Effect of Graded Substitution of Soybean Meal by Hermetia illucens Larvae Meal on Animal Performance, Apparent Ileal Digestibility, Gut Histology and Microbial Metabolites of Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds, Housing, and Diets
2.2. Performance Parameters
2.3. Carcass Traits
2.4. Sample Collection
2.5. Chemical Analyses of Feed and Digesta Samples
2.6. Microbial Metabolites
2.7. Histomorphology
2.8. Calculations
2.9. Statistical Analyses
3. Results
3.1. Animal Performance
3.2. Carcass Traits and Weight of Giblets
3.3. Apparent Ileal Digestibility
3.4. Intestinal Morphometric Indices
3.5. Microbial Metabolites
4. Discussion
4.1. Animal Performance
4.2. Carcass Traits and Weight of Giblets
4.3. Apparent Ileal Digestibility of CP and AA
4.4. Histological Parameters
4.5. Microbial Metabolites in the Caecum
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- McMichael, A.J.; Bambrick, H.J. Meat consumption trends and health: Casting a wider risk assessment net. Public Health Nutr. 2005, 8, 341–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. EU Feed Protein Balance Sheet. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/eu-feed-protein-balance-sheet_2017-18_en.pdf (accessed on 8 November 2019).
- EuropaBio. The EU Protein Gap Trade Policies and GMOs. Available online: https://www.europabio.org/sites/default/files/EU_protein_GAP_WCover.pdf (accessed on 26 May 2020).
- van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef]
- van Huis, A. Edible insects contributing to food security? Agric. Food Secur. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Moula, N.; Detilleux, J. A Meta-Analysis of the effects of insects in feed on poultry growth performances. Animals 2019, 9, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Commission Regulation (EU) 2017/893. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0893&from=DE (accessed on 4 February 2021).
- Schiavone, A.; de Marco, M.; Martínez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F.; et al. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 51. [Google Scholar] [CrossRef]
- de Marco, M.; Martínez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; Belforti, M.; Bergero, D.; Katz, H.; Dabbou, S.; et al. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol. 2015, 209, 211–218. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Shafi, M.E.; Alghamdi, W.Y.; Abdelnour, S.A.; Shehata, A.M.; Noreldin, A.E.; Ashour, E.A.; Swelum, A.A.; Al-Sagan, A.A.; Alkhateeb, M.; et al. Black soldier fly (Hermetia illucens) meal as a promising feed ingredient for poultry: A comprehensive review. Agriculture 2020, 10, 339. [Google Scholar] [CrossRef]
- Matin, N.; Utterback, P.; Parsons, C.M. True metabolizable energy and amino acid digestibility in black soldier fly larvae meals, cricket meal, and mealworms using a precision-fed rooster assay. Poult. Sci. 2021, 101146. [Google Scholar] [CrossRef]
- Danieli, P.P.; Lussiana, C.; Gasco, L.; Amici, A.; Ronchi, B. The effects of diet formulation on the yield, proximate composition, and fatty acid profile of the black soldier fly (Hermetia illucens L.) prepupae intended for animal feed. Animals 2019, 9, 178. [Google Scholar] [CrossRef] [Green Version]
- Barroso, F.G.; Sánchez-Muros, M.-J.; Segura, M.; Morote, E.; Torres, A.; Ramos, R.; Guil, J.-L. Insects as food: Enrichment of larvae of Hermetia illucens with omega 3 fatty acids by means of dietary modifications. J. Food Compos. 2017, 62, 8–13. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; Ur Rehman, K.; Li, W.; Cai, M.; Li, Q.; Mazza, L.; Zhang, J.; et al. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef] [Green Version]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed—A review. J. Insects Food Feed 2017, 3, 105–120. [Google Scholar] [CrossRef]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Miotti-Scapin, R.; Claeys, E.; de Smet, S.; Dalle Zotte, A. Black soldier fly as dietary protein source for broiler quails: Apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal 2016, 10, 1923–1930. [Google Scholar] [CrossRef] [Green Version]
- Dabbou, S.; Gai, F.; Biasato, I.; Capucchio, M.T.; Biasibetti, E.; Dezzutto, D.; Meneguz, M.; Plachà, I.; Gasco, L.; Schiavone, A. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2018, 9, 49. [Google Scholar] [CrossRef]
- Schiavone, A.; Dabbou, S.; Petracci, M.; Zampiga, M.; Sirri, F.; Biasato, I.; Gai, F.; Gasco, L. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on carcass traits, breast meat quality and safety. Animal 2019, 13, 2397–2405. [Google Scholar] [CrossRef]
- Velten, S.; Neumann, C.; Bleyer, M.; Gruber-Dujardin, E.; Hanuszewska, M.; Przybylska-Gornowicz, B.; Liebert, F. Effects of 50 percent substitution of soybean meal by alternative proteins from Hermetia illucens or Spirulina platensis in meat-type chicken diets with graded amino acid supply. Open J. Anim. Sci. 2018, 08, 119–136. [Google Scholar] [CrossRef] [Green Version]
- Janssen, R.H.; Vincken, J.-P.; van den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-Protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
- Yamauchi, K. Review of a histological intestinal approach to assessing the intestinal function in chickens and pigs. Anim. Sci. J. 2007, 78, 356–370. [Google Scholar] [CrossRef]
- Wang, J.X.; Peng, K.M. Developmental morphology of the small intestine of African ostrich chicks. Poult. Sci. 2008, 87, 2629–2635. [Google Scholar] [CrossRef]
- Günther, C.; Neumann, H.; Neurath, M.F.; Becker, C. Apoptosis, necrosis and necroptosis: Cell death regulation in the intestinal epithelium. Gut 2013, 62, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Apajalahti, J.; Vienola, K. Interaction between chicken intestinal microbiota and protein digestion. Anim. Feed Sci. Technol. 2016, 221, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Qaisrani, S.N.; van Krimpen, M.M.; Kwakkel, R.P.; Verstegen, M.; Hendriks, W.H. Dietary factors affecting hindgut protein fermentation in broilers: A review. World Poultry Sci. J. 2015, 71, 139–160. [Google Scholar] [CrossRef]
- Aviagen. Ross 308 Broiler Nutrition Specifications. Available online: http://en.aviagen.com/assets/Tech_Center/Ross_Broiler/RossBroilerNutritionSpecs2019-EN.pdf (accessed on 24 March 2020).
- Naumann, C.; Bassler, R. Die chemische Untersuchung von Futtermitteln, 3. Aufl.; VDLUFA-Verl.: Darmstadt, Germany, 2012; ISBN 978-3-941273-14-6. [Google Scholar]
- Hansen, B. Determination of nitrogen as elementary N, an alternative to Kjeldahl. Acta. Agric. Scand. 1989, 39, 113–118. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Leone, J.L. Collaborative study of the quantitative determination of titanium dioxide in cheese. J. Assoc. Off. Anal. Chem. 1973, 56, 535–537. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo-Silva, C.; Lemme, A.; Sangsue, D.; Kiriratnikom, S. Effect of DL-methionine supplementation on the success of almost total replacement of fish meal with soybean meal in diets for hybrid tilapia (Oreochromis niloticus × Oreochromis mossambicus). Aquac. Nutr. 2015, 21, 234–241. [Google Scholar] [CrossRef]
- Saarinen, M.T. Determination of biogenic amines as dansyl derivatives in intestinal digesta and feces by reversed phase HPLC. Chromatographia 2002, 55, 297–300. [Google Scholar] [CrossRef]
- Pryce, J.D. A modification of the Barker-Summerson method for the determination of lactic acid. Analyst 1969, 94, 1151–1152. [Google Scholar] [CrossRef]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.E.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S.; et al. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult. Sci. 2017, 96, 1783–1790. [Google Scholar] [CrossRef]
- Rothstein Née Velten, S. Ernährungsphysiologische Bewertung von Teilentfettetem Larvenmehl der Schwarzen Soldatenfliege (Hermetia illucens) für Den Einsatz in Ressourcenschonenden Ernährungskonzepten der Schweine- und Hähnchenmast. Doctoral Dissertation, Georg-August-Universität Göttingen, Göttingen, Gernamy, 2019. [Google Scholar]
- Gillette, K.; Thomas, D.K.; Bellingham, W.P. A parametric study of flavoured food avoidance in chicks. Chem. Senses 1983, 8, 41–57. [Google Scholar] [CrossRef]
- Pousga, S.; Boly, H.; Ogle, B. Choice feeding of poultry: A review. Livest. Res. Rural Dev. 2005, 17. [Google Scholar]
- Pieterse, E.; Erasmus, S.W.; Uushona, T.; Hoffman, L.C. Black soldier fly (Hermetia illucens) pre-pupae meal as a dietary protein source for broiler production ensures a tasty chicken with standard meat quality for every pot. J. Sci. Food Agric. 2019, 99, 893–903. [Google Scholar] [CrossRef]
- Altmann, B.; Neumann, C.; Velten, S.; Liebert, F.; Mörlein, D. Meat quality derived from high inclusion of a micro-alga or insect meal as an alternative protein source in poultry diets: A pilot study. Foods 2018, 7, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Hossain, S.M.; Blair, R. Chitin utilisation by broilers and its effect on body composition and blood metabolites. Br. Poult. Sci. 2007, 48, 33–38. [Google Scholar] [CrossRef]
- Tabata, E.; Kashimura, A.; Kikuchi, A.; Masuda, H.; Miyahara, R.; Hiruma, Y.; Wakita, S.; Ohno, M.; Sakaguchi, M.; Sugahara, Y.; et al. Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci. Rep. 2018, 8, 1461. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007, 26, 105–115. [Google Scholar] [CrossRef]
- van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994; ISBN 080142772X. [Google Scholar]
- Nery, J.; Gasco, L.; Dabbou, S.; Schiavone, A. Protein composition and digestibility of black soldier fly larvae in broiler chickens revisited according to the recent nitrogen-protein conversion ratio. J. Insects Food Feed 2018, 4, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Ravindran, V. Feed-induced specific ileal endogenous amino acid losses: Measurement and significance in the protein nutrition of monogastric animals. Anim. Feed Sci. Technol. 2016, 221, 304–313. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, K. Review on chicken intestinal villus histological alterations related with intestinal function. J. Poult. Sci. 2002, 39, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Chu, X.; Li, M.; Wang, G.; Wang, K.; Shang, R.; Wang, Z.; Li, L. Evaluation of the low inclusion of full-fatted Hermetia illucens larvae meal for layer chickens: Growth performance, nutrient digestibility, and gut health. Front. Vet. Sci. 2020, 7, 585843. [Google Scholar] [CrossRef] [PubMed]
- Biasato, I.; Ferrocino, I.; Biasibetti, E.; Grego, E.; Dabbou, S.; Sereno, A.; Gai, F.; Gasco, L.; Schiavone, A.; Cocolin, L.; et al. Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Vet. Res. 2018, 14, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutrignelli, M.I.; Messina, M.; Tulli, F.; Randazzo, B.; Olivotto, I.; Gasco, L.; Loponte, R.; Bovera, F. Evaluation of an insect meal of the Black Soldier Fly (Hermetia illucens) as soybean substitute: Intestinal morphometry, enzymatic and microbial activity in laying hens. Res. Vet. Sci. 2018, 117, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Qaisrani, S.N.; Moquet, P.C.A.; van Krimpen, M.M.; Kwakkel, R.P.; Verstegen, M.W.A.; Hendriks, W.H. Protein source and dietary structure influence growth performance, gut morphology, and hindgut fermentation characteristics in broilers. Poult. Sci. 2014, 93, 3053–3064. [Google Scholar] [CrossRef]
- Bryan, D.D.S.L.; Abbott, D.A.; van Kessel, A.G.; Classen, H.L. The influence of indigestible protein on broiler digestive tract morphology and caecal protein fermentation metabolites. J. Anim. Physiol. Anim. Nutr. 2020, 104, 847–866. [Google Scholar] [CrossRef] [PubMed]
- Pieper, R.; Kröger, S.; Richter, J.F.; Wang, J.; Martin, L.; Bindelle, J.; Htoo, J.K.; von Smolinski, D.; Vahjen, W.; Zentek, J.; et al. Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets. J. Nutr. 2012, 142, 661–667. [Google Scholar] [CrossRef] [Green Version]
Item | HI Larvae Meal |
---|---|
Dry matter (g/kg as fed basis) | 957 |
Crude protein | 637 |
Acid-detergent insoluble nitrogen (g/kg CP) | 74.7 |
Ash | 119 |
Crude fat | 62.7 |
Crude fiber | 87.3 |
Phosphorus | 12.2 |
Calcium | 23.4 |
Sodium | 1.2 |
Potassium | 17.0 |
Items | Starter Phase (1–14 d) | Grower Phase (15–28 d) | Finisher Phase (29–35 d) | ||||||
---|---|---|---|---|---|---|---|---|---|
CON | SL15 | SL30 | CON | SL15 | SL30 | CON | SL15 | SL30 | |
Corn | 508 | 526 | 544 | 553 | 562 | 572 | 565 | 583 | 600 |
Soybean meal (48% CP) | 408 | 338 | 268 | 353 | 297 | 241 | 330 | 275 | 219 |
HI larvae meal | 0.0 | 50.0 | 100 | 0.0 | 43.9 | 86.8 | 0.0 | 40.5 | 80.9 |
Soybean oil | 27.0 | 21.4 | 15.8 | 37.3 | 33.6 | 29.9 | 52.8 | 47.7 | 42.4 |
Dicalcium phosphate | 14.3 | 12.4 | 10.5 | 13.0 | 10.4 | 7.8 | 10.0 | 7.2 | 5.7 |
Grass meal | 10.0 | 16.2 | 22.0 | 11.1 | 17.1 | 22.7 | 10.2 | 12.0 | 14.3 |
Feed limestone | 10.6 | 11.8 | 13.0 | 10.0 | 12.1 | 14.5 | 10.2 | 11.0 | 12.1 |
Mineral and vitamin premix 1 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Salt | 4.0 | 4.1 | 4.3 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
L-methionine (99%) | 3.0 | 3.0 | 3.0 | 2.2 | 2.2 | 2.2 | 2.0 | 2.1 | 2.2 |
BIOLYS 2 | 3.0 | 4.3 | 5.7 | 3.5 | 4.3 | 5.1 | 1.5 | 2.5 | 3.6 |
L-threonine | 1.0 | 1.2 | 1.4 | 1.0 | 1.2 | 1.4 | 0.7 | 0.8 | 0.9 |
L-valine | 0.0 | 0.0 | 0.1 | 0.8 | 0.8 | 0.8 | 0.0 | 0.0 | 0.0 |
Arginine | 0.0 | 0.6 | 1.2 | 0.0 | 0.4 | 0.8 | 0.0 | 0.7 | 1.4 |
Choline chloride (60%) | 0.5 | 0.4 | 0.4 | 0.5 | 0.4 | 0.4 | 0.5 | 0.4 | 0.4 |
Coban 200 3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 |
Optiphos 4 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Titanium dioxide | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 3.0 | 3.0 |
Analyzed nutrient composition (g/kg DM) | |||||||||
Dry matter (g/kg as fed basis) | 893 | 901 | 902 | 897 | 902 | 905 | 898 | 900 | 906 |
Ash | 76.5 | 78.1 | 77.4 | 67.8 | 71.0 | 73.8 | 71.3 | 69.3 | 68.8 |
Crude protein | 271 | 272 | 269 | 246 | 245 | 249 | 225 | 238 | 240 |
Ether extract 5 | 65.0 | 67.7 | 61.7 | 83.2 | 79.2 | 75.5 | 99.3 | 97.3 | 91.6 |
Crude fiber | 26.2 | 31.5 | 33.8 | 31.1 | 21.8 | 25.3 | 32.5 | 30.4 | 36.2 |
Calcium | 10.0 | 11.2 | 11.6 | 9.3 | 11.0 | 11.2 | 8.8 | 9.1 | 11.8 |
Phosphorous | 5.1 | 4.9 | 4.9 | 4.6 | 4.9 | 4.1 | 3.8 | 5.4 | 3.9 |
Gross energy (MJ/kg DM) | 19.6 | 19.3 | 19.3 | 19.3 | 19.5 | 19.6 | 20.0 | 19.9 | 19.5 |
Diets | CON | SL15 | SL30 | SE | p-Value |
---|---|---|---|---|---|
Starter | |||||
Body weight d1, g | 40.2 | 40.4 | 40.2 | 0.441 | 0.258 |
Body weight d14, g | 502 a | 491 a | 468 b | 4.180 | <0.001 |
Average daily feed intake, g/bird/d | 31.5 b | 37.7 a | 38.0 a | 1.317 | 0.006 |
Average daily gain, g/d | 33.0 a | 32.1 a | 30.6 b | 0.301 | <0.001 |
FCR 1, g/g | 0.955 b | 1.173 a,b | 1.241 a | 0.039 | <0.001 |
Mortality, n | 0 | 0 | 3 | ||
Grower | |||||
Body weight d28, g | 1638 a | 1634 a | 1465 b | 25.58 | <0.001 |
Average daily feed intake, g/bird/d | 110 a | 107 a | 99.2 b | 2.364 | 0.029 |
Average daily gain, g/d | 81.2 a | 81.7 a | 71.2 b | 1.715 | <0.001 |
FCR, g/g | 1.351 | 1.305 | 1.398 | 0.036 | 0.229 |
Mortality, n | 0 | 1 | 4 | ||
Finisher | |||||
Body weight d35, g | 2432 a | 2435 a | 2244 b | 45.46 | <0.001 |
Average daily feed intake, g/bird/d | 174 a | 172 a,b | 159 b | 4.436 | 0.025 |
Average daily gain, g/d | 113 | 114 | 111 | 3.256 | 0.586 |
FCR, g/g | 1.539 y | 1.510 y,z | 1.433 z | 0.040 | 0.079 |
Mortality, n | 1 | 0 | 5 | ||
Overall phase | |||||
Average daily feed intake, g/d | 91.3 | 92.2 | 86.7 | 1.795 | 0.093 2 |
Average daily gain, g/d | 68.3 a | 68.4 a | 63.0 b | 1.296 | 0.001 |
FCR, g/g | 1.337 | 1.348 | 1.379 | 0.029 | 0.442 |
Mortality, n | 1 | 1 | 12 |
Treatment Group | CON | SL15 | SL30 | SE | p-Value |
---|---|---|---|---|---|
Eviscerated carcass, g | 2017 a | 2040 a | 1826 b | 43.88 | <0.001 |
Eviscerated carcass chilled, g | 1973 a | 1994 a | 1780 b | 43.60 | <0.001 |
Dressing, % | 76.1 y,z | 78.4 y | 74.9 z | 1.338 | 0.075 |
Carcass for grilling, g | 1786 a | 1813 a | 1610 b | 39.19 | <0.001 |
Abdominal fat, g | 23.6 a | 21.5 a | 17.1 b | 1.110 | <0.001 |
Heart, g | 12.9 | 13.2 | 12.5 | 0.644 | 0.588 |
Liver, g | 51.9 b | 55.8 a | 52.2 b | 1.771 | 0.030 |
Gizzard, g | 27.0 a | 24.5 b | 19.5 c | 0.734 | <0.001 |
Wings, g | 215 | 205 | 199 | 6.011 | 0.150 |
Legs, g | 77.8 | 77.8 | 77.8 | 3.218 | 0.999 |
Breast, g | 532 z | 577 y | 557 y,z | 15.75 | 0.057 |
Treatment Group | CON | SL15 | SL30 | SE | p-Value |
---|---|---|---|---|---|
CP | 79.6 a | 75.7 a,b | 74.3 b | 1.154 | 0.014 |
Indispensable amino acids | |||||
Arginine | 87.6 | 85.3 | 86.0 | 1.004 | 0.242 |
Histidine | 83.4 a | 80.1 a,b | 79.1 b | 1.096 | 0.031 |
Isoleucine | 78.1 a | 75.7 a | 69.5 b | 1.747 | 0.008 |
Leucine | 81.9 a | 77.4 b | 76.5 b | 1.229 | 0.016 |
Lysine | 82.8 | 79.4 | 80.1 | 1.282 | 0.152 |
Methionine | 88.4 | 86.4 | 86.7 | 1.011 | 0.333 |
Phenylalanine | 83.7 | 80.9 | 80.5 | 1.157 | 0.143 |
Threonine | 75.2 | 72.6 | 72.0 | 1.375 | 0.140 |
Valine | 79.2 | 76.8 | 76.8 | 1.349 | 0.315 |
Dispensable amino acids | |||||
Alanine | 80.7 | 78.7 | 79.7 | 1.404 | 0.565 |
Asparagine | 80.9 a | 77.5 a,b | 76.5 b | 1.186 | 0.044 |
Cysteine | 74.6 a | 70.2 b | 67.9 b | 1.496 | 0.007 |
Glycine | 76.4 a | 72.6 a,b | 71.5 b | 1.387 | 0.045 |
Glutamine | 86.5 y | 83.7 y,z | 83.1 z | 0.976 | 0.068 |
Proline | 82.6 | 81.3 | 79.9 | 1.092 | 0.214 |
Serine | 81.3 a | 77.9 a,b | 77.0 | 1.192 | 0.041 |
Methionine + Cysteine | 83.0 | 80.3 | 79.8 | 1.162 | 0.106 |
Treatment Group | |||||
---|---|---|---|---|---|
CON | SL15 | SL30 | SE | p-Value | |
Jejunum | |||||
Villus height, µm | 1006 | 988 | 966 | 69.04 | 0.864 |
Villus width, µm | 175 z | 205 y | 200 y,z | 12.19 | 0.083 |
Villus area, mm2 | 0.18 | 0.20 | 0.19 | 0.017 | 0.541 |
Crypt depth, µm | 141 | 162 | 166 | 9.413 | 0.128 |
Villus height/crypt depth | 7.55 | 6.73 | 6.33 | 0.487 | 0.165 |
Goblet cells villus, n/200 µm | 12.1 | 12.1 | 11.7 | 0.515 | 0.831 |
Mucosa, µm | 1163 | 1170 | 1150 | 74.06 | 0.965 |
Submucosa, µm | 41.4 | 44.2 | 43.3 | 2.395 | 0.686 |
Tunica muscularis circular layer, µm | 161 | 162 | 175 | 10.66 | 0.538 |
Ileum | |||||
Villus height, µm | 621 | 637 | 603 | 39.08 | 0.808 |
Villus width, µm | 152 | 148 | 158 | 9.392 | 0.746 |
Villus area, mm2 | 0.09 | 0.10 | 0.09 | 0.076 | 0.960 |
Crypt depth, µm | 177 | 180 | 171 | 11.72 | 0.851 |
Villus height/crypt depth | 3.92 | 3.91 | 3.80 | 0.295 | 0.937 |
Goblet cells villus, n/200 µm | 14.1 | 14.5 | 13.9 | 0.731 | 0.822 |
Mucosa, µm | 813 | 828 | 778 | 44.36 | 0.715 |
Submucosa, µm | 47.6 | 49.4 | 47.7 | 2.836 | 0.880 |
Tunica muscularis circular layer, µm | 333 | 335 | 316 | 25.48 | 0.838 |
Treatment Group | |||||
---|---|---|---|---|---|
CON | SL15 | SL30 | SE | p-Value | |
Agmatine, mg/kg | 765 | 701 | 400 | 146.8 | 0.209 |
Ethanolamine, mg/kg | 50.4 | 49.1 | 33.2 | 15.59 | 0.682 |
Methylamine, mg/kg | 9.6 | 13.5 | 9.7 | 3.036 | 0.552 |
Putrescine, mg/kg | 9.00 | 7.03 | 5.22 | 2.216 | 0.411 |
Cadaverine, mg/kg | 15.8 | 8.01 | 6.25 | 3.508 | 0.142 |
Spermidine, mg/kg | 252 | 245 | 170 | 46.48 | 0.400 |
Spermine, mg/kg | 14.9 | 18.3 | 18.3 | 5.411 | 0.834 |
Ammonia (µmol/g) | 17.2 a | 16.1 a | 10.7 b | 1.423 | 0.019 |
Lactic acid (mg/kg) | 2.67 | 3.23 | 4.45 | 1.274 | 0.613 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartinger, K.; Greinix, J.; Thaler, N.; Ebbing, M.A.; Yacoubi, N.; Schedle, K.; Gierus, M. Effect of Graded Substitution of Soybean Meal by Hermetia illucens Larvae Meal on Animal Performance, Apparent Ileal Digestibility, Gut Histology and Microbial Metabolites of Broilers. Animals 2021, 11, 1628. https://doi.org/10.3390/ani11061628
Hartinger K, Greinix J, Thaler N, Ebbing MA, Yacoubi N, Schedle K, Gierus M. Effect of Graded Substitution of Soybean Meal by Hermetia illucens Larvae Meal on Animal Performance, Apparent Ileal Digestibility, Gut Histology and Microbial Metabolites of Broilers. Animals. 2021; 11(6):1628. https://doi.org/10.3390/ani11061628
Chicago/Turabian StyleHartinger, Kristina, Julia Greinix, Nathalie Thaler, Marco Antonio Ebbing, Nadia Yacoubi, Karl Schedle, and Martin Gierus. 2021. "Effect of Graded Substitution of Soybean Meal by Hermetia illucens Larvae Meal on Animal Performance, Apparent Ileal Digestibility, Gut Histology and Microbial Metabolites of Broilers" Animals 11, no. 6: 1628. https://doi.org/10.3390/ani11061628
APA StyleHartinger, K., Greinix, J., Thaler, N., Ebbing, M. A., Yacoubi, N., Schedle, K., & Gierus, M. (2021). Effect of Graded Substitution of Soybean Meal by Hermetia illucens Larvae Meal on Animal Performance, Apparent Ileal Digestibility, Gut Histology and Microbial Metabolites of Broilers. Animals, 11(6), 1628. https://doi.org/10.3390/ani11061628