Comparison of Different Materials for Self-Pressurized Vitrification of Feline Oocytes—First Results
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Oocyte and Sperm Collection
2.2. Toxicity Tests
2.3. Vitrification and Warming
2.4. Calculation of Thermal Diffusivity Limited Cooling Rates
2.5. IVM and Fertilisation
2.6. Fluorescence Staining
2.7. Statistics
3. Results
3.1. Toxicity Test
3.2. Oocyte Vitrification, IVM, ICSI, and Fluorescence Staining
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Comizzoli, P. Biobanking and fertility preservation for rare and endangered species. Anim. Reprod. 2018, 14, 30–33. [Google Scholar] [CrossRef] [Green Version]
- IUCN. Iucn 2020. The iucn red list of threatened species. Version 2020-3. Available online: http://www.iucnredlist.org (accessed on 11 March 2021).
- Zahmel, J.; Fernandez-Gonzalez, L.; Jewgenow, K.; Müller, K. Felid-gamete-rescue within eaza-efforts and results in biobanking felid oocytes and sperm. J. Zoo Aquar. Res. 2019, 7, 15–24. [Google Scholar]
- Coello, A.; Pellicer, A.; Cobo, A. Vitrification of human oocytes. Minerva Ginecol. 2018, 70, 415–423. [Google Scholar]
- Phongnimitr, T.; Liang, Y.; Srirattana, K.; Panyawai, K.; Sripunya, N.; Treetampinich, C.; Parnpai, R. Effect of l-carnitine on maturation, cryo-tolerance and embryo developmental competence of bovine oocytes. Anim. Sci. J. Nihon Chikusan Gakkaiho 2013, 84, 719–725. [Google Scholar] [CrossRef]
- Jin, B.; Mazur, P. High survival of mouse oocytes/embryos after vitrification without permeating cryoprotectants followed by ultra-rapid warming with an ir laser pulse. Sci. Rep. 2015, 5, 9271. [Google Scholar] [CrossRef] [Green Version]
- Luciano, A.M.; Chigioni, S.; Lodde, V.; Franciosi, F.; Luvoni, G.C.; Modina, S.C. Effect of different cryopreservation protocols on cytoskeleton and gap junction mediated communication integrity in feline germinal vesicle stage oocytes. Cryobiology 2009, 59, 90–95. [Google Scholar] [CrossRef]
- Tharasanit, T.; Manee-In, S.; Buarpung, S.; Chatdarong, K.; Lohachit, C.; Techakumphu, M. Successful pregnancy following transfer of feline embryos derived from vitrified immature cat oocytes using ‘stepwise’ cryoprotectant exposure technique. Theriogenology 2011, 76, 1442–1449. [Google Scholar] [CrossRef]
- Apparicio, M.; Ruggeri, E.; Luvoni, G.C. Vitrification of immature feline oocytes with a commercial kit for bovine embryo vitrification. Reprod. Domest. Anim. 2013, 48, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Gonzalez, L.; Jewgenow, K. Cryopreservation of feline oocytes by vitrification using commercial kits and slush nitrogen technique. Reprod. Domest. Anim. 2016, 52, 230–234. [Google Scholar] [CrossRef]
- Turathum, B.; Roytrakul, S.; Changsangfa, C.; Sroyraya, M.; Tanasawet, S.; Kitiyanant, Y.; Saikhun, K. Missing and overexpressing proteins in domestic cat oocytes following vitrification and in vitro maturation as revealed by proteomic analysis. Biol. Res. 2018, 51, 27. [Google Scholar] [CrossRef]
- Colombo, M.; Morselli, M.G.; Tavares, M.R.; Apparicio, M.; Luvoni, G.C. Developmental competence of domestic cat vitrified oocytes in 3d enriched culture conditions. Animals 2019, 9, 329. [Google Scholar] [CrossRef] [Green Version]
- Grabenbauer, M.; Han, H.M.; Huebinger, J. Cryo-fixation by self-pressurized rapid freezing. Methods Mol. Biol. 2014, 1117, 173–191. [Google Scholar] [PubMed]
- Leunissen, J.L.; Yi, H. Self-pressurized rapid freezing (sprf): A novel cryofixation method for specimen preparation in electron microscopy. J. Microsc. 2009, 235, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Moor, H. Snap freezing under high pressure: A new fixation technique for freeze-etching. In Proceedings of the 4th European Regional Conference on Electron Microscopy, Rome, Italy, 1–7 September 1968; Volume 2, pp. 445–446. [Google Scholar]
- Moor, H. Theory and practice of high pressure freezing. In Cryotechniques in Biological Electron Microscopy; Springer: Berlin/Heidelberg, Germany, 1987; pp. 175–191. [Google Scholar]
- LeBail, A.; Chevalier, D.; Mussa, D.; Ghoul, M. High pressure freezing and thawing of foods: A review. Int. J. Refrig. 2002, 25, 504–513. [Google Scholar] [CrossRef]
- Kuwayama, M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: The cryotop method. Theriogenology 2007, 67, 73–80. [Google Scholar] [CrossRef]
- Huebinger, J.; Han, H.M.; Grabenbauer, M. Reversible cryopreservation of living cells using an electron microscopy cryo-fixation method. PLoS ONE 2016, 11, e0164270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, M.V.; Sansinena, M.; Chirife, J.; Zaritzky, N. Determination of heat transfer coefficients in plastic french straws plunged in liquid nitrogen. Cryobiology 2014, 69, 488–495. [Google Scholar] [CrossRef] [Green Version]
- Vajta, G.; Rienzi, L.; Ubaldi, F.M. Open versus closed systems for vitrification of human oocytes and embryos. Reprod. Biomed. Online 2015, 30, 325–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moor, H.; Bellin, G.; Sandri, C.; Akert, K. The influence of high pressure freezing on mammalian nerve tissue. Cell Tissue Res. 1980, 209, 201–216. [Google Scholar] [CrossRef]
- Waurich, R.; Ringleb, J.; Braun, B.C.; Jewgenow, K. Embryonic gene activation in in vitro produced embryos of the domestic cat (Felis catus). Reproduction 2010, 140, 531–540. [Google Scholar] [CrossRef]
- Sowińska, N.; Zahmel, J.; Niżański, W.; Hribal, R.; Fernandez-Gonzalez, L.; Jewgenow, K. Meiotic status does not affect the vitrification effectiveness of domestic cat oocytes. Animals 2020, 10, 1371. [Google Scholar] [CrossRef]
- Mikolajewska, N.; Muller, K.; Nizanski, W.; Jewgenow, K. Vitrification of domestic cat oocytes—Effect on viability and integrity of subcellular structures. Reprod. Domest. Anim. 2012, 47 (Suppl. S6), 295–299. [Google Scholar] [CrossRef] [PubMed]
- Mazur, P. Freezing of living cells: Mechanisms and implications. Am. J. Physiol. Cell Physiol. 1984, 247, C125–C142. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Zahmel, J.; Jänsch, S.; Jewgenow, K.; Luvoni, G.C. Inhibition of apoptotic pathways improves DNA integrity but not developmental competence of domestic cat immature vitrified oocytes. Front. Vet. Sci. 2020, 7, 588334. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.E.; Gomez, M.C.; Dresser, B.L. In vitro embryo production and embryo transfer in domestic and non-domestic cats. Theriogenology 2006, 66, 1518–1524. [Google Scholar] [CrossRef] [PubMed]
- Wlodarczyk, R.; Bukowska, D.; Jackowska, M.; Mucha, S.; Jaskowski, J.M. In vitro maturation and degeneration of domestic cat oocytes collected from ovaries stored at various temperatures. Vet. Med. 2009, 54, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Ducibella, T.; Anderson, E.; Albertini, D.F.; Aalberg, J.; Rangarajan, S. Quantitative studies of changes in cortical granule number and distribution in the mouse oocyte during meiotic maturation. Dev. Biol. 1988, 130, 184–197. [Google Scholar] [CrossRef]
- Eroglu, A.; Toth, T.L.; Toner, M. Alterations of the cytoskeleton and polyploidy induced by cryopreservation of metaphase ii mouse oocytes. Fertil. Steril. 1998, 69, 944–957. [Google Scholar] [CrossRef]
- Allworth, A.E.; Albertini, D.F. Meiotic maturation in cultured bovine oocytes is accompanied by remodeling of the cumulus cell cytoskeleton. Dev. Biol. 1993, 158, 101–112. [Google Scholar] [CrossRef]
- Genicot, G.; Leroy, J.L.; Soom, A.V.; Donnay, I. The use of a fluorescent dye, nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology 2005, 63, 1181–1194. [Google Scholar] [CrossRef]
- Bogliolo, L.; Leoni, G.; Ledda, S.; Zedda, M.T.; Bonelli, P.; Madau, L.; Santucciu, C.; Naitana, S.; Pau, S. M-phase promoting factor (mpf) and mitogen activated protein kinases (mapk) activities of domestic cat oocytes matured in vitro and in vivo. Cloning Stem Cells 2004, 6, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Jewgenow, K.; Fernandez-Gonzalez, L.; Jansch, S.; Viertel, D.; Zahmel, J. Brilliant cresyl blue staining allows the selection for developmentally competent immature feline oocytes. Theriogenology 2019, 126, 320–325. [Google Scholar] [CrossRef]
- Wong, D.; Swette, L.; Cocks, F.H. Aluminum corrosion in uninhibited ethylene glycol-water solutions. J. Electrochem. Soc. 1979, 126, 11–15. [Google Scholar] [CrossRef]
- Weon, J.-I.; Woo, H.-S. Corrosion mechanism of aluminum alloy by ethylene glycol-based solution. Mater. Corros. 2013, 64, 50–59. [Google Scholar] [CrossRef]
- Sim, W.; Barnard, R.T.; Blaskovich, M.A.T.; Ziora, Z.M. Antimicrobial silver in medicinal and consumer applications: A patent review of the past decade (2007–2017). Antibiotics 2018, 7, 93. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.H.; Son, M.Y.; Choi, M.S.; Kim, S.; Choi, A.Y.; Lee, H.A.; Kim, K.S.; Kim, J.; Song, C.W.; Yoon, S. Integrative analysis of genes and mirna alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles. Toxicol. Appl. Pharmacol. 2016, 299, 8–23. [Google Scholar] [CrossRef]
- Imai, K.; Nakamura, M. In vitro embryotoxicity testing of metals for dental use by differentiation of embryonic stem cell test. Congenit. Anom. 2006, 46, 34–38. [Google Scholar] [CrossRef]
- Asharani, P.V.; Lianwu, Y.; Gong, Z.; Valiyaveettil, S. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 2011, 5, 43–54. [Google Scholar] [CrossRef]
- Cela, P.; Vesela, B.; Matalova, E.; Vecera, Z.; Buchtova, M. Embryonic toxicity of nanoparticles. Cells Tissues Organs 2014, 199, 1–23. [Google Scholar] [CrossRef]
- Yoo, M.H.; Rah, Y.C.; Choi, J.; Park, S.; Park, H.C.; Oh, K.H.; Lee, S.H.; Kwon, S.Y. Embryotoxicity and hair cell toxicity of silver nanoparticles in zebrafish embryos. Int. J. Pediatr. Otorhinolaryngol. 2016, 83, 168–174. [Google Scholar] [CrossRef]
- Kazantzis, G. Role of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium in carcinogenesis. Environ. Health Perspect. 1981, 40, 143–161. [Google Scholar] [CrossRef] [PubMed]
- Desoize, B. Metals and metal compounds in cancer treatment. Anticancer Res. 2004, 24, 1529–1544. [Google Scholar] [PubMed]
Tube Material | n Total Oocytes | n Normal Oocytes (%) | n Oocytes with Cryodamages | |
---|---|---|---|---|
(n Mature Oocytes (%)) * | Membrane Damage (%) | Shape Not Recovered (%) | ||
Aluminium | 61 | 31 (50.8) (14 (22.9)) | 18 (29.5) | 12 (19.7) |
Silver | 63 | 25 (39.7) (11 (17.5)) | 18 (28.6) | 20 (31.7) |
Titanium | 65 | 27 (41.5) (15 (23.1)) | 23 (35.4) | 15 (23.1) |
Average of all tubes | 189 | 83 (43.9) (40 (21.2)) | 59 (31.2) | 47 (24.9) |
Vitrification control ** | 143 | - (35 (24.5)) | - | - |
Tube Material | n Total Immature Oocytes | GV (%) | Progress on Meiosis | n Not Assessable (%) | |
---|---|---|---|---|---|
GVBD (%) | MI (%) | ||||
Aluminium | 47 | 26 (55.3) | 11 (23.4) | 6 (12.8) | 4 (8.5) |
Silver | 52 | 35 (67.3) | 10 (19.2) | 6 (11.5) | 1 (1.9) |
Titanium | 50 | 32 (64) | 11 (22) | 4 (8) | 3 (6) |
Average of all tubes | 149 | 93 (62.4) | 32 (21.5) | 16 (10.7) | 8 (5.4) |
Tube Material | n Total Normal Oocytes after Thawing | n Mature Oocytes (%) | n Cleavage (%) | n Morulae (%) |
---|---|---|---|---|
Aluminium | 31 | 14 (45.2) | 2 (14.3) | 0 (0) |
Silver | 25 | 11 (44) | 2 (18.2) | 0 (0) |
Titanium | 27 | 15 (55.6) | 3 (20) | 0 (0) |
Average of all tubes | 83 | 40 (48.2) | 7 (17.5) | 0 (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez-Gonzalez, L.; Huebinger, J.; Jewgenow, K. Comparison of Different Materials for Self-Pressurized Vitrification of Feline Oocytes—First Results. Animals 2021, 11, 1314. https://doi.org/10.3390/ani11051314
Fernandez-Gonzalez L, Huebinger J, Jewgenow K. Comparison of Different Materials for Self-Pressurized Vitrification of Feline Oocytes—First Results. Animals. 2021; 11(5):1314. https://doi.org/10.3390/ani11051314
Chicago/Turabian StyleFernandez-Gonzalez, Lorena, Jan Huebinger, and Katarina Jewgenow. 2021. "Comparison of Different Materials for Self-Pressurized Vitrification of Feline Oocytes—First Results" Animals 11, no. 5: 1314. https://doi.org/10.3390/ani11051314
APA StyleFernandez-Gonzalez, L., Huebinger, J., & Jewgenow, K. (2021). Comparison of Different Materials for Self-Pressurized Vitrification of Feline Oocytes—First Results. Animals, 11(5), 1314. https://doi.org/10.3390/ani11051314