A Retrospective Literature Evaluation of the Integration of Stress Physiology Indices, Animal Welfare and Climate Change Assessment of Livestock
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Non-Systematic Literature Search and Meta-Analysis
3. Results
3.1. Descriptive Results
3.2. Category Interactions
3.2.1. Animal Welfare
3.2.2. Stress
3.2.3. Animal Production
3.2.4. Climate Change
4. Discussion
4.1. Animal Welfare
4.2. Animal Stress
4.3. Climate Change
4.4. Animal Production
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. How to Feed the World in 2050; FAO: Rome, Italy, 2009. [Google Scholar]
- Pérez Vázquez, A.; Leyva Trinidad, D.A.; Gómez Merino, F.C. Challenges and proposals to achieve food security by the year 2050. Rev. Mex. Cienc. Agric. 2018, 9, 175–189. [Google Scholar]
- Bekuma, A.; Tadesse, T.; Galmessa, U. Review on Negative Impacts of Livestock Production on Climate Change and Its Mitigation Strategies: A Global Issue. World Sci. News 2018, 115, 218–228. [Google Scholar]
- Broom, D.M. Sentience and Animal Welfare; CABI: Wallingford, UK, 2014. [Google Scholar]
- Hemsworth, P.H.; Mellor, D.J.; Cronin, G.M.; Tilbrook, A.J. Scientific assessment of animal welfare. N. Z. Vet. J. 2015, 63, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Veissier, I.; Jensen, K.K.; Botreau, R.; Sandøe, P. Highlighting ethical decisions underlying the scoring of animal welfare in the Welfare Quality® scheme. Anim. Welf. 2011, 20, 89–101. [Google Scholar]
- Colditz, I.G.; Hine, B.C. Resilience in farm animals: Biology, management, breeding and implications for animal welfare. Anim. Prod. Sci. 2016, 56, 1961–1983. [Google Scholar] [CrossRef]
- Tatemoto, P.; Bernardino, T.; Rodrigues, F.; Zanella, A. Does high stereotypic behavior expression affect productivity measures in sows? Rev. Bras. Zootec. 2019, 48. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat. Sci. 2020, 162, 108025. [Google Scholar] [CrossRef] [PubMed]
- Marketon, J.I.W.; Glaser, R. Stress hormones and immune function. Cell. Immunol. 2008, 252, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Dahl, G.E.; Tao, S.; Laporta, J. Heat Stress Impacts Immune Status in Cows across the Life Cycle. Front. Vet. Sci. 2020, 7, 116. [Google Scholar] [CrossRef] [Green Version]
- Lusk, J.L.; Norwood, F.B. Animal welfare economics. Appl. Econ. Perspect. Policy 2011, 33, 463–483. [Google Scholar] [CrossRef]
- Suárez, V.H. Mastitis, a Health-Related Indicator of Dairy Cow Welfare and Productivity. Dairy Vet. Sci. J. 2017, 4. [Google Scholar] [CrossRef]
- Struik, P.C.; Kuyper, T.W. Sustainable intensification in agriculture: The richer shade of green. A review. Agron. Sustain. Dev. 2017, 37, 1–15. [Google Scholar] [CrossRef]
- Dawkins, M.S. Animal welfare and efficient farming: Is conflict inevitable? Anim. Prod. Sci. 2017, 57, 201–208. [Google Scholar] [CrossRef]
- Herrero, M.; Havlík, P.; Valin, H.; Notenbaert, A.; Rufino, M.C.; Thornton, P.K.; Blümmel, M.; Weiss, F.; Grace, D.; Obersteineret, M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20888–20893. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Fernandes, J.N.; Hemsworth, P.H.; Coleman, G.J.; Tilbrook, A.J. 2021 Costs and Benefits of Improving Farm Animal Welfare. Agriculture 2021, 11, 104. [Google Scholar] [CrossRef]
- Marai, I.F.M.; El-Darawany, A.A.; Fadiel, A.; Abdel-Hafez, M.A.M. Physiological traits as affected by heat stress in sheep—A review. Small Rumin. Res. 2007, 71, 1–12. [Google Scholar] [CrossRef]
- Narayan, E.; Sawyer, G.; Parisella, S. 2018 Faecal glucocorticoid metabolites and body temperature in Australian merino ewes (Ovis aries) during summer artificial insemination (AI) program. PLoS ONE 2018, 13, e0191961. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, G.; Narayan, E.J. A Review on the influence of Climate Change on sheep reproduction. In Comparative Endocrinology of Animals; Narayan, E.J., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Caro, D.; Davis, S.; Bastianoni, S.; Caldeira, K. Greenhouse gas emissions due to meat production in the last fifty years. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability; Mukhtar, A., Stockle, C.O., Eds.; Springer: Cham, Switzerland, 2017; pp. 27–37. [Google Scholar]
- Llonch, P.; Haskell, M.J.; Dewhurst, R.J.; Turner, S.P. Current available strategies to mitigate greenhouse gas emissions in livestock systems: An animal welfare perspective. Animal 2017, 11, 274–284. [Google Scholar] [CrossRef] [Green Version]
- Molotoks, A.; Smith, P.; Dawson, T.P. Impacts of land use, population, and climate change on global food security. Food Energy Secur. 2021, 10, e261. [Google Scholar] [CrossRef]
- Miele, M.; Veissier, I.; Evans, A.; Botreau, R. Animal welfare: Establishing a dialogue between science and society. Anim. Welf. 2011, 20, 103–117. [Google Scholar]
- Mellor, D.J.; Beausoleil, N.J. Extending the “Five Domains” model for animal welfare assessment to incorporate positive welfare states. Anim. Welf. 2015, 24, 241–253. [Google Scholar] [CrossRef]
- Mellor, D.J. Operational details of the five domains model and its key applications to the assessment and management of animal welfare. Animals 2017, 7, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proctor, H.S.; Carder, G.; Cornish, A.R. Searching for animal sentience: A systematic review of the scientific literature. Animals 2013, 3, 882–906. [Google Scholar] [CrossRef] [Green Version]
- Boaitey, A.; Minegishi, K. Who are farm animal welfare conscious consumers? Br. Food J. 2020, 122, 3779–3796. [Google Scholar] [CrossRef]
- Gremmen, B. Moral dilemmas of animal production systems. Anim. Front. 2020, 10, 15–20. [Google Scholar] [CrossRef]
- Canozzi, M.E.A.; Mederos, A.; Turner, S.; Manteca, X.; McManus, C.; Menegassi, S.R.O.; Barcellos, J.O.J. Dehorning and welfare indicators in beef cattle: A meta-analysis. Anim. Prod. Sci. 2019, 59, 801–814. [Google Scholar] [CrossRef]
- Naceur, M.; Darej, C.; Bouraoui, R. Animal Welfare Issues Concerning Procedures of Calves Dehorning. Appl. Sci. Rep. 2013, 4, 234–240. [Google Scholar]
- Cardoso, C.S.; von Keyserlingk, M.A.G.; Hötzel, M.J. Trading off animal welfare and production goals: Brazilian dairy farmers’ perspectives on calf dehorning. Livest. Sci. 2016, 187, 102–108. [Google Scholar] [CrossRef]
- Robbins, J.A.; Weary, D.M.; Schuppli, C.A.; von Keyserlingk, M.A.G. Stakeholder views on treating pain due to dehorning dairy calves. Anim. Welf. 2015, 24, 399–406. [Google Scholar] [CrossRef]
- Stafford, K.J.; Mellor, D.J. Addressing the pain associated with disbudding and dehorning in cattle. Appl. Anim. Behav. Sci. 2011, 135, 226–231. [Google Scholar] [CrossRef]
- Badenhorst, M.; Otto, M.; Van der Goot, A.C.; Ganswindt, A. Stress steroid levels and the short-term impact of routine dehorning in female southern white rhinoceroses (Ceratotherium simum simum). Afr. Zool. 2016, 51, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Helmy, M.; Smith, D.; Selvarajoo, K. Systems biology approaches integrated with artificial intelligence for optimized food-focused metabolic engineering. Metab. Eng. Commun. 2020, 11, e00149. [Google Scholar] [CrossRef]
- Ali, W.; Ali, M.; Ahmad, M.; Dilawar, S.; Firdous, A.; Afzal, A. Application of Modern Techniques in Animal Production Sector for Human and Animal Welfare. J. Agric. Food Sci. Technol. 2020, 8, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Rushen, J.; de Passillé, A.M.B. The scientific assessment of the impact of housing on animal welfare: A critical review. Can. J. Anim. Sci. 1992, 72, 721–743. [Google Scholar] [CrossRef]
- Moberg, G.P. Biological response to stress: Implications for animal welfare. In The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare; Moberg, G.P., Mench, J.A., Eds.; CABI Publishing: Wallingford, CT, USA, 2000; p. 21. [Google Scholar]
- Barnett, J.L.; Hemsworth, P.H. The validity of physiological and behavioural measures of animal welfare. Appl. Anim. Behav. Sci. 1990, 25, 177–187. [Google Scholar] [CrossRef]
- Ellis, T.; Yildiz, H.Y.; López-Olmeda, J.; Spedicato, M.T.; Tort, L.; Øverli, Ø.; Martins, C.I. Cortisol and finfish welfare. Fish. Physiol. Biochem. 2012, 38, 163–188. [Google Scholar] [CrossRef]
- Koknaroglu, H.; Akunal, T. Animal welfare: An animal science approach. Meat Sci. 2013, 95, 821–827. [Google Scholar] [CrossRef]
- Mostl, E.; Palme, R. Hormones as indicators of stress. Domest. Anim. Endocrinol. 2002, 23, 67–74. [Google Scholar] [CrossRef]
- Palme, R. Monitoring stress hormone metabolites as a useful, non-invasive tool for welfare assessment in farm animals. Anim. Welf. 2012, 21, 331–337. [Google Scholar] [CrossRef]
- Kumar, B.; Manuja, A.; Aich, P. Stress and its impact on farm animals. Front. Biosci. 2012, 4, 1759–1767. [Google Scholar] [CrossRef]
- Proudfoot, K.; Habing, G. Social stress as a cause of diseases in farm animals: Current knowledge and future directions. Vet. J. 2015, 206, 15–21. [Google Scholar] [CrossRef]
- Martínez-Miró, S.; Tecles, F.; Ramón, M.; Escribano, D.; Hernández, F.; Madrid, J.; Orengo, J.; Martínez-Subiela, S.; Manteca, X.; Cerón, J.J. Causes, consequences and biomarkers of stress in swine: An update. BMC Vet. Res. 2016, 12, 171. [Google Scholar] [CrossRef] [Green Version]
- Belhadj Slimen, I.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Lushchak, V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011, 101, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Knowles, T.G.; Warriss, P.D.; Vogel, K. 21 Stress Physiology of Animals during Transport. In Livestock Handling and Transport: Theories and Applications, 4th ed.; Grandin, T., Ed.; CABI: Wallingford, UK, 2014; pp. 399–420. [Google Scholar]
- Sharma, N.; Singh, N.K.; Singh, O.P.; Pandey, V.; Verma, P.K. Oxidative stress and antioxidant status during transition period in dairy cows. Asian Australas. J. Anim. Sci. 2011, 24, 479–484. [Google Scholar] [CrossRef]
- Gebregeziabhear, E.; Ameha, N. The effect of stress on productivity of animals: A review. J. Biol. Agric. Healthc. 2015, 5, 165–172. [Google Scholar]
- Ghassemi Nejad, J.; Lohakare, J.D.; Son, J.K.; Kwon, E.G.; West, J.W.; Sung, K.I. Wool cortisol is a better indicator of stress than blood cortisol in ewes exposed to heat stress and water restriction. Animal 2014, 8, 128–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combs, M.D.; Edwards, S.H.; Scherpenhuizen, J.M.; Narayan, E.J.; Kessell, A.E.; Ramsay, J.; Piltz, J.; Raidal, S.R.; Quinn, J.C. Treatment with potassium bromide mitigates ataxia and reduces tremor in lambs with perennial ryegrass toxicosis. N. Z. Vet. J. 2019, 67, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, G.; Webster, D.; Narayan, E. Measuring wool cortisol and progesterone levels in breeding maiden Australian merino sheep (Ovis aries). PLoS ONE 2019, 14, e0214734. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, A.; Clark, H. How much do direct livestock emissions actually contribute to global warming? Glob. Chang. Biol. 2018, 24, 1749–1761. [Google Scholar] [CrossRef]
- Rust, J.M. The impact of climate change on extensive and intensive livestock production systems. Anim. Front. 2019, 9, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Wirsenius, S.; Azar, C.; Berndes, G. How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agric. Syst. 2010, 103, 621–638. [Google Scholar] [CrossRef]
- Martin, A.E.; Collins, S.J.; Crowe, S.; Girard, J.; Naujokaitis-Lewis, I.; Smith, A.C.; Lindsay, K.; Mitchell, S.; Fahrig, L. Effects of farmland heterogeneity on biodiversity are similar to—Or even larger than—The effects of farming practices. Agric. Ecosyst. Environ. 2020, 288, 106698. [Google Scholar] [CrossRef]
- O’Mara, F.P. The role of grasslands in food security and climate change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Berry, H.L.; Hogan, A.; Owen, J.; Rickwood, D.; Fragar, L. Climate change and farmers’ mental health: Risks and responses. Asia Pac. J. Public Health 2011, 23, 119S–132S. [Google Scholar] [CrossRef]
- Vetter, S.; Goodall, V.L.; Alcock, R. Effect of drought on communal livestock farmers in KwaZulu-Natal, South Africa. Afr. J. Range Forage Sci. 2020, 37, 93–106. [Google Scholar] [CrossRef]
- Herrero, M. Feeding the planet: Key challenges. In Energy and Protein Metabolism and Nutrition in Sustainable Animal Production; Oltjen, J.W., Kebreab, E., Lapierre, H., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 27–34. [Google Scholar]
- Sørensen, J.T.; Edwards, S.; Noordhuizen, J.; Gunnarsson, S. Animal production systems in the industrialised world. Rev. Sci. Tech. 2006, 25, 493–503. [Google Scholar]
- Windsor, P.A.; Lomax, S.; White, P. Progress in Pain Management to Improve Small Ruminant Farm Welfare. Small Rumin. Res. 2016, 142, 55–57. [Google Scholar] [CrossRef]
- Scollo, A.; Minervini, S.; Galli, M.C.; Cevidalli, A.; Bortoletto, G.; Romano, G.; Gottardo, F. Evaluation of pain and stress in three-week old piglets in relation to route of vaccine administration. Livest. Sci. 2020, 233, 103939. [Google Scholar] [CrossRef]
- Fraser, D. Understanding animal welfare. Acta Vet. Scand. 2008, 50, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Rioja-Lang, F.C.; Connor, M.; Bacon, H.J.; Lawrence, A.B.; Dwyer, C.M. Prioritization of farm animal welfare issues using expert consensus. Front. Vet. Sci. 2020, 6, 495. [Google Scholar] [CrossRef]
Number of Criteria per Year | ||||||||
---|---|---|---|---|---|---|---|---|
Keywords | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Total |
AW × S × AP | 24 | 35 | 37 | 46 | 56 | 26 | 22 | 246 |
AW × AP | 7 | 17 | 13 | 21 | 31 | 24 | 14 | 127 |
S × AP | 6 | 4 | 4 | 11 | 7 | 33 | 13 | 78 |
AW × S × CC × AP | 6 | 6 | 6 | 15 | 14 | 9 | 8 | 64 |
AP | 2 | 1 | 1 | 3 | 4 | 15 | 17 | 43 |
AW × S | 6 | 6 | 3 | 3 | 14 | 7 | 1 | 40 |
CC × AP | 4 | 2 | 2 | 5 | 6 | 11 | 6 | 36 |
SS × CC × AP | 3 | 2 | 2 | 2 | 9 | 9 | 4 | 31 |
AW | 2 | 1 | 2 | 6 | 6 | 4 | 2 | 23 |
AW × CC × AP | 1 | 1 | 4 | 5 | 5 | 4 | 1 | 21 |
S | 0 | 2 | 1 | 1 | 2 | 5 | 6 | 17 |
S × CC | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 4 |
CC | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 3 |
AW × CC | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 |
AW × S × CC | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 |
Total | 61 | 79 | 75 | 120 | 156 | 150 | 96 | 737 |
Class of Animal | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Total |
---|---|---|---|---|---|---|---|---|
dairy cows | 15 | 19 | 21 | 37 | 50 | 44 | 17 | 203 |
not specified/other | 9 | 7 | 15 | 5 | 12 | 29 | 28 | 105 |
pigs | 6 | 12 | 8 | 18 | 17 | 15 | 7 | 83 |
farmed seafood | 3 | 4 | 7 | 12 | 17 | 20 | 15 | 78 |
broiler chickens | 3 | 5 | 9 | 9 | 10 | 12 | 4 | 52 |
sheep | 8 | 5 | 5 | 6 | 8 | 9 | 4 | 45 |
layer hens | 2 | 7 | 2 | 7 | 13 | 3 | 3 | 37 |
beef cattle | 4 | 2 | 1 | 5 | 6 | 9 | 4 | 31 |
cattle | 0 | 4 | 1 | 7 | 3 | 2 | 6 | 23 |
emerging industries | 5 | 3 | 0 | 7 | 6 | 2 | 0 | 23 |
poultry | 1 | 2 | 3 | 3 | 4 | 4 | 6 | 23 |
dairy goats | 1 | 3 | 3 | 2 | 4 | 0 | 1 | 14 |
ruminants | 2 | 3 | 0 | 2 | 3 | 1 | 0 | 11 |
goats | 2 | 3 | 0 | 0 | 3 | 0 | 1 | 9 |
Total | 61 | 79 | 75 | 120 | 156 | 150 | 96 | 737 |
Animal Group | AW | AW × S | AW × CC | AW × AP | AW × S × CC | AW × S × AP | AW × CC × AP | AW × S × CC × AP | Total |
---|---|---|---|---|---|---|---|---|---|
dairy cows | 5 | 3 | 0 | 53 | 0 | 58 | 6 | 23 | 148 |
pigs | 6 | 8 | 0 | 12 | 0 | 35 | 3 | 4 | 68 |
not specified | 3 | 2 | 1 | 14 | 0 | 21 | 7 | 11 | 59 |
broiler chickens | 3 | 4 | 0 | 17 | 0 | 20 | 1 | 1 | 46 |
farmed seafood | 0 | 2 | 0 | 5 | 0 | 23 | 1 | 9 | 40 |
sheep | 0 | 6 | 0 | 5 | 1 | 19 | 0 | 2 | 33 |
layer hens | 1 | 3 | 0 | 5 | 0 | 12 | 2 | 3 | 26 |
beef cattle | 0 | 2 | 0 | 3 | 0 | 11 | 1 | 3 | 20 |
emerging industries | 2 | 3 | 0 | 1 | 0 | 12 | 0 | 1 | 19 |
cattle | 0 | 1 | 0 | 3 | 0 | 13 | 1 | 0 | 18 |
poultry | 0 | 2 | 0 | 6 | 0 | 9 | 0 | 0 | 17 |
dairy goats | 0 | 2 | 0 | 2 | 0 | 8 | 0 | 0 | 12 |
ruminants | 0 | 1 | 0 | 0 | 0 | 4 | 0 | 4 | 9 |
goats | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 3 | 7 |
Total | 20 | 40 | 1 | 127 | 2 | 246 | 22 | 64 | 522 |
Animal Group | S | AW × S | S × CC | S × AP | AW × S × CC | AW × S × AP | S × CC × AP | AW × S × CC × AP | Total |
---|---|---|---|---|---|---|---|---|---|
dairy cows | 3 | 3 | 0 | 27 | 0 | 58 | 8 | 23 | 122 |
layer hens | 2 | 8 | 0 | 6 | 0 | 35 | 1 | 4 | 56 |
emerging industries | 9 | 2 | 0 | 6 | 0 | 23 | 5 | 9 | 54 |
not specified/other | 0 | 2 | 0 | 12 | 1 | 21 | 7 | 11 | 54 |
sheep | 0 | 6 | 0 | 6 | 0 | 19 | 2 | 2 | 35 |
broiler chickens | 0 | 4 | 0 | 4 | 0 | 20 | 1 | 1 | 30 |
goats | 0 | 3 | 0 | 7 | 0 | 12 | 2 | 3 | 27 |
beef cattle | 1 | 2 | 1 | 0 | 11 | 2 | 3 | 20 | |
ruminants | 0 | 3 | 0 | 4 | 0 | 12 | 0 | 1 | 20 |
cattle | 0 | 1 | 0 | 3 | 0 | 13 | 0 | 0 | 17 |
pigs | 0 | 2 | 0 | 3 | 0 | 9 | 2 | 0 | 16 |
farmed seafood | 0 | 1 | 4 | 3 | 1 | 1 | 0 | 3 | 13 |
poultry | 0 | 1 | 0 | 0 | 0 | 4 | 2 | 4 | 11 |
dairy goats | 0 | 2 | 0 | 0 | 0 | 8 | 0 | 0 | 10 |
Total | 15 | 40 | 4 | 82 | 2 | 246 | 32 | 64 | 485 |
Animal Group | AP | AW × AP | S × AP | CC × AP | AW × S × AP | AW × CC × AP | S × CC × AP | AW × S × CC × AP | Total |
---|---|---|---|---|---|---|---|---|---|
dairy cows | 11 | 53 | 27 | 5 | 58 | 6 | 8 | 23 | 191 |
not specified | 14 | 14 | 12 | 13 | 21 | 7 | 7 | 11 | 99 |
layer hens | 2 | 12 | 6 | 3 | 35 | 3 | 1 | 4 | 66 |
emerging industries | 5 | 5 | 6 | 8 | 23 | 1 | 5 | 9 | 62 |
broiler chickens | 1 | 17 | 4 | 0 | 20 | 1 | 1 | 1 | 45 |
sheep | 3 | 5 | 6 | 1 | 19 | 0 | 2 | 2 | 38 |
goats | 2 | 5 | 7 | 0 | 12 | 2 | 2 | 3 | 33 |
beef cattle | 2 | 3 | 1 | 4 | 11 | 1 | 2 | 3 | 27 |
cattle | 0 | 3 | 3 | 2 | 13 | 1 | 0 | 0 | 22 |
pigs | 1 | 6 | 3 | 0 | 9 | 0 | 2 | 0 | 21 |
ruminants | 0 | 1 | 4 | 0 | 12 | 0 | 0 | 1 | 18 |
dairy goats | 2 | 2 | 0 | 0 | 8 | 0 | 0 | 0 | 12 |
poultry | 0 | 0 | 0 | 0 | 4 | 0 | 2 | 4 | 10 |
farmed seafood | 0 | 1 | 3 | 0 | 1 | 0 | 0 | 3 | 8 |
Total | 43 | 127 | 82 | 36 | 246 | 22 | 32 | 64 | 652 |
Animal Group | CC | AW × CC | S × CC | CC × AP | AW × S × CC | S × CC × AP | AW × CC × AP | AW × S × CC × AP | Total |
---|---|---|---|---|---|---|---|---|---|
dairy cows | 1 | 0 | 0 | 5 | 0 | 8 | 6 | 23 | 43 |
not specified | 0 | 1 | 0 | 13 | 1 | 7 | 7 | 11 | 40 |
farmed seafood | 0 | 0 | 4 | 8 | 1 | 5 | 1 | 9 | 28 |
beef cattle | 1 | 0 | 0 | 4 | 0 | 2 | 1 | 3 | 11 |
pigs | 0 | 0 | 0 | 3 | 0 | 1 | 3 | 4 | 11 |
layer hens | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 7 |
ruminants | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 4 | 6 |
sheep | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 2 | 5 |
broiler chickens | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 3 |
cattle | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 3 |
goats | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 |
poultry | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 3 |
emerging industries | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
dairy goats | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 3 | 1 | 4 | 36 | 2 | 32 | 22 | 64 | 164 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narayan, E.; Barreto, M.; Hantzopoulou, G.-C.; Tilbrook, A. A Retrospective Literature Evaluation of the Integration of Stress Physiology Indices, Animal Welfare and Climate Change Assessment of Livestock. Animals 2021, 11, 1287. https://doi.org/10.3390/ani11051287
Narayan E, Barreto M, Hantzopoulou G-C, Tilbrook A. A Retrospective Literature Evaluation of the Integration of Stress Physiology Indices, Animal Welfare and Climate Change Assessment of Livestock. Animals. 2021; 11(5):1287. https://doi.org/10.3390/ani11051287
Chicago/Turabian StyleNarayan, Edward, Michelle Barreto, Georgia-Constantina Hantzopoulou, and Alan Tilbrook. 2021. "A Retrospective Literature Evaluation of the Integration of Stress Physiology Indices, Animal Welfare and Climate Change Assessment of Livestock" Animals 11, no. 5: 1287. https://doi.org/10.3390/ani11051287
APA StyleNarayan, E., Barreto, M., Hantzopoulou, G.-C., & Tilbrook, A. (2021). A Retrospective Literature Evaluation of the Integration of Stress Physiology Indices, Animal Welfare and Climate Change Assessment of Livestock. Animals, 11(5), 1287. https://doi.org/10.3390/ani11051287