Detection of Local Tissue Reactions after Anti-GnRF Injection in Male Pigs Assessed Using Magnetic Resonance Imaging
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Keeping and Handling
2.2. Magnetic Resonance Imaging
2.3. Image Analysis
- Volume measurement: Tissues with increased signal intensity were defined as having a local-tissue reaction. A rectangle Region of Interest (ROI) was defined by encircling the largest extent of local reaction at the injection side (IS; see [24]). Inside this ROI, the area with increased signal intensity was bordered using the Interactive Segmentation Function, which allows the segmentation of regions by separating them according to defined grayscales. After bordering the area with increased signal intensity at the IS, the ROI was mirrored to the control side (CS) and the Interactive Segmentation Function applying the same grayscales was used again. By evaluating 5 slices showing increased signal intensities, a volume of the IS and of the corresponding CS was created for images of scan 1 to scan 3. The differences was formed from both volumes (Vol_diff (cm3)).
- Length and depth measurements: Additionally, the MR image with the largest area of hyperintense tissue of each animal and each examination day was analyzed regarding the maximum extent of local reaction in depth and length (in mm; see Figure 2a,b). Therefore, the deepest point at the IS showing a bright signal increase was measured from the skin side and represents the maximum depth (mm) of the local reaction (Figure 2a). The maximum length (mm) of the local reaction was calculated by measuring the cranio-caudal distribution of the bright signal increased region (Figure 2b). Furthermore, the injection site was defined as the point, where the signal increase starts near the ear base. At that point, the penetration depth was measured (in mm; see Figure 2c).
- Location scoring: Besides the volume and linear measurements, a scoring system was used to describe the location of the local reaction inside the MR images: 0 = subcutaneous; 1 = superficial intramuscular; and 2 = intramuscular.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Boler, D.D.; Puls, C.L.; Clark, D.L.; Ellis, M.; Schroeder, A.L.; Matzat, P.D.; Killefer, J.; McKeith, F.K.; Dilger, A.C. Effects of immunological castration (Improvest) on changes in dressing percentage and carcass characteristics of finishing pigs. J. Anim. Sci. 2014, 91, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Zamaratskaia, G.; Rasmussen, M.K. Immunocastration of male pigs—Situation today. Procedia Food Sci. 2015, 5, 324–327. [Google Scholar] [CrossRef] [Green Version]
- Schwanitz, S.; Bernau, M.; Kreuzer, L.S.; Kremer-Rücker, P.V.; Scholz, A.M. Körperzusammensetzung und Ebergeruch bei intakten Ebern, immunologisch und chirurgisch kastrierten Schweinen. Züchtungskunde 2017, 89, 413–433. [Google Scholar]
- Djurkin Kušec, I.; Cimerman, E.; Škrlep, M.; Karolyi, D.; Gvozdanovic, K.; Komlenic, M.; Radišic, Ž.; Kušec, G. Influence of Immunocastration on Slaughter Traits and BoarTaint Compounds in Pigs Originating from Three Different Terminal Sire Lines. Animals 2021, 11, 228. [Google Scholar] [CrossRef] [PubMed]
- Botha, A.E.; Birrell, J.; Schulman, M.L.; du Plessis, L.; Laver, P.N.; Soley, J.T.; Bertschinger, H.J. Effects of the GnRH vaccine Improvac® on testicular tissue of young stallions. Anim. Reprod. Sci. 2016, 169, 97. [Google Scholar] [CrossRef]
- Giriboni, J.; Lacuesta, L.; Santiago-Moreno, J.; Ungerfeld, R. Chronic use of a GnRH agonist (deslorelin) or immunization against GnRH: Effects on testicular function and sperm quality of bucks. Domest. Anim. Endocrinol. 2020, 71, 106395. [Google Scholar] [CrossRef]
- Monleón, E.; Noya, A.; Garza, M.C.; Ripoll, G.; Sanz, A. Effects of an anti-gonadotrophin releasing hormone vaccine on the morphology, structure and function of bull testes. Theriogenology 2020, 141, 211–218. [Google Scholar] [CrossRef]
- Zeng, Y.T.; Wang, C.; Zhang, Y.; Xu, L.; Zhou, G.B.; Zeng, C.J.; Zuo, C.Z.; Song, T.Z.; Zhu, Q.; Yin, H.D.; et al. Improvac immunocastration affects the development of thigh muscles but not pectoral muscles in male chickens. Poult. Sci. 2020, 99, 5149–5157. [Google Scholar] [CrossRef]
- Dalmau, A.; Velarde, A.; Rodríguez, P.; Pedernera, C.; Llonch, P.; Fàbrega, E.; Casal, N.; Mainau, E.; Gispert, M.; King, V.; et al. Use of an anti-GnRF vaccine to suppress estrus in crossbred Iberian female pigs. Theriogenology 2015, 84, 342–347. [Google Scholar] [CrossRef]
- Poulsen Nautrup, B.; Van Vlaenderen, I.; Mah, C.K. The effect of immunization against gonadotropin-releasing factor in market gilts: Meta-analyses of parameters relevant for pig producers, pork packers and retailers/consumers. Res. Vet. Sci. 2020, 131, 159–172. [Google Scholar] [CrossRef]
- Van De Weyer, L.; Petracek, R.; Stahl, C.; Daigneault, J. Evaluation of female pigs dosed with Improvest® and raised with Improvest males in a Canadian swine production setting. In Proceedings of the 24th International Pig Veterinary Society Congress and 8th European Symposium of Porcine Health Management, Dublin, Ireland, 7–10 June 2016; p. 169. [Google Scholar]
- Baumgartner, J.; Laister, S.; Koller, M.; Pfützner, A.; Grodzycki, M.; Andrews, S.; Schmoll, F. The behaviour of male fattening pigs following either surgical castration or vaccination with a GnRF vaccine. Appl. Anim. Behav. Sci. 2010, 124, 28–34. [Google Scholar] [CrossRef]
- Fàbrega, E.; Velarde, A.; Cros, J.; Gispert, M.; Suárez, P.; Tibau, J.; Soler, J. Effect of vaccination against gonadotrophin-releasing hormone, using Improvac®, on growth performance, body composition, behaviour and acute phase proteins. Livest. Sci. 2010, 132, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Zamaratskaia, G.; Rydhmer, L.; Andersson, K.; Chen, G.; Lowagie, S.; Andersson, K.; Lundström, K. Long-term effect of vaccination against gonadotropin-releasing hormone, using ImprovacTM, on hormonal profile and behaviour of male pigs. Anim. Reprod. Sci. 2008, 108, 37–48. [Google Scholar] [CrossRef]
- SPC 2009. Summary of Product Characteristics. Improvac, PFIZER Limited. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/veterinary/000136/WC500064060.pdf (accessed on 20 February 2021).
- Lovitt, S.; Moore, S.L.; Marden, F.A. The use of MRI in the evaluation of myopathy. Clin. Neurophysiol. 2006, 117, 486–495. [Google Scholar] [CrossRef]
- Messineo, D.; Cremona, A.; Trinci, M.; Francia, A.; Marini, A. MRI in the study of distal primary myopathopies and of muscular alterations due to peripheral neuropathies: Possible diagnostic capacities of MR equipment with low intensity field (0.2 T) dedicated to peripheral limbs. Magn. Reson. Imaging 1998, 16, 731–741. [Google Scholar] [CrossRef]
- Fisher, M.R.; Dooms, G.C.; Hricak, H.; Reinhold, C.; Higgins, C.B. Magnetic Resonance Imaging Of The Normal and Pathologic Muscular System. Magn. Reson. Imaging 1986, 4, 491–496. [Google Scholar] [CrossRef]
- Nägele, M.; Hahn, D. Kernspintomographie. In Atlas der Muskelkrankheiten/Pongratz; Pongratz, D.E., Reimers, C.D., Hahn, D., Nägele, M., Müller-Felber, W., Eds.; Urban & Schwarzenberg, Kösel: Kempten, Germany, 1990; pp. 25–28. [Google Scholar]
- Tanttu, J.; Sepponen, R.E. Basic Principles of Magnetic Resonance Imaging. In Muscle Imaging in Health and Disease; Fleckenstein, J.L., Crues, J.V., Reimers, C.D., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 21–34. [Google Scholar]
- Rudin, M. In vivo magnetic resonance imaging and spectroscopy in pharmacological research: Applications to drug development and profiling. Eur. J. Pharm. Sci. 1994, 2, 50–52. [Google Scholar] [CrossRef]
- Rudin, M.; Beckmann, N.; Mir, A.; Sauter, A. In vivo magnetic resonance imaging and spectroscopy in pharmacological research: Assessment of morphological, physiological and metabolic effects of drugs. Eur. J. Pharm. Sci. 1995, 3, 255–264. [Google Scholar] [CrossRef]
- Brewer, K.D.; Lake, K.; Pelot, N.; Stanford, M.M.; DeBay, D.R.; Penwell, A.; Weir, G.M.; Karkada, M.; Mansour, M.; Bowen, C.V. Clearance of depot vaccine SPIO-labeled antigen and substrate visualized using MRI. Vaccine 2014, 32, 6956–6962. [Google Scholar] [CrossRef] [PubMed]
- Bernau, M.; Kremer, P.V.; Pappenberger, E.; Kreuzer, L.S.; Cussler, K.; Hoffmann, A.; Scholz, A.M. Safety testing of veterinary vaccines using magnetic resonance imaging in pigs. ALTEX 2015, 32, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernau, M.; Kremer, P.V.; Kreuzer, L.S.; Emrich, D.; Pappenberger, E.; Cussler, K.; Hoffmann, A.; Leipig, M.; Hermanns, W.; Scholz, A.M. Assessment of Local Reaction to Vaccines in Live Piglets with Magnetic Resonance Imaging Compared to Histopathology. ALTEX 2016, 33, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Bernau, M.; Kremer-Rücker, P.V.; Kreuzer, L.S.; Schwanitz, S.; Cussler, K.; Hoffmann, A.; Scholz, A.M. Magnetic resonance imaging to detect local reactions after vaccination in sheep in vivo. Vet. Rec. Open 2017, 4, e000200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernau, M.; Große Liesner, B.; Schwanitz, S.; Kraus, A.-S.; Falkenau, A.; Leipig-Rudolph, M.; Hermanns, W.; Scholz, A.M. Vaccine safety testing using magnetic resonance imaging in suckling piglets. Vaccine 2018, 36, 1789–1795. [Google Scholar] [CrossRef]
- Tierschutzgesetz 2020. Tierschutzgesetz in der Fassung der Bekanntmachung vom 18. Mai 2006 (BGBl. I S. 1206, 1313), das zuletzt durch Artikel 280 der Verordnung vom 19. Juni 2020 (BGBl. I S. 1328) geändert worden ist (Animal Protection Law). Available online: https://www.gesetze-im-internet.de/tierschg/ (accessed on 20 February 2021).
- Tierschutz-Nutztierhaltungsverordnung 2021. Tierschutz-Nutztierhaltungsverordnung in der Fassung der Bekanntmachung vom 22. August 2006 (BGBl. I S. 2043), die zuletzt durch Artikel 1a der Verordnung vom 29. Januar 2021 (BGBl. I S. 146) geändert worden ist. (German Federal Ministry for Food, Agriculture and Consumer Protection). Available online: https://www.gesetze-im-internet.de/tierschnutztv/ (accessed on 20 February 2021).
- May, D.A.; Disler, D.G.; Jones, E.A.; Balkissoon, A.A.; Manaster, B.J. Abnormal Signal Intensity in Skeletal Muscle at MR Imaging: Patterns, Pearls, and Pitfalls. RadioGraphics 2000, 20, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Schrank, B.; Urban, P.; Lörcher, U. Der Einsatz der Magnetresonanztomographie der Muskulatur bei der Diagnose neuromuskulärer Erkrankungen (Application of magnetic resonance imaging in the diagnosis of neuromus¬cular disease). Klin. Neuroradiol. 2005, 15, 241–255. [Google Scholar] [CrossRef]
- Spickler, A.R.; Roth, J.A. Adjuvants in veterinary vaccines: Modes of action and adverse effects. J. Vet. Intern. Med. 2003, 17, 273–281. [Google Scholar] [CrossRef]
- Day, M.J. Vaccine side effects: Fact and fiction. Vet. Microbiol. 2006, 117, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.R.; Heldens, J.G.M. Immunoprophylaxis against important virus diseases of horses, farm animals and birds. Vaccine 2009, 27, 1797–1810. [Google Scholar] [CrossRef] [PubMed]
- Kaistha, J.; Sokhey, J.; Singh, S.; Kumar, S.; John, P.C.; Sharma, N.C. Adjuvant effect of DEAE-dextran and tetanus toxoid on whole cell heat inactivated phenol preserved typhoid vaccine. Indian J. Pathol. Microbiol. 1996, 39, 287–292. [Google Scholar]
- Houston, W.; Crabbs, C.L.; Kremer, R.J.; Springer, J.W. Adjuvant effects of Diethylaminoethyl-Dextran. Infect. Immun. 1976, 13, 1559–1562. [Google Scholar] [CrossRef] [Green Version]
- Wittmann, G.; Bauer, K.; Mussgay, M. Experiments on vaccination of pigs with Ethyl-ethyleneimine (EEI) Diethylaminoethyl Dextran (DEAE-D) Foot-and-Mouth disease vaccines. Influence of route of inoculation and dose of antigen on the duration of immunity. Arch. Gesamte Virusforsch. 1972, 36, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Finnerty, M.; Enright, W.J.; Morrison, C.A.; Roche, J.F. Immunization of bull calves with a GnRH analogue-human serum albumin conjugate: Effect of conjugate dose, type of adjuvant and booster interval on immune, endocrine, testicular and growth responses. J. Reprod. Fertil. 1994, 101, 333–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Einarsson, S. Vaccination againt GnRH: Pros and cons. Acta Vet. Scand. 2006, 48 (Suppl. I), 10. [Google Scholar] [CrossRef]
- Dunshea, F.R.; Colantoni, C.; Howard, K.; McCauley, I.; Jackson, P.; Long, K.A.; Lopaticki, S.; Nugent, E.A.; Simons, J.A.; Walker, J.; et al. Vaccination of boars with GnRH vaccine (Improvac) eliminates boar taint and increases growth performance. J. Anim. Sci. 2001, 79, 2524–2535. [Google Scholar] [CrossRef] [PubMed]
- Zankl, A.; Götz, R.; Pausenberger, A.; Dodenhoff, J.; Wittmann, W. Impfung gegen Ebergeruch—Erfahrungen und Ergebnisse einer Feldstudie in Bayern. Prakt. Tierarzt 2011, 92, 148–154. [Google Scholar]
- McGlone, J.; Guay, K.; Garcia, A. Comparison of Intramuscular or Subcutaneous Injections vs. Castration in Pigs—Impacts on Behavior and Welfare. Animals 2016, 6, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Borrell, E.; Baumgartner, J.; Giersing, M.; Jäggin, N.; Prunier, A.; Tuyttens, F.A.M.; Edwards, S.A. Animal welfare implications of surgical castration and its alternatives in pigs. Animal 2009, 3, 1488–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, R.J.; Sullivan, D.B.; Chenevert, T.L.; Keim, D.R. MR Imaging in children with dermatomyositis: Musculoskeletal findings and correlation with clinical and laboratory findings. AJR 1993, 161, 359–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, A.K.; Grosse Beilage, E.; Kanitz, E.; Puppe, B.; Traulsen, I.; Krieter, J. Influence of immunisation against GnRF on agonistic and mounting behavior, serum testosterone concentration and body weight in male pigs compared with boars and barrows. Appl. Anim. Behav. Sci. 2012, 138, 28–35. [Google Scholar] [CrossRef]
- Brewster, V.; Nevel, A. Immunocastration with ImprovacTM reduces aggressive and sexual behaviours in male pigs. Appl. Anim. Behav. Sci. 2013, 145, 32–36. [Google Scholar] [CrossRef]
- Agudelo-Trujillo, J.H.; Guzmán-González, P.A.; Gómez-Betancur, J.F.; Aldaz, A. Effects of estrus suppression on performance and carcass quality of gilts. In Proceedings of the 24th International Pig Veterinary Society Congress and 8th European Symposium of Porcine Health Management, Dublin, Ireland, 7–10 June 2016; p. 349. [Google Scholar]
- Castillo-Sagbay, K.A.; Pérez-Villacís, J.G.; Mosquera-Andrade, J.A.; Estrada-Pineda, J.F.; Aldaz, A. Production performance of gilts following estrus suppression (using Improvac®) in the grow-finish period. In Proceedings of the 24th International Pig Veterinary Society Congress and 8th European Symposium of Porcine Health Management, Dublin, Ireland, 7–10 June 2016; p. 344. [Google Scholar]
- Castillo-Sagbay, K.A.; Pérez-Villacís, J.G.; Mosquera-Andrade, J.A.; Estrada-Pineda, J.F.; Aldaz, A. Effects of Improvac® administration to gilts on estrus occurrence, arcass quality and size of reproductive organs. In Proceedings of the 24th International Pig Veterinary Society Congress and 8th European Symposium of Porcine Health Management, Dublin, Ireland, 7–10 June 2016; p. 345. [Google Scholar]
- Fernández-Dueñas, D.; Morales, J.; Magaña, R.; Gabriel, J.; Aldaz, A.; Allison, J. Effect of an anti-GnRF vaccine (Improvac®) in ractopamine-free males and female pigs, part I: Weight gain and carcass characteristics. In Proceedings of the 24th International Pig Veterinary Society Congress and 8th European Symposium of Porcine Health Management, Dublin, Ireland, 7–10 June 2016; p. 343. [Google Scholar]
- Fernández-Dueñas, D.; Morales, J.; Magaña, R.; Gabriel, J.; Aldaz, A.; Allison, J. Effect of an anti-GnRF vaccine (Improvac®) in ractopamine-free males and female pigs, part II: Growth performance. In Proceedings of the 24th International Pig Veterinary Society Congress and 8th European Symposium of Porcine Health Management, Dublin, Ireland, 7–10 June 2016; p. 350. [Google Scholar]
- Robbins, S.C.; Jelinski, M.D.; Stotish, R.L. Assessment of the immunological and biological efficacy of two different doses of a recombinant GnRF vaccine in domestic male and female cats (felis catus). J. Reproduct. Immunol. 2004, 64, 107–119. [Google Scholar] [CrossRef] [PubMed]
MRI Parameter | Scan 1 | Scan 2 & 3 |
---|---|---|
Time to Repeat (ms) | 814 | 814 |
Time to Echo (ms) | 17 | 17 |
Field Of View (mm) | 230 | 350 |
number of slices | 22 | 22 |
slice thickness (mm) | 4 | 5 |
distance factor | 0.5 | 1.00 |
examination time | 5 min 40 s | 5 min 40 s |
Scan | Weight (kg) | Days Post Injection | Vol_diff & SEE (cm3) | n | p-Value |
---|---|---|---|---|---|
1 | 27.1 ± 5.1 | 1 | 1.27 ± 0.29 | 34 | 0.0001 |
2 | 51.7 ± 8.7 | 36 | 3.36 ± 0.72 | 34 | <0.0001 |
3 | 91.6 ± 11.1 | 14 (booster injection) | 1.56 ± 0.65 | 22 | 0.0225 |
Variable | Scan 1 | Scan 2 | Scan 3 |
---|---|---|---|
1 d p.i. | 36 d p.i. | 14 d p.i. (booster) | |
n = 34 | n = 34 | n = 22 | |
location score | 1.9 ± 0.2 | 1.9 ± 0.3 | 1.7 ± 0.4 |
mean maximum depth of local reaction (mm) | 28.6 ± 6.3 | 32.7 ± 9.3 | 32.9 ± 10.4 |
mean maximum length of local reaction (mm) | 53.6 ± 12.7 | 60.0 ± 24.6 | 68.7 ± 18.6 |
penetration depth at first injection (mm) | 14.3 ± 3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernau, M.; Schwanitz, S.; Kreuzer, L.S.; Scholz, A.M. Detection of Local Tissue Reactions after Anti-GnRF Injection in Male Pigs Assessed Using Magnetic Resonance Imaging. Animals 2021, 11, 968. https://doi.org/10.3390/ani11040968
Bernau M, Schwanitz S, Kreuzer LS, Scholz AM. Detection of Local Tissue Reactions after Anti-GnRF Injection in Male Pigs Assessed Using Magnetic Resonance Imaging. Animals. 2021; 11(4):968. https://doi.org/10.3390/ani11040968
Chicago/Turabian StyleBernau, Maren, Sebastian Schwanitz, Lena Sophie Kreuzer, and Armin Manfred Scholz. 2021. "Detection of Local Tissue Reactions after Anti-GnRF Injection in Male Pigs Assessed Using Magnetic Resonance Imaging" Animals 11, no. 4: 968. https://doi.org/10.3390/ani11040968
APA StyleBernau, M., Schwanitz, S., Kreuzer, L. S., & Scholz, A. M. (2021). Detection of Local Tissue Reactions after Anti-GnRF Injection in Male Pigs Assessed Using Magnetic Resonance Imaging. Animals, 11(4), 968. https://doi.org/10.3390/ani11040968