Indigenous Slaughter Techniques: Effects on Meat Physico-Chemical Characteristics of Nguni Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Compliance with Ethical Clearance
2.2. Goats and Experimental Design
2.3. Treatments
2.4. Meat Sampling and Storage
2.5. Measurements
2.5.1. Meat pH
2.5.2. Meat Colour
2.5.3. Drip Loss and Water Holding Capacity
2.5.4. Cooking Loss and Shear Force
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TNI | transverse neck incision |
SNP | suprasternal notch piercing |
CFP | under shoulder blade chest floor point of elbow piercing |
LTL | muscle longissimus thoracis et lumborum |
a* | Redness |
b* | Yellowness |
C* | chroma values |
FAOSTAT | Food and Agriculture Organization Corporate Statistical |
L | litre |
WHC | Water holding capacity |
GLM | general linear model |
SAS | statistical analysis software |
PDIFF | Requests that p-values for differences |
DFD | dark: firm and dry |
References
- Webb, E.C.; O’Neill, H.A. The animal fat paradox and meat quality. Meat Sci. 2008, 80, 28–36. [Google Scholar] [CrossRef] [PubMed]
- FAOSAT. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QA2020 (accessed on 18 May 2020).
- Mapiye, C.; Chimonyo, M.; Dzama, K.; Raats, J.G.; Mapekula, M. Opportunities for improving Nguni cattle production in the smallholder farming systems of South Africa. Livest. Sci. 2009, 124, 196–204. [Google Scholar] [CrossRef]
- Mdletshe, Z.M.; Chimonyo, M.; Marufu, M.C.; Nsahlai, I.V. Effects of saline water consumptions on physiological responses in Nguni goats. Small Rumin Res. 2017, 153, 209–211. [Google Scholar] [CrossRef]
- Lebbie, S.H.B. Goats under household conditions. Small Rumin Res. 2004, 51, 131–136. [Google Scholar] [CrossRef]
- Rumosa Gwaze, F.; Chimonyo, M.; Dzama, K. Communal goat production in Southern Africa: A review. Trop. Anim. Health Prod. 2009, 41, 1157–1168. [Google Scholar] [CrossRef]
- Mdletshe, Z.M.; Ndlela, S.Z.; Nsahlai, I.V.; Chimonyo, M. Farmer perceptions on factors influencing water scarcity for goats in resource-limited communal farming environments. Trop. Anim. Health Prod. 2018, 50, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Mohlatlole, R.P.; Dzomba, E.F.; Muchadeyi, F.C. Addressing production challenges in goat production systems of South Africa: The genomics approach. Small Rumin Res. 2015, 131, 43–49. [Google Scholar] [CrossRef]
- National Agriculture Marketing Council. Report on the Investigation into the Potential for the South African Goat Industry. 2005. Available online: https://www.nda.agric.za/docs/AAPS/NAMC1.pdf (accessed on 19 May 2020).
- Msimang, C.T. Kusadliwa Ngoludala, 2nd ed.; Shuter & Shooter (Pty) Ltd.: Pietermaritzburg, South Africa, 2007. [Google Scholar]
- Qekwana, D.N.; Oguttu, J.W. Assessment of Food Safety Risks Associated with preslaughter activities during the traditional slaughter of goats in Gauteng, South Africa. J. Food Prot. 2014, 77, 1031–1037. [Google Scholar] [CrossRef] [Green Version]
- Mdletshe, Z.M.; Marufu, M.C.; Chimonyo, M. Effect of Indigenous Slaughter Methods on the Behavioural Response, Bleeding Efficiency and Cardiac Arrest of Nguni Goats. Animals 2020, 10, 247. [Google Scholar] [CrossRef] [Green Version]
- Ntuli, M.S. Ucwaningo Olunzulu Ngesiko Lokubuyisa Ithongo. Master’s Thesis, University of Zululand, Empangeni, South Africa, 2004. [Google Scholar]
- Qekwana, D.N.; McCrindle, C.M.E.; Oguttu, J.W.; Grace, D. Assessment of the occupational health and food safety risks associated with the traditional slaughter and consumption of goats in Gauteng, South Africa. Int. J. Environ. Res. Public Health 2017, 14, 420. [Google Scholar] [CrossRef] [Green Version]
- Velarde, A.; Gispert, M.; Diestre, A.; Manteca, X. Effect of electrical stunning on meat and carcass quality in lambs. Meat Sci. 2003, 63, 35–38. [Google Scholar] [CrossRef]
- Sabow, A.B.; Sazili, A.Q.; Zulkifil, I.; Goh, Y.M.; AB Kadir, M.Z.A.; Adeyemi, K.D. Physico-chemical characteristics of Longissimus lumborum muscle in goats subjected to halal slaughter and anesthesia (halothane) pre-slaughter. Anim. Sci. J. 2015, 86, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Sabow, A.B.; Adeyemi, K.D.; Idrus, Z.; Meng, G.Y.; Kadir, M.Z.A.A.; Kaka, U.; Aghwan, Z.A.; Abubakar, A.A.; Sazili, A.Q. Carcase characteristics and meat quality assessments in goats subjected to slaughter without stunning and slaughter following different methods of electrical stunning. Ital. J. Anim. Sci. 2017, 16, 416–430. [Google Scholar] [CrossRef] [Green Version]
- Snyman, M.A. South African Goat Breeds: Indigenous Veld Goat. Info-Pack Ref. 2014/004; Grootfontein Agricultural Development Institute: Great Karoo, South Africa, 2014. [Google Scholar]
- Ncube, K.T.; Hadebe, K.; Dzomba, E.F.; Soma, P.; Frylinck, L.; Muchadeyi, F.C. Relationship between population genomic structure and growth profiles of South African goats under different production systems. Trop. Anim. Health Prod. 2020, 52, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Kiran, M.; Naveena, B.M.; Smrutirekha, M.; Baswa Reddy, P.; Rituparna, B.; Praveen Kumar, Y.; Venkatesh, C.; Rapole, S. Traditional halal slaughter without stunning versus slaughter with electrical stunning of sheep (Ovis aries). Meat Sci. 2019, 148, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Honikel, K.O. Reference Methods for the Assessment of Physical Characteristics of Meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Christensen, L.B. Drip loss sampling in porcine m. longissimus dorsi. Meat Sci. 2003, 63, 469–477. [Google Scholar] [CrossRef]
- Tayengwa, T.; Chikwanha, O.C.; Dugan, M.E.R.; Mutsvangwa, T.; Mapiye, C. Influence of feeding fruit by-products as alternative dietary fibre sources to wheat bran on beef production and quality of Angus steer. Meat Sci. 2020, 161, 107969. [Google Scholar] [CrossRef]
- Webb, E.C. Goat meat production, composition, and quality. Anim. Front. 2014, 4, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Purslow, P.P.; Oiseth, S.; Hughes, J.; Warner, R.D. The structural basis of cooking loss in beef: Variations with temperatures and ageing. Food Res. J. 2016, 89, 739–748. [Google Scholar] [CrossRef]
- Cheng, J.; He, Z.; Qin, F.; Cheng, J.; Cao, D.; Guo, F.; Zeng, M. Inhibitory profiles of spices against free and protein-bound heterocyclic amines of roast beef patties as revealed by ultra-performance liquid chromatography–tandem mass spectrometry and principal component analysis. Food Funct. 2017. [Google Scholar] [CrossRef]
- SAS. Statistical Analysis System Institute Inc. Users Guide, Version 9.4; SAS: Carry, NC, USA, 2010. [Google Scholar]
- Simela, L.; Webb, E.C.; Frylinck, L. Effect of sex, age, and pre-slaughter conditioning on pH, temperature, tenderness and colour of indigenous South African goats. S. Afr. J. Anim. Sci. 2004, 34, 208–211. [Google Scholar]
- Xazela, N.M.; Chimonyo, M.; Muchenje, V.; Marume, U. Effects of sunflower cake supplementation on meat quality of indigenous goat genotypes of South Africa. Meat Sci. 2012, 90, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.B.; Warner, R.D.; Rosenvold, K. Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: A review. Anim, Prod. Sci. 2014, 54, 375–395. [Google Scholar] [CrossRef] [Green Version]
- Sabow, A.B.; Goh, Y.M.; Zulkifli, I.; Sazili, A.Q.; Ab Kadir, M.Z.A.; Kaka, U.; Khadijah, N.; Adeyemi, K.D.; Ebrahimi, M. Electroencephalographic responses to neck cut and exsanguination in minimally anaesthetized goats. S. Afr. J. Anim. Sci. 2017, 47, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Bozzo, G.; Barrasso, R.; Marchetti, P.; Roma, R.; Samoilis, G.; Tantillo, G.; Ceci, E. Analysis of Stress Indicators for Evaluation of Animal Welfare and Meat Quality in Traditional and Jewish Slaughtering. Animals 2018, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Sabow, A.B.; Goh, Y.M.; Zulkifli, I.; Sazil, A.Q.; Kaka, U.; Ab Kadi, M.Z.A.; Ebrahimi, M.; Nakyinsige, K.D.; Adeyemi, K.D. Blood parameters and electroencephalographic responses of goats to slaughter without stunning. Meat Sci. 2016, 121, 148–155. [Google Scholar] [CrossRef]
- McKeith, R.O.; King, D.A.; Grayson, A.L.; Shackelford, S.D.; Gehring, K.B.; Savell, J.W.; Wheeler, T.L. Mitochondrial abundance and efficiency contribute to lean color of dark cutting beef. Meat Sci. 2016, 116, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hopkins, D.L.; Zhao, X.; van de Ven, R.; Mao, Y.; Zhu, L.; Luo, X. Characterisation of pH decline and meat color development of beef carcasses during the early post-mortem period in a Chinese beef cattle abattoir. J. Integr. Agric. 2018, 17, 1691–1695. [Google Scholar] [CrossRef]
- Warriss, P.D. Meat Science: An Introductory Text, 2nd ed.; CABI: Wallingford, UK, 2010. [Google Scholar]
- Lindahl, G.; Lundström, K.; Tornberg, E. Contribution of pigment content, myoglobin forms and internal reflectance to the colour of pork loin and ham from pure breed pigs. Meat Sci. 2001, 59, 141–151. [Google Scholar] [CrossRef]
- Karamucki, T.; Jakubowska, M.; Rybarczyk, A.; Gardzielewska, J. The influence of myoglobin on the colour of minced pork loin. Meat Sci. 2013, 94, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Hernández, B.; Sáenz, C.; Alberdi, C.; Diñeiro, J.M. CIELAB color coordinates versus relative proportions of myoglobin redox forms in the description of fresh meat appearance. Int. J. Food Sci. Technol. 2016, 53, 4159–4167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abril, M.; Campo, M.M.; Önenç, A.; Sañudo, C.; Albertí, P.; Negueruela, A.I. Beef colour evolution as a function of ultimate pH. Meat Sci. 2001, 58, 69–78. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Ijaz, M.; Tian, G.; Chen, J.; Du, M. Colour characteristics of beef longissimus thoracis during early 72 h postmortem. Meat Sci. 2020, 170, 108245. [Google Scholar] [CrossRef] [PubMed]
- Gašperlin, L.; Žlender, B.; Abram, V. Colour of norma land high pH beef heated to different temperatures as related to oxygenation. Meat Sci. 2000, 54, 391–398. [Google Scholar] [CrossRef]
- Lindahl, G.; Karlsson, A.H.; Lundström, K.; Andersen, H.J. Significance of storage time on degree of blooming and colour stability of pork loin from different crossbreeds. Meat Sci. 2006, 72, 603–612. [Google Scholar] [CrossRef]
- Vergara, H.; Linares, M.B.; Berruga, M.I.; Gallego, L. Meat quality in suckling lambs: Effect of pre-slaughter handling. Meat Sci. 2005, 69, 473–478. [Google Scholar] [CrossRef]
- Agbeniga, B.; Webb, E.C.; O’Neil, H.A. Influence of Kosher (Shechita) and conventional slaughter techniques on shear force, drip and cooking loss of beef. S. Afr. J. Anim. Sci. 2013, 43, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Ponnampalam, E.N.; Hopkins, D.L.; Bruce, H.; Li, D.; Baldi, G.; Bekhit, A.E. Causes and Contributing Factors to “Dark Cutting” Meat: Current Trends and Future Directions: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 400–430. [Google Scholar] [CrossRef] [Green Version]
- Frimpong, S.; Gebresenbet, G.; Bobobee, E.; Aklaku, E.D.; Hamdu, I. Effect of Transportation and Pre-Slaughter Handling on Welfare and Meat Quality of Cattle: Case Study of Kumasi Abattoir, Ghana. Vet. Sci. 2014, 1, 174–191. [Google Scholar] [CrossRef] [Green Version]
- Ndou, S.P.; Muchenje, V.; Chimonyo, M. Behavioural responses of four goat genotypes to successive handling at the farm. Afr. J. Biotechnol. 2010, 9, 8118–8124. [Google Scholar]
Variable | Slaughter Method | Significance | ||
---|---|---|---|---|
TNI | SNP | CFP | ||
Intial weight | 17.3 ± 0.31 | 16.5 ± 0.42 | 16.1 ± 0.38 | NS |
Dressed weight | 8.44 ± 0.31 | 8.80 ± 0.42 | 8.67 ± 0.38 | NS |
pH45 min | 7.79 ± 0.10 | 7.69 ± 0.10 | 7.58 ± 0.10 | NS |
pH24 h | 6.40 ± 0.13 b | 6.82 ± 0.13 a | 6.42 ± 0.13 b | * |
Drip loss (%) | 3.0 ± 0.75 | 1.75 ± 0.87 | 1.88 ± 0.75 | NS |
Water holding capacity (%) | 74.2 ± 1.28 | 75.6 ± 2.21 | 72.9 ± 1.57 | NS |
Colour parameters | ||||
a* | 16.4 ± 0.56 a | 14.7 ± 0.56 b | 16.3 ± 0.56 a | * |
b* | 13.5 ± 0.61 a | 11.5 ± 0.61 b | 13.2 ± 0.61 a | * |
L* | 29.5 ± 1.02 | 28.3 ± 1.02 | 30.6 ± 1.02 | NS |
H* | 0.69 ± 0.01 | 0.66 ± 0.01 | 0.68 ± 0.01 | NS |
C* | 21.2 ± 0.78 a | 18.7 ± 0.78 b | 21.0 ± 0.78 a | * |
Cooking loss (%) | 22.7 ± 2.3 | 21.6 ± 3.0 | 19.4 ± 2.6 | NS |
Shear force (N) | 9.52 ± 0.72 | 10.7 ± 0.83 | 10.6 ± 0.72 | NS |
Dressing (%) | 48.8 ± 1.74 | 53.4 ± 2.34 | 53.9 ± 2.13 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mdletshe, Z.M.; Chimonyo, M.; Mapiye, C. Indigenous Slaughter Techniques: Effects on Meat Physico-Chemical Characteristics of Nguni Goats. Animals 2021, 11, 858. https://doi.org/10.3390/ani11030858
Mdletshe ZM, Chimonyo M, Mapiye C. Indigenous Slaughter Techniques: Effects on Meat Physico-Chemical Characteristics of Nguni Goats. Animals. 2021; 11(3):858. https://doi.org/10.3390/ani11030858
Chicago/Turabian StyleMdletshe, Zwelethu Mfanafuthi, Michael Chimonyo, and Cletos Mapiye. 2021. "Indigenous Slaughter Techniques: Effects on Meat Physico-Chemical Characteristics of Nguni Goats" Animals 11, no. 3: 858. https://doi.org/10.3390/ani11030858
APA StyleMdletshe, Z. M., Chimonyo, M., & Mapiye, C. (2021). Indigenous Slaughter Techniques: Effects on Meat Physico-Chemical Characteristics of Nguni Goats. Animals, 11(3), 858. https://doi.org/10.3390/ani11030858