Invited Review: Maintain or Improve Piglet Gut Health around Weanling: The Fundamental Effects of Dietary Amino Acids
Abstract
:Simple Summary
Abstract
1. Introduction
2. Amino Acid Effects on Gut Morphology
3. Amino Acid Effects on Gut Luminal Microbiota
4. Amino Acid Effects on Gut Immunological Functions
5. The Anti-Oxidative Functions of Amino Acids
6. The Anti-Inflammatory Effects of Amino Acids
7. Detoxification and Gut Dysfunction Reverse by Amino Acids
8. Conclusions Remarks
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Appendix A
Amino Acid(s) | Dietary Concentrations 2 | Major Effects on the Gut Health Parameters Observed | Reference |
---|---|---|---|
Arginine | 0.6 vs. 0.0% | Increased the small intestinal growth, the villus height (VH), the crypt depth (CD), and the goblet cell counts in the mucosa | Wu et al. [31] |
Arginine | 1.0 vs. 0.0% | Increased the epithelial VH and the mucosal vascular endothelial growth factor level of the small intestine; Reduced the CD in the duodenum and jejunum | Yao et al. [119] |
Arginine | 1.0, 0.5, vs. 0.0% | Protecting and enhancing intestinal mucosal immune barrier function, and maintaining intestinal integrity after E. coli lipopolysaccharide (LPS) challenge | Zhu et al. [120] |
Arginine | 0.8, 0.4, vs. 0.0% | Increased (linearly and quadratically) the VH, villus area, and CD; Increased (linearly and quadratically) the mucosal protein content | Yang et al. [32] |
Arginine | 1.6, 0.8, vs. 0.0% | Decreased the CD and suppressed the inflammatory cytokine expression in the jejunum | Zheng et al. [121] |
Glutamine | 2.0 vs. 0.0% | Mitigated villus atrophy and morphology disruption of the gut after Escherichia coli challenge | Yi et al. [20] |
Glutamine | 0.5 vs. 0.0% | increased both VH and CD, decreased the VH to CD ratio (VCR); Increased in mitotic mucosal cells (M), decreased in apoptotic mucosal cells (A), thus decreasing the A:M index; The percentages of mucosal macrophages were greater | Domeneghini et al. [25] |
Glutamine | 0.5 vs. 0.0% | Increased the VH and CD and decreased the VCR; Gut barrier function may be improved | Domeneghini et al. [16] |
Glutamine | 4.4 vs. 0.0% | Reducing the mucosal cytokine response; Improving the intestinal barrier function | Ewaschuk et al. [122] |
Glycyl-glutamine | 0.15 vs. 0.00% | Mediated the adverse effects of E. coli LPS on gut integrity; the proinflammatory response may be limited | Jiang et al. [21] |
Alanyl-glutamine | 0.45, 0.30, 0.15, vs. 0.00% | Increased the VH and VCR in duodenum and jejunum; the digestive-absorption function may be enhanced via those digestive enzymes and nutrient transporters analyzed | Zou et al. [22] |
Glutamate | 1.0 vs. 0.0% | Increased the VH and mucosal thickness in the jejunum; Having favorable effects on gut epithelium cell proliferation | Wu et al. [123] |
Glutamate | 2.0 vs. 0.0% | Improved the intestinal integrity; influenced the expression of amino acid receptors and transporters in the jejunal mucosa | Lin et al. [24] |
Glutamate | 2.0 vs. 0.0% | Alleviated the diquat-induced oxidative stress via enhancing the superoxide dismutase, total antioxidant capacity, and nitric oxide levels and inhibiting lipid oxidation subsequent with malondialdeyhde generation. | Yin et al. [88] |
Monosodium glutamate | 4.0, 2.0, 1.0, 0.5, vs. 0.0% | Increased jejunal VH, DNA content, and antioxidative capacity; reduced the incidence of diarrhea | Rezaei et al. [23] |
Glutamine + Glutmate | (1.0 + 0.0), (0.9 + 0.1), (0.8 + 0.2), vs. (0.0 + 0.0) | The combinational effects of glutamine and glutamate could not achieve that of glutamine alone | He et al. [18] |
Glutamine; AminoGut 3 | 1.00; (0.88 to 0.66), vs. 0.00; 0.00% | Increased the jejunal VH by glutamine; increased the jejunal CD by AminoGut (glutamine + glutamate) | Cabrera et al. [19] |
Methionine | 0.12 vs. 0.00% | Increased the VH in jejunum, decreased the CD in duodenum, and increased the VCR in all three sections; Increased the abundance of occludin and decreased the abundance of active caspase-3 in the jejunum | Chen et al. [34] |
Methionine | 0.12 vs. 0.00% | Improved intestinal integrity and oxidative status | Su et al. [124] |
Methionine | 0.145 vs. 0.000% | Enhanced the duodenum morphology in association with reducing oxidative stress; Improved glutathione production in the mucosa cells | Shen et al. [36] |
Methionine hydroxy analogue-free acid | 0.10, 0.05, vs. 0.00% | Tended to decrease pH in the stomach, duodenum, jejunum, colon and rectum; The 0.10% group increased the VH in duodenum, jejunum and ileum, and the VCR in jejunum and ileum | Kaewtapee et al. [35] |
Cysteine | 0.61 vs. 0.00% | Increased the synthesis of mucosal epithelial proteins, such as glutathione and mucin | Bauchart-Thevret et al. [37] |
N-acetyl cysteine | 500 vs. 0 mg/kg | Possessing a constructive regulation on the changes of gut redox status and microbiota in response to weaning stress | Xu et al. [125] |
Taurine | 0.1 vs. 0.0% | Decreased the stimulation of immune response to lipopolysaccharide; Improved intestinal epithelial barrier function | Tang et al. [126] |
Sulfur amino acids 4 | 0.96, 0.85, 0.74, 0.63, vs. 0.53% | Improved intestinal digestive and absorptive functions via affecting the mucosal antioxidant systems in a dose-dependent manner | Zong et al. [33] |
Tryptophan | 0.5 vs. 0.0% | Increased the VH and VCR but unaffected transport of macro molecules (indicating the gut permeability) | Koopmans et al. [45] |
Tryptophan | 0.4, 0.2, vs. 0.0% | Altered intestinal microbial composition and diversity; Improved intestinal mucosal barrier function | Liang et al. [58] |
Tryptophan | 0.75, 0.15, vs. 0.00% | Negatively affected intestinal morphology (increased CD, decreased VCR) and decreased the mRNA expression of some tight junction proteins | Tossou et al. [127] |
Threonine | 3.2, 2.2, 1.2, 0.5, vs. 0.0 g/kg | Increased the humoral antibody production and serum specific IgG concentrations | Wang et al. [128] |
Threonine | 11.1, 7.5, vs. 3.7 g/kg | Improved the intestinal morphology and mucosa immune function; had beneficial effects in maintaining jejunal morphology integrity and repairing villous damage caused by E. coli challenge | Ren et al. [42] |
Threonine | 0.2 vs. 0.0% | Improved the intestinal mucin synthesis and immune function; attenuated ileal inflammatory responses, of the intrauterine growth-retarded weanling piglets | Zhang et al. [71] |
Threonine | 0.12 vs. 0.00% | Seemed to have greater benefits with a simple diet (contained soybean meal as a protein source) than with a complex diet (contained animal protein sources) in intestinal morphology, production of gut microbial metabolites, and inflammatory status in the jejunum | Koo et al. [43] |
Branched-chain amino acids 5 | Leu (1.38 vs. 1.26%), Ile (0.80 vs. 0.60%), Val (1.01 vs. 0.74%) | Enhanced intestinal development (increased VH or reduced CD), and intestinal expression of several amino acid and peptide transporters | Zhang et al. [129] |
Aspartate | 1.0, 0.5, vs. 0.0% | Attenuated LPS-induced intestinal damage indicated by greater VH and VCR as well as higher RNA/DNA and protein/DNA ratios; Improved intestinal function indicated by increased mucosal disaccharidase activities; Improved intestinal energy status indicated by increased ATP, ADP and total adenine nucleotide contents, adenylate energy charge and decreased AMP/ATP ratio | Pi et al. [9] |
Lysine 6 | 1.60, 1.23, vs. 0.86% | Lysine restriction inhibited intestinal lysine transport, and enhanced the richness and evenness of the microbiota composition and diversity | Yin et al. [57] |
Amino acid blend (AAB) 7 | 1.00% AAB vs. 0.99% alanine | Improved the intestinal morphology, barrier function, and antioxidative capacity; Reduced the diarrhea incidence; Enhanced the intestinal expression of the heat shock protein-70 gene | Yi et al. [130] |
References
- de Lange, C.F.M.; Pluske, J.; Gong, J.; Nyachoti, C.M. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livest. Sci. 2010, 134, 124–134. [Google Scholar] [CrossRef]
- Pluske, J.R.; Verstegen, M.W.A.; Le Dividich, H. The Weaner Pig: Concepts and Consequences; Wageningen Academic Publishers: Wageningen, The Netherlands, 2003; pp. 15–383. [Google Scholar]
- Lallès, J.P.; Bosi, P.; Smidt, H.; Stokes, C.R. Nutritional management of gut health in pigs around weaning. Proc. Nutr. Soc. 2007, 66, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, B.; Nyachoti, C.M. Husbandry practices and gut health outcomes in weaned pigs: A review. Anim. Nutr. 2017, 3, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Tan, B.; Song, M.; Ji, P.; Kim, K.; Yin, Y.; Liu, Y. Nutritional intervention for the intestinal development and health of weaned pigs. Front. Vet. Sci. 2019, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J. Anim. Physiol. Anim. Nutr. 2013, 97, 207–237. [Google Scholar] [CrossRef] [PubMed]
- Muns, R.; Magowan, E. The effect of creep feed intake and starter diet allowance on piglets’ gut structure and growth performance after weaning. J. Anim. Sci. 2018, 96, 3815–3823. [Google Scholar] [CrossRef]
- Bonetti, A.; Tugnoli, B.; Piva, A.; Grilli, E. Towards zero zinc oxide: Feeding strategies to manage post-weaning diarrhea in piglets. Animals 2021, 11, 642. [Google Scholar] [CrossRef]
- Pi, D.; Liu, Y.; Shi, H.; Li, S.; Odle, J.; Lin, X.; Zhu, H.; Chen, F.; Hou, Y.; Leng, W. Dietary supplementation of aspartate enhances intestinal integrity and energy status in weanling piglets after lipopolysaccharide challenge. J. Nutr. Biochem. 2014, 25, 456–462. [Google Scholar] [CrossRef]
- Blok, M.C.; Vahl, H.A.; de Lange, L.; van de Braak, A.E.; Hemke, G.; Hessing, M. Nutrition and Health of the Gastrointestinal Tract, 1st ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2002; pp. 15–96. [Google Scholar]
- Ewing, W.N. The Living Gut, 2nd ed.; Nottingham University Press: Nottingham, UK, 2008; pp. 11–30. [Google Scholar]
- Xue, G.D.; Barekatain, R.; Wu, S.B.; Choct, M.; Swick, R.A. Dietary L-glutamine supplementation improves growth performance, gut morphology, and serum biochemical indices of broiler chickens during necrotic enteritis challenge. Poult. Sci. 2018, 97, 1334–1341. [Google Scholar] [CrossRef]
- Min, Y.N.; Liu, S.G.; Qu, Z.X.; Meng, G.H.; Gao, Y.P. Effects of dietary threonine levels on growth performance, serum biochemical indexes, antioxidant capacities, and gut morphology in broiler chickens. Poult. Sci. 2017, 96, 1290–1297. [Google Scholar] [CrossRef]
- Pluske, J.R.; Hampson, D.J.; Williams, I.H. Factors influencing the structure and function of the small intestine in the weaned pig: A review. Livest. Prod. Sci. 1997, 51, 215–236. [Google Scholar] [CrossRef]
- Wang, W.W.; Qiao, S.Y.; Li, D.F. Amino acids and gut function. Amino Acids 2009, 37, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Domeneghini, C.; Giancamillo, A.D.; Bosi, G.; Arrighi, S. Can nutraceuticals affect the structure of intestinal mucosa? Qualitative and quantitative microanatomy in L-glutamine diet-supplemented weaning piglets. Vet. Res. Comm. 2006, 30, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Watford, M. Glutamine and glutamate: Nonessential or essential amino acids? Anim. Nutr. 2015, 1, 119–122. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Feng, G.D.; Ao, X.; Li, Y.F.; Qian, H.X.; Liu, J.B.; Bai, G.Y.; He, Z.Z. Effects of L-glutamine on growth performance, antioxidant ability, immunity and expression of genes related to intestinal health in weanling pigs. Livest. Sci. 2016, 189, 102–109. [Google Scholar] [CrossRef]
- Cabrera, R.A.; Usry, J.L.; Arrellano, C.; Nogueira, E.T.; Kutschenko, M.; Moeser, A.J.; Odle, J. Effects of creep feeding and supplemental glutamine or glutamine plus glutamate (Aminogut) on pre- and post-weaning growth performance and intestinal health of piglets. J. Anim. Sci. Biotechnol. 2013, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Yi, G.F.; Carroll, J.A.; Allee, G.L.; Gaines, A.M.; Kendall, D.C.; Usry, J.L.; Toride, Y.; Izuru, S. Effect of glutamine and spray-dried plasma on growth performance, small intestinal morphology, and immune responses of Escherichia coli K88+-challenged weaned pigs. J. Anim. Sci. 2005, 83, 634–643. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Sun, L.H.; Lin, Y.C.; Ma, X.Y.; Zheng, C.T.; Zhou, G.L.; Chen, F.; Zou, S.T. Effects of dietary glycyl-glutamine on growth performance, small intestinal integrity, and immune responses of weaning piglets challenged with lipopolysaccharide. J. Anim. Sci. 2009, 87, 4050–4056. [Google Scholar] [CrossRef] [Green Version]
- Zou, T.D.; Deng, C.X.; Wang, Z.R.; Ye, Y.L.; You, J.M. Dietary alanyl-glutamine improves growth performance of weaned piglets through maintaining intestinal morphology and digestion–absorption function. Animal 2019, 13, 1826–1833. [Google Scholar] [CrossRef]
- Rezaei, R.; Knabe, D.A.; Tekwe, C.D.; Dahanayaka, S.; Ficken, M.D.; Fielder, S.E.; Eide, S.J.; Lovering, S.L.; Wu, G. Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 2013, 44, 911–923. [Google Scholar] [CrossRef]
- Lin, M.; Zhang, B.; Yu, C.; Li, J.; Zhang, L.; Sun, H.; Gao, F.; Zhou, G. L-Glutamate supplementation improves small intestinal architecture and enhances the expressions of jejunal mucosa amino acid receptors and transporters in weaning piglets. PLoS ONE 2014, 9, e111950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domeneghini, C.; Di Giancamillo, A.; Savoini, G.; Paratte, R.; Bontempo, V.; Dell’Orto, V. Structural patterns of swine ileal mucosa following L-glutamine and nucleotide administration during the weaning period. An histochemical and histometrical study. Histol. Histopathol. 2004, 19, 49–58. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Swine, 10th ed.; National Academies Press: Washington, DC, USA, 1998; pp. 16–46, 110–123. [Google Scholar]
- NRC (National Research Council). Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012; pp. 15–44, 208–238. [Google Scholar]
- Wu, G.; Knabe, D.A. Free and protein-bound amino acids in sow’s colostrums and milk. J. Nutr. 1994, 124, 415–424. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Johnson, G.A.; Hou, Y. Board-invited review: Arginine nutrition and metabolism in growing, gestating, and lactating swine. J. Anim. Sci. 2018, 96, 5035–5051. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Davis, P.K.; Flynn, N.E.; Knabe, D.A.; Davidson, J.T. Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J. Nutr. 1997, 127, 2342–3249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Ruan, Z.; Gao, Y.L.; Zhou, X.H.; Wang, L.; Geng, M.M.; Hou, Y.Q.; Wu, G.Y. Dietary supplementation with L-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet. Amino Acids 2010, 39, 831–839. [Google Scholar] [CrossRef]
- Yang, X.F.; Jiang, Z.Y.; Gong, Y.L.; Zheng, C.T.; Hu, Y.J.; Wang, L.; Huang, L.; Ma, X.Y. Supplementation of pre-weaning diet with L-arginine has carry-over effect to improve intestinal development in young piglets. Can. J. Anim. Sci. 2016, 96, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Zong, E.; Huang, P.; Zhang, W.; Li, J.; Li, Y.; Ding, X.; Xiong, X.; Yin, Y.; Yang, H. The effects of dietary sulfur amino acids on growth performance, intestinal morphology, enzyme activity, and nutrient transporters in weaning piglets. J. Anim. Sci. 2018, 96, 1130–1139. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, D.; Dai, Z.; Piao, X.; Wu, Z.; Wang, B.; Zhu, Y.; Zeng, Z. L-methionine supplementation maintains the integrity and barrier function of the small-intestinal mucosa in post-weaning piglets. Amino Acids 2014, 46, 1131–1142. [Google Scholar] [CrossRef]
- Kaewtapee, C.; Krutthai, N.; Poosuwan, K.; Poeikhampha, T.; Koonawootrittriron, S.; Bunchasak, C. Effects of adding liquid DL-methionine hydroxy analogue-free acid to drinking water on growth performance and small intestinal morphology of nursery pigs. J. Anim. Physiol. Anim. Nutr. 2010, 94, 395–404. [Google Scholar] [CrossRef]
- Shen, Y.B.; Weaver, A.C.; Kim, S.W. Effect of feed grade L-methionine on growth performance and gut health in nursery pigs compared with conventional DL-methionine. J. Anim. Sci. 2014, 92, 5530–5539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauchart-Thevret, C.; Cottrell, J.; Stoll, B.; Burrin, D.G. First-pass splanchnic metabolism of dietary cysteine in weanling pigs. J. Anim. Sci. 2011, 89, 4093–4099. [Google Scholar] [CrossRef] [Green Version]
- Stoll, B.; Henry, J.; Reeds, P.J.; Yu, H.; Jahoor, F.; Burrin, D.G. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J. Nutr. 1998, 128, 606–614. [Google Scholar] [CrossRef]
- van der Schoor, S.R.; Wattimena, D.L.; Huijmans, J.; Huijmans, J.; Vermes, A.; van Goudoever, J.B. The gut takes nearly all: Threonine kinetics in infants. Am. J. Clin. Nutr. 2007, 86, 1132–1138. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Zeng, X.; Qiao, S.; Li, D. Specific roles of threonine in intestinal mucosal integrity and barrier function. Front. Biosci. 2011, 3, 1192–1200. [Google Scholar] [CrossRef]
- Horn, N.L.; Donkin, S.S.; Applegate, T.J.; Adeola, O. Intestinal mucin dynamics: Response of broiler chicks and White Pekin ducklings to dietary threonine. Poult. Sci. 2009, 88, 1906–1914. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Liu, X.T.; Wang, X.; Zhang, G.J.; Qiao, S.Y.; Zeng, X.F. Increased levels of standardized ileal digestible threonine attenuate intestinal damage and immune responses in Escherichia coli K88+ challenged weaned piglets. Anim. Feed Sci. Technol. 2014, 195, 67–75. [Google Scholar] [CrossRef]
- Koo, B.; Choi, J.; Yang, C.; Nyachoti, C.M. Diet complexity and L-threonine supplementation: Effects on growth performance, immune response, intestinal barrier function, and microbial metabolites in nursery pigs. J. Anim. Sci. 2020, 98, skaa125. [Google Scholar] [CrossRef]
- Wang, X.; Qiao, S.; Yin, Y.; Yue, L.; Wang, Z.; Wu, G. A deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs. J. Nutr. 2007, 137, 1442–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koopmans, S.J.; Guzik, A.C.; van der Meulen, J.; Dekker, R.; Kogut, J.; Kerr, B.J.; Southern, L.L. Effects of supplemental L-tryptophan on serotonin, cortisol, intestinal integrity, and behavior in weanling piglets. J. Anim. Sci. 2006, 84, 963–971. [Google Scholar] [CrossRef]
- Le Floc’H, N.; Seve, B. Biological roles of tryptophan and its metabolism: Potential implications for pig feeding. Livest. Sci. 2007, 112, 23–32. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.; Tan, B.; Xiong, X.; Kong, X.F.; Xiao, D.F.; Xu, L.W.; Wu, M.M.; Huang, B.; Kim, S.W.; et al. Oral administration of putrescine and proline during the suckling period improve epithelial restitution after early weaning in piglets. J. Anim. Sci. 2015, 93, 1679–1688. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.F.; Nyachoti, C.M. Using probiotics to improve swine gut health and nutrient utilization. Anim. Nutr. 2017, 3, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Pluske, J.R.; Turpin, D.L.; Kim, J.C. Gastrointestinal tract (gut) health in the young pig. Anim. Nutr. 2018, 12, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Ma, X. Dietary amino acids and the gut-microbiome-immune axis: Physiological metabolism and therapeutic prospects. Compr. Rev. Food Sci. Food Saf. 2019, 18, 221–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Liao, S.F. Physiological effects of dietary amino acids on gut health and functions of swine. Front. Vet. Sci. 2019, 6, 169. [Google Scholar] [CrossRef]
- Dong, X.Y.; Azzam, M.M.M.; Zou, X.T. Effects of dietary threonine supplementation on intestinal barrier function and gut microbiota of laying hens. Poult. Sci. 2017, 96, 3654–3663. [Google Scholar] [CrossRef] [PubMed]
- Janczyk, P.; Halle, B.; Souffrant, W.B. Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris. Poult. Sci. 2009, 88, 2324–2332. [Google Scholar] [CrossRef]
- Schaart, M.W.; Schierbeek, H.; van der Schoor, S.R.; Stoll, B.; Burrin, D.G.; Reeds, P.J.; van Goudoever, J.B. Threonine utilization is high in the intestine of piglets. J. Nutr. 2005, 135, 765–770. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.P.; Cheng, Y.F.; Li, X.H.; Yang, W.L.; Wen, C.; Zhuang, S.; Zhou, Y.M. Effects of threonine supplementation on the growth performance, immunity, oxidative status, intestinal integrity, and barrier function of broilers at the early age. Poult. Sci. 2017, 96, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Faure, M.; Mettraux, C.; Moennoz, D.; Godin, J.-P.; Vuichoud, J.; Rochat, F.; Breuillé, D.; Obled, C.; Corthésy-Theulaz, I. Specific amino acids increase mucin synthesis and microbiota in dextran sulfate sodium-treated rats. J. Nutr. 2006, 136, 1558–1564. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Han, H.; Li, Y.; Liu, Z.; Zhao, Y.; Fang, R.; Huang, X.; Zheng, J.; Ren, W.; Wu, F.; et al. Lysine restriction affects feed intake and amino acid metabolism via gut microbiome in piglets. Cell Physiol. Biochem. 2017, 44, 1749–1761. [Google Scholar] [CrossRef]
- Liang, H.; Dai, Z.; Liu, N.; Ji, Y.; Chen, J.; Zhang, Y.; Yang, Y.; Li, J.; Wu, Z.; Wu, G. Dietary L-tryptophan modulates the structural and functional composition of the intestinal microbiome in weaned piglets. Front. Microbiol. 2018, 9, 1736. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Li, T.; Wu, L.; Xiao, D.F.; Blachier, F.; Yin, Y.L. Monosodium L-glutamate and dietary fat differently modify the composition of the intestinal microbiota in growing pigs. Obes. Facts. 2015, 8, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Burkey, T.E.; Skjolaas, K.A.; Minton, J.E. Board-invited review: Porcine mucosal immunity of the gastrointestinal tract. J. Anim. Sci. 2009, 87, 1493–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moeser, A.J.; Pohl, C.S.; Rajput, M. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Anim. Nutr. 2017, 3, 313–321. [Google Scholar] [CrossRef]
- Chase, C.C.L. Swine Gut Health—A Refresher. National Hog Farmer. 2018. Available online: https://www.nationalhogfarmer.com/animal-health/swine-gut-health-refresher (accessed on 31 March 2021).
- Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swiech, E.; Buraczewska, L.; Tusnio, A.; Taciak, M. The effects of supplementing a low-protein threonine-deficient diet with different sources of non-essential amino acids on nitrogen retention and gut structure in young pigs. Arch. Anim. Nutr. 2010, 64, 22–35. [Google Scholar] [CrossRef]
- Wu, M.; Xiao, H.; Liu, G.; Chen, S.; Tan, B.; Ren, W.; Bazer, F.W.; Wu, G.; Yin, Y. Glutamine promotes intestinal SIgA secretion through intestinal microbiota and IL-13. Mol. Nutr. Food Res. 2016, 60, 1637–1648. [Google Scholar] [CrossRef]
- Rhoads, J.M.; Wu, G. Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 2009, 37, 111–122. [Google Scholar] [CrossRef]
- Cheng, Z.; Buentello, A.; Gatlin, D.M., III. Effects of dietary arginine and glutamine on growth performance, immune responses and intestinal structure of red drum, Sciaenops Ocellatus. Aquaculture 2011, 319, 247–252. [Google Scholar] [CrossRef]
- Fritz, J.H. Arginine cools the inflamed gut. Infect. Immun. 2013, 81, 3500–3502. [Google Scholar] [CrossRef] [Green Version]
- Corl, B.A.; Odle, J.; Niu, X.; Moeser, A.J.; Gatlin, L.A.; Phillips, O.T.; Blikslager, A.T.; Rhoads, J.M. Arginine activates intestinal p70(S6k) and protein synthesis in piglet rotavivrus enteritis. J. Nutr. 2008, 138, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Nichols, N.L.; Bertolo, R.F. Luminal threonine concentration acutely affects intestinal mucosal protein and mucin synthesis in piglets. J. Nutr. 2008, 138, 1298–1303. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Chen, Y.; Li, Y.; Zhang, T.; Ying, Z.; Su, W.; Zhang, L.; Wang, T. L-Threonine improves intestinal mucin synthesis and immune function of intrauterine growth–retarded weanling piglets. Nutrition 2019, 59, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Htoo, J.K.; Liao, S.F. Methionine nutrition in swine and other monogastric animals: Beyond protein biosynthesis. Anim. Feed Sci. Technol. 2020, 268, 114608. [Google Scholar] [CrossRef]
- Grimble, R.F. Sulphur amino acids, glutathione and immune function. In Nutrition and Immune Function, 1st ed.; Calder, P.C., Field, C.J., Gill, H.S., Eds.; CABI Publishing: New York, NY, USA, 2002; pp. 133–150. [Google Scholar] [CrossRef]
- Grimble, R.F. The effects of sulfur amino acid intake on immune function in humans. J. Nutr. 2006, 136, 1660S–1665S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, E. Immune and cell modulation by amino acids. Clin. Nutr. 2007, 26, 535–544. [Google Scholar] [CrossRef]
- Rakhshandeh, A.; Htoo, J.K.; de Lange, C.F.M. Immune system stimulation of growing pigs does not alter apparent ileal amino acid digestibility but reduces the ratio between whole body nitrogen and sulfur retention. Livest. Sci. 2010, 134, 21–23. [Google Scholar] [CrossRef]
- Surai, P.F.; Fisinin, V.I. Antioxidant-prooxidant balance in the intestine: Applications in chick placement and pig weaning. J. Vet. Sci. Med. 2015, 3, 16. [Google Scholar]
- Lee, B.C.; Gladyshev, V.N. The biological significance of methionine sulfoxide stereochemistry. Free Radic. Biol. Med. 2011, 50, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, S.; Wu, H.; Wang, C.; Zhang, Q.; Jiao, L.; Lin, F.; Hu, C.H. Diquat-induced oxidative stress increases intestinal permeability, impairs mitochondrial function, and triggers mitophagy in piglets. J. Anim. Sci. 2018, 96, 1795–1805. [Google Scholar] [CrossRef]
- Zhu, L.H.; Zhao, K.L.; Chen, X.L.; Xu, J.X. Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs. J. Anim. Sci. 2012, 90, 2581–2589. [Google Scholar] [CrossRef] [PubMed]
- Stadtman, E.R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu. Rev. Biochem. 1993, 62, 797–821. [Google Scholar] [CrossRef] [PubMed]
- Katayama, S.; Mine, Y. Antioxidative activity of amino acids on tissue oxidative stress in human intestinal epithelial cell model. J. Agric. Food Chem. 2007, 55, 8458–8464. [Google Scholar] [CrossRef]
- Luo, S.; Levine, R.L. Methionine in proteins defends against oxidative stress. FASEB J. 2008, 23, 464–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowski, J.; Kubińska, M.; Zduńczyk, Z. Nutritional and immunomodulatory function of methionine in poultry diets—A review. Ann. Anim. Sci. 2016, 14, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Levine, R.L.; Berlett, B.S.; Moskovitz, J.; Mosoni, L.; Stadtman, E.R. Methionine residues may protect proteins from critical oxidative damage. Mech. Ageing Dev. 1999, 107, 323–332. [Google Scholar] [CrossRef]
- Castellano, R.; Perruchot, M.-H.; Conde-Aguilera, J.A.; van Milgen, J.; Collin, A.; Tesseraud, S.; Mercier, Y.; Gondret, F. A methionine deficient diet enhances adipose tissue lipid metabolism and alters anti-oxidant pathways in young growing pigs. PLoS ONE 2015, 10, e0130514. [Google Scholar] [CrossRef] [Green Version]
- Burrin, D.G.; Stoll, B. Metabolic fate and function of dietary glutamate in the gut. Am. J. Clin. Nutr. 2009, 90, 850S–856S. [Google Scholar] [CrossRef]
- Yin, J.; Liu, M.; Ren, W.; Duan, J.; Yang, G.; Zhao, Y.; Fang, R.; Chen, L.; Li, T.; Yin, Y. Effects of dietary supplementation with glutamate and aspartate on diquat-induced oxidative stress in piglets. PLoS ONE 2015, 10, e0122893. [Google Scholar] [CrossRef] [Green Version]
- Kim, H. Glutamine as an immunonutrient. Yonsei Med. J. 2011, 52, 892–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Z.; Li, T.; Wu, C.; Tao, L.; Blachier, F.; Yin, Y. Monosodium L-glutamate and dietary fat exert opposite effects on the proximal and distal intestinal health in growing pigs. Appl. Physiol. Nutr. Metab. 2015, 40, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.X.; Manchester, L.C.; Terron, M.P.; Flores, L.J.; Reiter, R.J. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal. Res. 2007, 42, 28–42. [Google Scholar] [CrossRef]
- Peyrot, F.; Ducrocq, C. Potential role of tryptophan derivatives in stress responses characterized by the generation of reactive oxygen and nitrogen species. J. Pineal Res. 2008, 45, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Yu, B.; Mao, X.B.; Zheng, P.; He, J.; Chen, D.W. Responses of growth performance and tryptophan metabolism to oxidative stress induced by diquat in weaned pigs. Animal 2012, 6, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.B.; Voilqué, G.; Kim, J.D.; Odle, J.; Kim, S.W. Effects of increasing tryptophan intake on growth and physiological changes in nursery pigs. J. Anim. Sci. 2012, 90, 2264–2275. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.B.; Voilqué, G.; Odle, J.; Kim, S.W. Dietary L-tryptophan supplementation with reduced large neutral amino acids enhances feed efficiency and decreases stress hormone secretion in nursery pigs under social-mixing stress. J. Nutr. 2012, 142, 1540–1546. [Google Scholar] [CrossRef] [Green Version]
- Zheng, P.; Yu, B.; He, J.; Tian, G.; Luo, Y.; Mao, X.; Zhang, K.; Che, L.; Chen, D. Protective effects of dietary arginine supplementation against oxidative stress in weaned piglets. Br. J. Nutr. 2013, 109, 2253–2260. [Google Scholar] [CrossRef] [Green Version]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [Green Version]
- Kagnoff, M.F. Immunology of the intestinal tract. Gastroenterology 1993, 105, 1275–1280. [Google Scholar] [CrossRef]
- Johnson, R.W. Inhibition of growth by pro-inflammatory cytokines: An integrated view. J. Anim. Sci. 1997, 75, 1244–1255. [Google Scholar] [CrossRef] [PubMed]
- Chau, J.Y.; Tiffany, C.M.; Nimishakavi, S.; Lawrence, J.A.; Pakpour, N.; Mooney, J.P.; Lokken, K.L.; Caughey, G.H.; Tsolis, R.M.; Luckhart, S. Malaria-associated L-arginine deficiency induces mast cell-associated disruption to intestinal barrier defenses against nontyphoidal Salmonella bacteremia. Infect. Immun. 2013, 81, 3515–3526. [Google Scholar] [CrossRef] [Green Version]
- McCole, D.F. The epithelial glycine transporter GLYT1: Protecting the gut from inflammation. J. Physiol. 2010, 588, 1033–1034. [Google Scholar] [CrossRef]
- Jacob, T.; Ascher, E.; Hingorani, A.; Kallakuri, S. Glycine prevents the induction of apoptosis attributed to mesenteric ischemia/reperfusion injury in a rat model. Surgery 2003, 134, 457–466. [Google Scholar] [CrossRef]
- Lee, M.A.; McCauley, R.D.; Kong, S.E.; Hall, J.C. Influence of glycine on intestinal ischemia-reperfusion injury. J. Parenter. Enteral. Nutr. 2002, 26, 130–135. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Cheng, Y.; Li, Y.; Wen, C.; Zhou, Y. Dietary L-threonine supplementation attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier damage of broiler chickens at an early age. Br. J. Nutr. 2018, 119, 1254–1262. [Google Scholar] [CrossRef]
- Akiba, Y.; Watanabe, C.; Mizumori, M.; Kaunitz, J.D. Luminal L-glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 297, G781–G791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, J.; Yin, J.; Wu, M.; Liao, P.; Deng, D.; Liu, G.; Wen, Q.; Wang, Y.; Qiu, W.; Liu, Y.; et al. Dietary glutamate supplementation ameliorates mycotoxin-induced abnormalities in the intestinal structure and expression of amino acid transporters in young pigs. PLoS ONE 2014, 9, e112357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhoads, J.M.; Argenzio, R.A.; Chen, W.; Rippe, R.A.; Westwick, J.K.; Cox, A.D.; Berschneider, H.M.; Brenner, D.A. L-glutamine stimulates intestinal cell proliferation and activates mitogen-activated protein kinases. Am. J. Physiol. 1997, 272, G943–G953. [Google Scholar] [CrossRef]
- Souba, W.W.; Klimberg, V.S.; Plumley, D.A.; Salloum, R.M.; Flynn, T.C.; Bland, K.I.; Copeland, E.M. The role of glutamine in maintaining a healthy gut and supporting the metabolic response to injury and infection. J. Surg. Res. 1990, 48, 383–391. [Google Scholar] [CrossRef]
- Kessel, A.; Toubi, E.; Pavlotzky, E.; Mogilner, J.; Coran, A.G.; Lurie, M.; Karry, R.; Sukhotnik, I. Treatment with glutamine is associated with down-regulation of Toll-like receptor-4 and myeloid differentiation factor 88 expression and decrease in intestinal mucosal injury caused by lipopolysaccharide endotoxaemia in a rat. Clin. Exp. Immunol. 2007, 151, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, M.A.; de Jong, J.; Vaessen, M.J.; van Leeuwen, P.A.; Houdijk, A.P. Glutamate reduces experimental intestinal hyperpermeability and facilitates glutamine support of gut integrity. World J. Gastroenterol. 2011, 17, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, K.K.; Shukla, P.K.; Mir, H.; Manda, B.; Gangwar, R.; Yadav, N.; McMullen, M.; Nagy, L.E.; Rao, R. Glutamine supplementation attenuates ethanol-induced disruption of apical junctional complexes in colonic epithelium and ameliorates gut barrier dysfunction and fatty liver in mice. J. Nutr. Biochem. 2016, 27, 16–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.; Chen, J.; Liu, S.; Liu, G.; Yao, K.; Yin, Y. L-Glutamine attenuates apoptosis induced by endoplasmic reticulum stress by activating the IRE1α-XBP1 axis in IPEC-J2: A novel mechanism of L-glutamine in promoting intestinal health. Int. J. Mol. Sci. 2017, 18, 2617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gannon, M.C.; Nuttall, J.A.; Nuttall, F.Q. The metabolic response to ingested glycine. Am. J. Clin. Nutr. 2002, 76, 1302–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Torres, I.A.; Zuniga-Munoz, M.; Guarner-Lans, V. Beneficial effects of the amino acid glycine. Mini Rev. Med. Chem. 2017, 17, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.J.; Kovacs-Nolan, J.; Yang, C.; Archbold, T.; Fan, M.Z.; Mine, Y. L-cysteine supplementation attenuates local inflammation and restores gut homeostasis in a porcine model of colitis. Biochem. Biophys. Acta. 2009, 1790, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Hasler, W.L. Lysine as a serotonin receptor antagonist: Using the diet to modulate gut function. Gastroenterology 2004, 127, 1004–1006. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Ren, W.; Duan, J.; Wu, L.; Chen, S.; Li, T.; Yin, Y.; Wu, G. Dietary arginine supplementation enhances intestinal expression of SLC7A7 and SLC7A1 and ameliorates growth depression in mycotoxin-challenged pigs. Amino Acids 2014, 46, 883–892. [Google Scholar] [CrossRef]
- Pluske, J.R. Feed- and feed additives-related aspects of gut health and development in weanling pigs. J. Anim. Sci. Biotechnol. 2013, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Yao, K.; Guan, S.; Li, T.; Huang, R.; Wu, G.; Ruan, Z.; Yin, Y. Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. Br. J. Nutr. 2011, 105, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.L.; Liu, Y.L.; Xie, X.L.; Huang, J.J.; Hou, Y.Q. Effect of L-arginine on intestinal mucosal immune barrier function in weaned pigs after Escherichia coli LPS challenge. Innate Immun. 2012, 19, 242–252. [Google Scholar] [CrossRef]
- Zheng, P.; Yu, B.; He, J.; Yu, J.; Mao, X.; Luo, Y.; Luo, J.; Huang, Z.; Tian, G.; Zeng, Q.; et al. Arginine metabolism and its protective effects on intestinal health and functions in weaned piglets under oxidative stress induced by diquat. Br. J. Nutr. 2017, 117, 1495–1502. [Google Scholar] [CrossRef] [Green Version]
- Ewaschuk, J.B.; Murdoch, G.K.; Johnson, I.R.; Madsen, K.L.; Field, C.J. Glutamine supplementation improves intestinal barrier function in a weaned piglet model of Escherichia coli infection. Br. J. Nutr. 2011, 106, 870–877. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhang, Y.; Liu, Z.; Li, T.J.; Yin, Y.L. Effects of oral supplementation with glutamate or combination of glutamate and N-carbamylglutamate on intestinal mucosa morphology and epithelium cell proliferation in weanling piglets. J. Anim. Sci. 2012, 90, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Zhang, H.; Ying, Z.; Li, Y.; Zhou, L.; Wang, F.; Zhang, L.; Wang, T. Effects of dietary L-methionine supplementation on intestinal integrity and oxidative status in intrauterine growth-retarded weanling piglets. Eur. J. Nutr. 2018, 57, 2735–2745. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.C.; Yang, S.F.; Zhu, L.H.; Cai, X.; Sheng, Y.S.; Zhu, S.W.; Xu, J.X. Regulation of N-acetyl cysteine on gut redox status and major microbiota in weaned piglets. J. Anim. Sci. 2014, 92, 1504–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Z.; Liu, J.; Sun, Z.; Li, J.; Sun, W.; Mao, J.; Wang, Y. Protective effects of taurine on growth performance and intestinal epithelial barrier function in weaned piglets challenged without or with lipopolysaccharide. Anim. Prod. Sci. 2018, 58, 2011–2020. [Google Scholar] [CrossRef]
- Tossou, M.B.; Liu, H.; Bai, M.; Chen, S.; Cai, Y.; Duraipandiyan, V.; Liu, H.; Adebowale, T.O.; Al-Dhabi, N.A.; Long, L. Effect of high dietary tryptophan on intestinal morphology and tight junction protein of weaned pig. BioMed Res. Int. 2016, 2016, 2912418. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qiao, S.Y.; Liu, M.; Ma, Y.X. Effects of graded levels of true ileal digestible threonine on performance, serum parameters and immune function of 10–25 kg pigs. Anim. Feed Sci. Technol. 2006, 129, 264–278. [Google Scholar] [CrossRef]
- Zhang, S.; Qiao, S.; Ren, M.; Zeng, X.; Ma, X.; Wu, Z.; Thacker, P.; Wu, G. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs. Amino Acids 2013, 45, 1191–1205. [Google Scholar] [CrossRef] [PubMed]
- Yi, D.; Li, B.; Hou, Y.; Wang, L.; Zhao, D.; Chen, H.; Wu, T.; Zhou, Y.; Ding, B.; Wu, G. Dietary supplementation with an amino acid blend enhances intestinal function in piglets. Amino Acids 2018, 50, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, S.F. Invited Review: Maintain or Improve Piglet Gut Health around Weanling: The Fundamental Effects of Dietary Amino Acids. Animals 2021, 11, 1110. https://doi.org/10.3390/ani11041110
Liao SF. Invited Review: Maintain or Improve Piglet Gut Health around Weanling: The Fundamental Effects of Dietary Amino Acids. Animals. 2021; 11(4):1110. https://doi.org/10.3390/ani11041110
Chicago/Turabian StyleLiao, Shengfa F. 2021. "Invited Review: Maintain or Improve Piglet Gut Health around Weanling: The Fundamental Effects of Dietary Amino Acids" Animals 11, no. 4: 1110. https://doi.org/10.3390/ani11041110
APA StyleLiao, S. F. (2021). Invited Review: Maintain or Improve Piglet Gut Health around Weanling: The Fundamental Effects of Dietary Amino Acids. Animals, 11(4), 1110. https://doi.org/10.3390/ani11041110