0.273 |
Exponential Model | Mean ± SD | Comfort | Danger | Stress | Emergency |
---|---|---|---|---|---|
E1 | 42.65 ± 7.29 | ≤42.65 | 42.65~49.94 | 49.94~57.23 | ≥57.23 |
P1 | 25.47 ± 3.27 | ≤25.47 | 25.47~28.74 | 28.74~32.01 | ≥32.01 |
E2 | 37.07 ± 6.97 | ≤37.07 | 37.07~44.04 | 44.04~51.01 | ≥51.01 |
P2 | 25.57 ± 3.26 | ≤25.57 | 25.57~28.83 | 28.83~32.09 | ≥32.09 |
E3 | 37.15 ± 6.91 | ≤37.15 | 37.15~44.06 | 44.06~50.97 | ≥50.97 |
P3 | 25.30 ± 3.34 | ≤25.30 | 25.30~28.64 | 28.64~31.98 | ≥31.98 |
General Model | Effective Model | Practical Model | Total (Head) | ||||||
---|---|---|---|---|---|---|---|---|---|
Comfort | Danger | Stress | Emergency | Comfort | Danger | Stress | Emergency | ||
Comfort | 812 | 48 | 812 | 48 | 860 | ||||
Danger | 74 | 291 | 6 | 89 | 266 | 16 | 371 | ||
Stress | 58 | 244 | 3 | 71 | 234 | 3 | 308 | ||
Emergency | 21 | 21 | 21 | ||||||
Total (head) | 886 | 397 | 250 | 24 | 901 | 385 | 250 | 24 | 1560 |
Consistency | 87.69% (1368/1560) | 85.45% (1333/1560) |
General Model | Effective Model | Practical Model | Total (Head) | ||||||
---|---|---|---|---|---|---|---|---|---|
Comfort | Danger | Stress | Emergency | Comfort | Danger | Stress | Emergency | ||
Comfort | 844 | 25 | 852 | 17 | 869 | ||||
Danger | 320 | 21 | 4 | 330 | 7 | 341 | |||
Stress | 14 | 274 | 287 | 1 | 288 | ||||
Emergency | 62 | 62 | 62 | ||||||
Total (head) | 844 | 359 | 295 | 62 | 856 | 347 | 294 | 63 | 1560 |
Consistency | 96.15% (1500/1560) | 98.14% (1531/1560) |
Animal Status | General Model | Effective Model | Practical Model |
---|---|---|---|
Comfort | 760 | 728 | 721 |
Danger | 264 | 209 | 186 |
Stress | 129 | 135 | 108 |
Emergency | 7 | 7 | 7 |
Total (head) | 1160 | 1079 | 1022 |
Consistency | 74.36% | 69.17% | 65.51% |
Category | THI | GTHI | E1 | E2 | E3 |
---|---|---|---|---|---|
BST | 0.916 ** | 0.911 ** | 0.898 ** | 0.911 ** | 0.906 ** |
RT | 0.634 ** | 0.614 ** | 0.503 ** | 0.535 ** | 0.539 ** |
RR | 0.875 ** | 0.885 ** | 0.888 ** | 0.894 ** | 0.882 ** |
Category | BTCI | IHTI | P1 | P2 | P3 |
---|---|---|---|---|---|
BST | 0.861 ** | −0.652 ** | 0.970 ** | 0.971 ** | 0.977 ** |
RT | 0.528 ** | −1.000 ** | 0.609 ** | 0.610 ** | 0.615 ** |
RR | 0.999 ** | −0.504 ** | 0.956 ** | 0.954 ** | 0.946 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Liang, X.; Tang, Z.; Hassan, F.-u.; Li, L.; Guo, Y.; Peng, K.; Liang, X.; Yang, C. Thermal Comfort Index for Lactating Water Buffaloes under Hot and Humid Climate. Animals 2021, 11, 2067. https://doi.org/10.3390/ani11072067
Li M, Liang X, Tang Z, Hassan F-u, Li L, Guo Y, Peng K, Liang X, Yang C. Thermal Comfort Index for Lactating Water Buffaloes under Hot and Humid Climate. Animals. 2021; 11(7):2067. https://doi.org/10.3390/ani11072067
Chicago/Turabian StyleLi, Mengwei, Xin Liang, Zhenhua Tang, Faiz-ul Hassan, Lili Li, Yanxia Guo, Kaiping Peng, Xianwei Liang, and Chengjian Yang. 2021. "Thermal Comfort Index for Lactating Water Buffaloes under Hot and Humid Climate" Animals 11, no. 7: 2067. https://doi.org/10.3390/ani11072067
APA StyleLi, M., Liang, X., Tang, Z., Hassan, F.-u., Li, L., Guo, Y., Peng, K., Liang, X., & Yang, C. (2021). Thermal Comfort Index for Lactating Water Buffaloes under Hot and Humid Climate. Animals, 11(7), 2067. https://doi.org/10.3390/ani11072067