The Use of Probiotics in the Reduction of Campylobacter spp. Prevalence in Poultry
Abstract
:Simple Summary
Abstract
1. Introduction
2. Campylobacter spp. in Poultry—Colonization, Carcass Contamination, and Prevalence
3. Transmission and Prevention of Campylobacter spp. in Poultry
4. Campylobacteriosis Cases in Humans
5. Benefits from Using Probiotics in Poultry
6. Probiotics and Poultry Campylobacter spp. Infection and Colonization
7. In Vitro Studies
8. In Vivo Studies
9. On Farm Studies
10. Final Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q. Campylobacteriosis. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDouglald, L.R., Nolan, L.K., Suarez, D.L., Nair, V.L., Eds.; Wiley-Blackwell Publishing: Ames, IA, USA, 2013; pp. 675–689. [Google Scholar]
- Sebald, M.; Veron, M. Teneur en bases de I’ADN et classification des vibrions. Annales Institut Pasteu 1963, 105, 897–910. [Google Scholar]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, 5926. [Google Scholar]
- Yogasundram, K.; Shane, S.M.; Harrington, K.S. Prevalenece of Campylobacter jejuni in selected domestic and wild birds in Louisiana. Avian Dis. 1989, 33, 664–667. [Google Scholar] [CrossRef]
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 2016, 14, 4634. [Google Scholar]
- Hue, O.; Allain, V.; Laisney, M.-J.; Le Bouquin, S.; Lalande, F.; Petetin, I.; Rouxel, S.; Quesne, S.; Gloaguen, P.-Y.; Picherot, M.; et al. Campylobacter contamination of broiler caeca and carcasses at the slaughterhouse and correlation with Salmonella contamination. Food Microbiol. 2011, 28, 862–868. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.D.; Newell, D.G. Campylobacter in Poultry: Filling an Ecological Niche. Avian Dis. 2006, 50, 1–9. [Google Scholar] [CrossRef]
- Mañes-Lázaro, R.; Van Diemen, P.M.; Pin, C.; Mayer, M.J.; Stevens, M.P.; Narbad, A. Administration of Lactobacillus johnsonii FI9785 to chickens affects colonisation by Campylobacter jejuni and the intestinal microbiota. Br. Poult. Sci. 2017, 58, 373–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.; Roche, P.; Yohannes, K.; Spencer, J.; Bartlett, M.; Brotherton, J.; Hutchinson, J.; Kirk, M.; McDonald, A.; Vadjic, C. Australia’s notifiable diseases status, 2003 annual report of the National Notifiable Diseases Surveillance System. Commun. Dis. Intell. Q. Rep. 2005, 29, 1–61. [Google Scholar]
- Mohan, V. The role of probiotics in the inhibition of Campylobacter jejuni colonization and virulence attenuation. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1503–1513. [Google Scholar] [CrossRef]
- Humphrey, S.; Chaloner, G.; Kemmett, K.; Davidson, N.; Williams, N.; Kipar, A.; Humphrey, T.; Wigley, P. Campylobacter jejuni Is Not Merely a Commensal in Commercial Broiler Chickens and Affects Bird Welfare. mBio 2014, 5, e01364-14. [Google Scholar] [CrossRef] [Green Version]
- Forkus, B.; Ritter, S.; Vlysidis, M.; Geldart, K.; Kaznessis, Y.N. Antimicrobial Probiotics Reduce Salmonella enterica in Turkey Gastrointestinal Tracts. Sci. Rep. 2017, 7, 40695. [Google Scholar] [CrossRef] [PubMed]
- Ghareeb, K.; Awad, W.A.; Mohnl, M.; Porta, R.; Biarnés, M.; Böhm, J.; Schatzmayr, G. Evaluating the efficacy of an avian-specific probiotic to reduce the colonization of Campylobacter jejuni in broiler chickens. Poult. Sci. 2012, 91, 1825–1832. [Google Scholar] [CrossRef]
- Oh, J.K.; Pajarillo, E.A.B.; Chae, J.P.; Kim, I.H.; Yang, D.S.; Kang, D.-K. Effects of Bacillus subtilis CSL2 on the composition and functional diversity of the faecal microbiota of broiler chickens challenged with Salmonella Gallinarum. J. Anim. Sci. Biotechnol. 2017, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Lacharme-Lora, L.; Chaloner, G.; Gilroy, R.; Humphrey, S.; Gibbs, K.; Jopson, S.; Wright, E.; Reid, W.; Ketley, J.; Humphrey, T.; et al. B lymphocytes play a limited role in clearance of Campylobacter jejuni from the chicken intestinal tract. Sci. Rep. 2017, 7, srep45090. [Google Scholar] [CrossRef]
- Beery, J.T.; Hugdahl, M.B.; Doyle, M.P. Colonization of gastrointestinal tracts of chicks by Campylobacter jejuni. Appl. Environ. Microbiol. 1988, 54, 2365–2370. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.P.; Berrang, M.E. Prevalence and Numbers of Bacteria in Broiler Crop and Gizzard Contents. Poult. Sci. 2006, 85, 144–147. [Google Scholar] [CrossRef]
- Awad, W.A.; Hess, C.; Hess, M. Re-thinking the chicken—Campylobacter jejuni interaction: A review. Avian Pathol. 2018, 47, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Berrang, M.E.; Buhr, R.J.; Cason, J.A.; Dickens, J.A. Broiler Carcass Contamination with Campylobacter from Feces during Defeathering. J. Food Prot. 2001, 64, 2063–2066. [Google Scholar] [CrossRef]
- Allen, V.; Bull, S.; Corry, J.; Dominguez, G.; Jorgensen, F.; Frost, J.R.; Gonzalez, A.; Elviss, N.; Humphrey, T.J. Campylobacter spp. contamination of chicken carcasses during processing in relation to flock colonization. Int. J. Food Microbiol. 2007, 113, 54–61. [Google Scholar] [CrossRef]
- Perez-Arnedo, I.; Gonzalez-Fandos, E. Prevalence of Campylobacter spp. in Poultry in Three Spanish Farms, A Slaughterhouse and a Further Processing Plant. Foods 2019, 8, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reich, F.; Atanassova, V.; Haunhorst, E.; Klein, G. The effects of Campylobacter numbers in caeca on the contamination of broiler carcasses with Campylobacter. Int. J. Food Microbiol. 2008, 127, 116–120. [Google Scholar] [CrossRef]
- Peyrat, M.; Soumet, C.; Maris, P.; Sanders, P. Recovery of Campylobacter jejuni from surfaces of poultry slaughterhouses after cleaning and disinfection procedures: Analysis of a potential source of carcass contamination. Int. J. Food Microbiol. 2008, 124, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Van Gerwe, T.; Miflin, J.K.; Templeton, J.M.; Bouma, A.; Wagenaar, J.A.; Jacobs-Reitsma, W.F.; Stegeman, A.; Klinkenberg, D. Quantifying Transmission of Campylobacter jejuni in Commercial Broiler Flocks. Appl. Environ. Microbiol. 2008, 75, 625–628. [Google Scholar] [CrossRef] [Green Version]
- Allain, V.; Chemaly, M.; Laisney, M.J.; Rouxel, S.; Quesne, S.; Le Bouquin, S. Prevalence of and risk factors for Campylobacter colonisation in broiler flocks at the end of the rearing period in France. Brit. Poult. Sci. 2014, 55, 452–459. [Google Scholar] [CrossRef]
- Høg, B.B.; Sommer, H.; Larsen, L.; Sørensen, A.; David, B.; Hofshagen, M.; Rosenquist, H. Farm specific risk factors for Campylobacter colonisation in Danish and Norwegian broilers. Prev. Vet. Med. 2016, 130, 137–145. [Google Scholar] [CrossRef]
- Gupta, A.; Nelson, J.M.; Barrett, T.J.; Tauxe, R.V.; Rossiter, S.P.; Friedman, C.R.; Joyce, K.W.; Smith, K.E.; Jones, T.F.; Hawkings, M.A.; et al. Antimicrobial resistance among Campylobacter strains, United States, 1997–2001. Emerg. Infect. Dis. 2004, 10, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Iovine, N.M.; Blaser, M.J. Antibiotics in animal feed and spreadof resistant Campylobacter from poultry to humans. Emerg. Infect. Dis. 2004, 10, 1158–1189. [Google Scholar] [CrossRef]
- Woźniak, A. Fluoroquinolones resistance of Campylobacter jejuni and Campylobacter coli isolated from poultry in 1994–1996 and 2005–2008 in Poland. Bull. Vet. Inst. Pulawy 2011, 55, 15–20. [Google Scholar]
- Woźniak, A.; Wieliczko, A. Tetracycline, erythromycin and gentamicin resistance of Campylobacter jejuni and Campylobacter coli isolated from poultry in Poland. Bull. Vet. Inst. Pulawy 2011, 55, 51–54. [Google Scholar]
- Buhr, R.J.; Cox, N.A.; Stern, N.J.; Musgrove, M.T.; Wilson, J.L.; Hiett, K.L. Recovery of Campylobacter from segments of the reproductive tract of broilerbreeder hens. Avian Dis. 2002, 46, 919–924. [Google Scholar] [CrossRef]
- Camarda, A.; Newell, D.G.; Nasti, R.; Di Modugno, G. Genotyping Campylobacter jejuni Strains Isolated from the Gut and Oviduct of Laying Hens. Avian Dis. 2000, 44, 907. [Google Scholar] [CrossRef] [PubMed]
- Robyn, J.; Rasschaert, G.; Pasmans, F.; Heyndrickx, M. Thermotolerant Campylobacter during Broiler Rearing: Risk Factors and Intervention. Compr. Rev. Food Sci. Food Saf. 2015, 14, 81–105. [Google Scholar] [CrossRef] [PubMed]
- Callicott, K.A.; Friðriksd´ottir, V.; Reiersen, J.; Lowman, R.; Bisaillon, J.R.; Gunnarsson, E.; Berndtson, E.; Hiett, K.L.; Needleman, D.S.; Stern, N.J. Lack of evidence for vertical transmission of Campylobacter spp. in chickens. Appl. Environ. Microbiol. 2006, 72, 5794–5798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patriarchi, A.; Fox, Á.; Maunsell, B.; Fanning, S.; Bolton, D. Molecular Characterization and Environmental Mapping of Campylobacter Isolates in a Subset of Intensive Poultry Flocks in Ireland. Foodborne Pathog. Dis. 2011, 8, 99–108. [Google Scholar] [CrossRef]
- Agunos, A.; Waddell, L.; Léger, D.; Taboada, E. A Systematic Review Characterizing On-Farm Sources of Campylobacter spp. for Broiler Chickens. PLoS ONE 2014, 9, e104905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, W.; Dittoe, D.K.; Pavilidis, H.O.; Chaney, W.E.; Yang, Y.; Ricke, S.C. Current Perspectives and Potential of Probiotics to Limit Foodborne Campylobacter in Poultry. Front. Microbiol. 2020, 11, 583429. [Google Scholar] [CrossRef]
- Alkhalf, A.; Alhaj, M.; Al-Homidan, I. Influence of probiotic supplementation on immune response of broiler chicks. Egypt Poult. Sci. 2010, 30, 271–280. [Google Scholar]
- Balevi, T.; Uçan, U.; Coşun, B.; Kurtoğu, V.; Çetingül, I. Effect of dietary probiotic on performance and humoral immune response in layer hens. Br. Poult. Sci. 2001, 42, 456–461. [Google Scholar] [CrossRef]
- Chichlowski, M.; Croom, W.J.; Edens, F.W.; McBride, B.W.; Qiu, R.; Chiang, C.C.; Daniel, L.R.; Havenstein, G.B.; Koci, M.D. Microarchitecture and Spatial Relationship Between Bacteria and Ileal, Cecal, and Colonic Epithelium in Chicks Fed a Direct-Fed Microbial, PrimaLac, and Salinomycin. Poult. Sci. 2007, 86, 1121–1132. [Google Scholar] [CrossRef]
- Dhama, K.; Verma, V.; Sawant, P.M.; Tiwari, R.; Vaid, R.K.; Chauhan, R.S. Applications of probiotics in poultry: Enhancing immunity and beneficial effects on production performances and health—A review. J. Immun. Immunopathol. 2011, 13, 1–19. [Google Scholar]
- Farnell, M.; Donoghue, A.; Santos, F.S.D.L.; Blore, P.; Hargis, B.; Tellez, G.; Donoghue, D. Upregulation of Oxidative Burst and Degranulation in Chicken Heterophils Stimulated with Probiotic Bacteria. Poult. Sci. 2006, 85, 1900–1906. [Google Scholar] [CrossRef] [PubMed]
- Galdeano, C.M.; Perdigón, G. The Probiotic Bacterium Lactobacillus casei Induces Activation of the Gut Mucosal Immune System through Innate Immunity. Clin. Vaccine Immunol. 2006, 13, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koenen, M.E.; Kramer, J.; Van Der Hulst, R.; Heres, L.; Jeurissen, S.H.M.; Boersma, W.J.A. Immunomodulation by probiotic lactobacilli in layer- and meat-type chickens. Br. Poult. Sci. 2004, 45, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Samanya, M.; Yamauchi, K.-E. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 133, 95–104. [Google Scholar] [CrossRef]
- Kim, H.W.; Yan, F.F.; Hu, J.Y.; Cheng, H.W.; Kim, Y.H.B. Effects of probiotics feeding on meat quality of chicken breast during postmortem storage. Poult. Sci. 2016, 95, 1457–1464. [Google Scholar] [CrossRef]
- Tortuero, F. Influence of the Implantation of Lactobacillus Acidophilus in Chicks on the Growth, Feed Conversion, Malabsorption of Fats Syndrome and Intestinal Flora. Poult. Sci. 1973, 52, 197–203. [Google Scholar] [CrossRef]
- Nurmi, E.; Rantala, M. New Aspects of Salmonella Infection in Broiler Production. Nat. Cell Biol. 1973, 241, 210–211. [Google Scholar] [CrossRef]
- Saint-Cyr, M.J.; Haddad, N.; Taminiau, B.; Poezevara, T.; Quesne, S.; Amelot, M.; Daube, G.; Chemaly, M.; Dousset, X.; Guyard-Nicodème, M. Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. Int. J. Food Microbiol. 2017, 247, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Bengmark, S. Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut 1998, 42, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Dalloul, R.A.; Lillehoj, H.S.; Tamim, N.M.; Shellem, T.A.; Doerr, J.A. Induction of local protective immunity to Eimeria acervulina by a Lactobacillus-based probiotic. Comp. Immunol. Microbiol. Infect. Dis. 2005, 28, 351–361. [Google Scholar] [CrossRef]
- Fuller, R. The chicken gut micro flora and probiotic supplements. J. Poult. Sci. 2001, 38, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Patterson, J.; Burkholder, K. Application of prebiotics and probiotics in poultry production. Poult. Sci. 2003, 82, 627–631. [Google Scholar] [CrossRef]
- Willis, W.; Reid, L. Investigating the Effects of Dietary Probiotic Feeding Regimens on Broiler Chicken Production and Campylobacter jejuni Presence. Poult. Sci. 2008, 87, 606–611. [Google Scholar] [CrossRef]
- Saint-Cyr, M.J.; Guyard-Nicodème, M.; Messaoudi, S.; Chemaly, M.; Cappelier, J.M.; Dousset, X.; Haddad, N. Recent Advances in Screening of Anti-Campylobacter Activity in Probiotics for Use in Poultry. Front. Microbiol. 2016, 7, 553. [Google Scholar] [CrossRef] [Green Version]
- Dec, M.; Nowaczek, A.; Urban-Chmiel, R.; Stępień-Pyśniak, D.; Wernicki, A. Probiotic potential of Lactobacillus isolates of chicken origin with anti-Campylobacter activity. J. Vet. Med. Sci. 2018, 80, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- Dubois Dauphin, R.; Didderen, I.; Marcq, C.; Thewis, A.; Thonart, P. In vitro antagonistic activity evaluation of lacticacid bacteria(LAB) combined with cellulase enzyme against Campylobacter jejuni growth in co-culture. J. Microbiol. Biotechnol. 2011, 21, 62–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, M.F.; Boris, S.; Barbes, C. Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J. Appl. Microbiol. 2003, 94, 449–455. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, Y.; Tian, F.; Jin, X.; Chen, H.; Liu, X.; Zhang, Q.; Zhao, J.; Chen, Y.; Zhang, H.; et al. Screening of adhesive lactobacilli with antagonistic activity against Campylobacter jejuni. Food Control 2014, 44, 49–57. [Google Scholar] [CrossRef]
- Messaoudi, S.; Kergourlay, G.; Rossero, A.; Ferchichi, M.; Prévost, H.; Drider, D.; Manai, M.; Dousset, X. Identification of lactobacilli residing in chicken ceca with antagonism against Campylobacter. Int. Microbiol. 2011, 14, 103–110. [Google Scholar]
- Messaoudi, S.; Manai, M.; Kergourlay, G.; Prévost, H.; Connil, N.; Chobert, J.-M.; Dousset, X. Lactobacillus salivarius: Bacteriocin and probiotic activity. Food Microbiol. 2013, 36, 296–304. [Google Scholar] [CrossRef]
- Taha-Abdelaziz, K.; Astill, J.; Kulkarni, R.R.; Read, L.R.; Najarian, A.; Farber, J.M.; Sharif, S. In vitro assessment of immunomodulatory and anti-Campylobacter activities of probiotic lactobacilli. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Fritts, C.A.; Kersey, J.H.; Motl, M.A.; Kroger, E.C.; Yan, F.; Si, J.; Jiang, Q.; Campos, M.M.; Waldroup, A.L.; Waldroup, P.W. Bacillus subtilis C-3102 (Calsporin) Improves Live Performance and Microbiological Status of Broiler Chickens. J. Appl. Poult. Res. 2000, 9, 149–155. [Google Scholar] [CrossRef]
- Smialek, M.; Burchardt, S.; Koncicki, A. The influence of probiotic supplementation in broiler chickens on population and carcass contamination with Campylobacter spp.—Field study. Res. Vet. Sci. 2018, 118, 312–316. [Google Scholar] [CrossRef]
- Chaveerach, P.; Lipman, L.J.A.; Van Knapen, F. Antagonistic activities of several bacteria on in vitro growth of 10 strains of Campylobacter jejuni/coli. Int. J. Food Microbiol. 2004, 90, 43–50. [Google Scholar] [CrossRef]
- Fooks, L.J.; Gibson, G.R. In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiol. Ecol. 2002, 39, 67–75. [Google Scholar] [CrossRef]
- Campana, R.; Federici, S.; Ciandrini, E.; Baffone, W. Antagonistic Activity of Lactobacillus acidophilus ATCC 4356 on the Growth and Adhesion/Invasion Characteristics of Human Campylobacter jejuni. Curr. Microbiol. 2012, 64, 371–378. [Google Scholar] [CrossRef]
- Venugopalan, V.; Shriner, K.A.; Wong-Beringer, A. Regulatory Oversight and Safety of Probiotic Use. Emerg. Infect. Dis. 2010, 16, 1661–1665. [Google Scholar] [CrossRef]
- Robyn, J.; Rasschaert, G.; Hermans, D.; Pasmans, F.; Heyndrickx, M. In vivo broiler experiments to assess anti-Campylobacter jejuni activity of a live Enterococcus faecalis strain. Poult. Sci. 2013, 92, 265–271. [Google Scholar] [CrossRef]
- Robyn, J.; Rasschaert, G.; Messens, W.; Pasmans, F.; Heyndrickx, M. Screening for lactic acid bacteria capable of inhibiting Campylobacter jejuni in in vitro simulations of the broiler chicken caecal environment. Benef. Microbes 2012, 3, 299–308. [Google Scholar] [CrossRef]
- Guyard-Nicodème, M.; Keita, A.; Quesne, S.; Amelot, M.; Poezevara, T.; Le Berre, B.; Sánchez, J.; Vesseur, P.; Martín, A.; Medel, P.; et al. Efficacy of feed additives against Campylobacter in live broilers during the entire rearing period. Poult. Sci. 2016, 95, 298–305. [Google Scholar] [CrossRef] [PubMed]
- García-Hernández, Y.; Pérez-Sánchez, T.; Boucourt, R.; Balcázar, J.L.; Nicoli, J.R.; Moreira-Silva, J.; Rodríguez, Z.; Fuertes, H.; Nuñez, O.; Albelo, N.; et al. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Res. Vet. Sci. 2016, 108, 125–132. [Google Scholar] [CrossRef]
- Morishita, T.Y.; Aye, P.P.; Harr, B.S.; Cobb, C.W.; Clifford, J.R. Evaluation of an Avian-Specific Probiotic to Reduce the Colonization and Shedding of Campylobacter jejuni in Broilers. Avian Dis. 1997, 41, 850–855. [Google Scholar] [CrossRef]
- Nishiyama, K.; Seto, Y.; Yoshioka, K.; Kakuda, T.; Takai, S.; Yamamoto, Y.; Mukai, T. Lactobacillus gasseri SBT2055 Reduces Infection by and Colonization of Campylobacter jejuni. PLoS ONE 2014, 9, e108827. [Google Scholar] [CrossRef] [PubMed]
- Line, J.E.; Svetoch, E.A.; Eruslanov, B.V.; Perelygin, V.V.; Mitsevich, E.V.; Mitsevich, I.P.; Levchuk, V.P.; Svetoch, O.E.; Seal, B.S.; Siragusa, G.R.; et al. Isolation and Purification of Enterocin E-760 with Broad Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2007, 52, 1094–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortada, M.; Cosby, D.; Shanmugasundaram, R.; Selvaraj, R. In vivo and in vitro assessment of commercial probiotic and organic acid feed additives in broilers challenged with Campylobacter coli. J. Appl. Poult. Res. 2020, 29, 435–446. [Google Scholar] [CrossRef]
Probiotic Strain(s) (Origin) | Mode of Action (Experiment Conditions) | Result (Summarized Based on Different References) | References |
---|---|---|---|
Different Lactobacilli (chicken) Different LAB strains (9 strains from environmental samples of chicken farms; others—not specified) Different Lactobacilli strains (human) | Organic acids production (in vitro) | Reduced pH inhibits Campylobacter growth | Dec et al. [56] Dubois Dauphin et al. [57] Fernández et al. [58] |
Different Lactobacilli (chicken) | Hydrogen peroxidase production (in vitro) | Suggested to be involved in antimicrobial activity of probiotics | Dec et al. [56] |
Different Lactobacilli (chicken) Different LAB strains (fermented pickles, health infant feces and fermented dairy products) | Hydrophobicity (in vitro) | Suggested to correlate with probiotic adhesion to intestinal cells ability and therefore competitive exclusion | Dec et al. [56] Wang et al. [59] |
Different LAB strains (chicken) | Bacteriocins production (in vitro) | Direct anti-Campylobacter activity | Messaoudi et al. [60] |
Lactobacillus acidophilus ATCC 4356 (human) Different Lactobacilli (chicken) | Attenuation of Campylobacter (in vitro; cell lines) Adhesion of probiotic strain to epithelial cells (in vitro; cell lines) | Decreased expression of Campylobacter virulence related genes | Campana et al. [61] * Taha-Abdelaziz et al. [62] |
Decreased Campylobacter adhesion to human intestinal epithelial cells by over 30% | |||
Decreased Campylobacter invasion into human intestinal epithelial cells by over 80% | |||
Lactobacillus acidophilus ATCC 4356 (human) | Therapeutic properties (in vitro; cell lines) | Displacement of Campylobacter by probiotics in human intestinal epithelial cells | Campana et al. [61] |
Bacillus subtilis C-3102 (Calsporin®) Lactobacillus salivarius SMXD51 (chicken) Different LAB strains and Saccharomyces cerevisiae (chicken, turkey, carp, and plant silage) | Modulation of gut environment (in vivo; on farm studies; broiler chickens) | Decreased population of Campylobacter in GIT and/or on the carcass in vivo | Fritts et al. [63] Saint-Cyr et al. [49] Śmiałek et al. [64] |
Different Lactobacilli (chicken) | Immune system stimulation (in vitro; cell lines) | Enhanced macrophages phagocytosis ability of C. jejuni. Immunomodulation. | Taha-Abdelaziz et al. [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śmiałek, M.; Kowalczyk, J.; Koncicki, A. The Use of Probiotics in the Reduction of Campylobacter spp. Prevalence in Poultry. Animals 2021, 11, 1355. https://doi.org/10.3390/ani11051355
Śmiałek M, Kowalczyk J, Koncicki A. The Use of Probiotics in the Reduction of Campylobacter spp. Prevalence in Poultry. Animals. 2021; 11(5):1355. https://doi.org/10.3390/ani11051355
Chicago/Turabian StyleŚmiałek, Marcin, Joanna Kowalczyk, and Andrzej Koncicki. 2021. "The Use of Probiotics in the Reduction of Campylobacter spp. Prevalence in Poultry" Animals 11, no. 5: 1355. https://doi.org/10.3390/ani11051355
APA StyleŚmiałek, M., Kowalczyk, J., & Koncicki, A. (2021). The Use of Probiotics in the Reduction of Campylobacter spp. Prevalence in Poultry. Animals, 11(5), 1355. https://doi.org/10.3390/ani11051355