Horse Clinical Cytogenetics: Recurrent Themes and Novel Findings
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Horse Chromosomes
2.1. Chromosome Number
2.2. Application of Different Chromosome Banding Techniques
2.3. Karyotype Features and Chromosome Nomenclature
3. Chromosome Aberrations
3.1. Emerging Patterns of Chromosome Abnormalities—Large-Scale Studies
3.2. Sex Chromosome Aneuploidies
3.3. Autosomal Aneuploidies
3.4. Structural Rearrangements
3.5. Chimerism
3.6. Cytogenetics of Sex Reversal Conditions
4. Molecular Cytogenetic Methods and Applications
4.1. Fluorescence In Situ Hybridization (FISH)
4.2. Application of FISH in Horse Clinical Cytogenetics
4.3. Cytogenetic Evaluation of Stallions by Sperm-FISH
4.4. Whole Genome Analysis by Comparative Genomic Hybridization and Sequencing
4.5. Immunolocalization of Chromosomal Proteins
4.6. STR Genotyping in Cytogenetics—Advantages and Limitations
5. Molecular Underpinnings of the Unique Patterns of Horse Chromosome Abnormalities
6. Summary and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bowling, A.T. Horse Genetics; CAB International: Wallingford, UK, 1996; p. 200. [Google Scholar]
- Bailey, E.; Brooks, S.A. Horse Genetics, 2nd ed.; CAB International: Wallingford, UK, 2013; p. 200. [Google Scholar]
- Chowdhary, B.P.; Raudsepp, T. Cytogenetics and physical gene maps. In The Genetics of the Horse; Bowling, A.T., Ruvinsky, A., Eds.; CABI: Wallingford, UK, 2000; pp. 171–242. [Google Scholar]
- Durkin, K.; Raudsepp, T.; Chowdhary, B. Cytogenetic Evaluation of the Stallion. In Equine Reproduction; Vaala, W.E., Varner, D.D., Eds.; Wiley Blackwell: Chichester, UK, 2011; pp. 1462–1468. [Google Scholar]
- Lear, T.L.; Villagomez, D.A.F. Cytogenetic evaluation of mares and foals. In Equine Reproduction; Vaala, W.E., Varner, D.D., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2011; pp. 1951–1962. [Google Scholar]
- Penedo, M.C.T.; Raudsepp, T. Molecular Genetic Testing and Karyotyping in the Horse. In Equine Genomics; Chowdhary, B.P., Ed.; Wiley-Blackwell: Oxford, UK, 2013; pp. 241–254. [Google Scholar]
- Raudsepp, T.; Das, P.J. Genomics of reproduction and fertility. In Equine Genomics; Chowdhary, B.P., Ed.; Wiley-Blackwell: Oxford, UK, 2013; pp. 199–216. [Google Scholar]
- Power, M.M. Chromosomes of the horse. Adv. Vet. Sci. Comp. Med. 1990, 34, 131–167. [Google Scholar]
- Lear, T.L.; Bailey, E. Equine clinical cytogenetics: The past and future. Cytogenet. Genome Res. 2008, 120, 42–49. [Google Scholar] [CrossRef]
- Lear, T.L.; McGee, R.B. Disorders of sexual development in the domestic horse, Equus caballus. Sex. Dev. 2012, 6, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Villagomez, D.A.; Iannuzzi, L.; King, W.A. Disorders of sex development in domestic animals. Preface. Sex. Dev. 2012, 6, 5–6. [Google Scholar]
- Villagomez, D.A.; Parma, P.; Radi, O.; di Meo, G.; Pinton, A.; Iannuzzi, L.; King, W.A. Classical and molecular cytogenetics of disorders of sex development in domestic animals. Cytogenet. Genome Res. 2009, 126, 110–131. [Google Scholar] [CrossRef] [PubMed]
- Szczerbal, I.; Switonski, M. Chromosome Abnormalities in Domestic Animals as Causes of Disorders of Sex Development or Impaired Fertility. Insights Anim. Reprod. 2016, 9, 207–225. [Google Scholar]
- Raudsepp, T.; Chowdhary, B.P. Chromosome Aberrations and Fertility Disorders in Domestic Animals. Annu. Rev. Anim. Biosci. 2016, 4, 15–43. [Google Scholar] [CrossRef]
- Raudsepp, T.; Finno, C.J.; Bellone, R.R.; Petersen, J.L. Ten years of the horse reference genome: Insights into equine biology, domestication and population dynamics in the post-genome era. Anim. Genet. 2019, 50, 569–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirillow, S. Die Spermatogenese beim Pferde. Arch. Fuer Mikrosk. Anat. 1912, 79, A125–A127. [Google Scholar] [CrossRef]
- Masui, K. A spermatogenesis of domestic mammals. I. The spermatogenesis of the horse (Equus caballus). J. Coll. Agric. Tokyo Imp. Univ. 1919, 3. [Google Scholar]
- Painter, T.S. Studies in mammalian spermatogenesis. V. The chromosomes of the horse. J. Exp. Zool. 1924, 39, 229–247. [Google Scholar] [CrossRef]
- Wodsedalek, J.E. Spermatogenesis of the horse with special reference to the accessory chromosome and the chromatoid body. Biol. Bull. 1914, 27, 295–325. [Google Scholar] [CrossRef]
- Makino, S. The chromosomes of the horse (Equus caballus). Cytologia 1942, 13, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Rothfels, K.H.; Alexrad, A.A.; Siminovitch, L.; Parker, R.C.M. The origin of altered cell lines from mouse, monkey and man, as indicated by chromosome and transplantation studies. Proc. Can. Cancer Res. Conf. 1959, 3, 189–214. [Google Scholar]
- Moorhead, P.S.; Nowell, P.C.; Mellman, W.J.; Battips, D.M.; Hungerford, D.A. Chromosome preparations of leucocytes cultured from human peripheral blood. Exp. Cell Res. 1960, 20, 613–616. [Google Scholar] [CrossRef]
- Makino, S.; Sofuni, T.; Sasaki, M.S. A revised study of the chromosomes of the horse, the ass and the mule. Proc. Jpn. Acad. 1963, 39, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Seabright, M. A rapid banding technique for human chromosomes. Lancet 1971, 2, 971–972. [Google Scholar] [CrossRef]
- Schweizer, D.; Ambros, P.; Andrle, M. Modification of DAPI banding on human chromosomes by prestaining with a DNA-binding oligopeptide antibiotic, distamycin A. Exp. Cell Res. 1978, 111, 327–332. [Google Scholar] [CrossRef]
- Arrighi, F.E.; Hsu, T.C. Localization of heterochromatin in human chromosomes. Cytogenetics 1971, 10, 81–86. [Google Scholar] [CrossRef]
- Mendoza, M.N.; Schalnus, S.A.; Thomson, B.; Bellone, R.R.; Juras, R.; Raudsepp, T. Novel complex unbalanced dicentric X-autosome rearrangement in a Thoroughbred mare with a mild effect on the phenotype. Cytogenet. Genome Res. 2020, 160, 597–609. [Google Scholar] [CrossRef]
- Raudsepp, T.; Durkin, K.; Lear, T.L.; Das, P.J.; Avila, F.; Kachroo, P.; Chowdhary, B.P. Molecular heterogeneity of XY sex reversal in horses. Anim. Genet. 2010, 41 (Suppl. 2), 41–52. [Google Scholar] [CrossRef]
- Dutrillaux, B.; Lejeune, J. A new technic of analysis of the human karyotype. C R Acad. Hebd. Seances Acad. Sci. D 1971, 272, 2638–2640. [Google Scholar]
- Goodpasture, C.; Bloom, S.E. Visualization of nucleolar organizer regions im mammalian chromosomes using silver staining. Chromosoma 1975, 53, 37–50. [Google Scholar] [CrossRef]
- Iannuzzi, L.; di Meo, G.P.; Perucatti, A.; Incarnato, D.; Peretti, V.; Ciotola, F.; Barbieri, V. An improved characterization of horse (Equus caballus, 2n = 64) chromosomes by using replicating G and R banding patterns. Caryologia 2003, 56, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Rønne, M. Putative fragile sites in the horse karyotype. Hereditas 1992, 117, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Wnuk, M.; Villagomez, D.A.; Bugno-Poniewierska, M.; Tumidajewicz, P.; Carter, T.F.; Slota, E. Nucleolar organizer regions (NORs) distribution and behavior in spermatozoa and meiotic cells of the horse (Equus caballus). Theriogenology 2012, 77, 579–587. [Google Scholar] [CrossRef]
- Ford, C.E.; Pollock, D.L.; Gustavsson, I. Proceedings of the First International Conference for the Standardisation of Banded Karyotypes of Domestic Animals. University of Reading Reading, England, 2nd–6th August 1976. Hereditas 1980, 92, 145–162. [Google Scholar] [CrossRef] [PubMed]
- Richer, C.L.; Power, M.M.; Klunder, L.R.; McFeely, R.A.; Kent, M.G. Standard karyotype of the domestic horse (Equus caballus). Committee for standardized karyotype of Equus caballus. The Second International Conference for Standardization of Domestic Animal Karyotypes, INRA, Jouy-en Josas, France, 22nd–26th May 1989. Hereditas 1990, 112, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Bowling, A.T.; Breen, M.; Chowdhary, B.P.; Hirota, K.; Lear, T.; Millon, L.V.; Ponce, D.L.F.; Raudsepp, T.; Stranzinger, G. International system for cytogenetic nomenclature of the domestic horse. Report of the Third International Committee for the Standardization of the domestic horse karyotype, Davis, CA, USA 1996. Chromosome Res. 1997, 5, 433–443. [Google Scholar] [CrossRef]
- Das, P.J.; Lyle, S.K.; Beehan, D.; Chowdhary, B.P.; Raudsepp, T. Cytogenetic and molecular characterization of Y isochromosome in a 63XO/64Xi(Yq) mosaic karyotype of an intersex horse. Sex. Dev. 2012, 6, 117–127. [Google Scholar] [CrossRef]
- Janečka, J.E.; Davis, B.W.; Ghosh, S.; Paria, N.; Das, P.J.; Orlando, L.; Schubert, M.; Nielsen, M.K.; Stout, T.A.E.; Brashear, W.; et al. Horse Y chromosome assembly displays unique evolutionary features and putative stallion fertility genes. Nat. Commun. 2018, 9, 2945. [Google Scholar] [CrossRef] [Green Version]
- Wade, C.M.; Giulotto, E.; Sigurdsson, S.; Zoli, M.; Gnerre, S.; Imsland, F.; Lear, T.L.; Adelson, D.L.; Bailey, E.; Bellone, R.R.; et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 2009, 326, 865–867. [Google Scholar] [CrossRef] [Green Version]
- Deryusheva, S.E.; Loginova, Y.A.; Chiryaeva, O.G.; Yaschak, K.; Smirnov, A.F. Distribution of ribosomal RNA genes on chromosomes of domestic horse (Equus caballus) revealed by fluorescence in situ hybridization. Genetika 1997, 33, 1281–1286. (In Russian) [Google Scholar]
- Loginova, J.; Derjusheva, S.; Jasczak, K. Some cases of NOR instability in horse chromosomes. Cytogenet. Cell Genet. 1996, 74, 236. [Google Scholar]
- Payne, H.W.; Ellsworth, K.; DeGroot, A. Aneuploidy in an infertile mare. J. Am. Vet. Assoc. 1968, 153, 1293–1299. [Google Scholar]
- Chandley, A.C.; Fletcher, J.; Rossdale, P.D.; Peace, C.K.; Ricketts, S.W.; McEnery, R.J.; Thorne, J.P.; Short, R.V.; Allen, W.R. Chromosome abnormalities as a cause of infertility in mares. J. Reprod. Fertil. Suppl. 1975, 377–383. [Google Scholar]
- Bowling, A.T.; Millon, L.; Hughes, J.P. An update of chromosomal abnormalities in mares. J. Reprod. Fertil. Suppl. 1987, 35, 149–155. [Google Scholar]
- Parada, R.; Jaszczak, K.; Sysa, P.; Jaszczak, J. Cytogenetic investigations of mares with fertility disturbances. Pr. Mat. Zoot. 1996, 48, 71–81. [Google Scholar]
- Bugno, M.; Slota, E.; Koscielny, M. Karyotype evaluation among young horse populations in Poland. Schweiz. Arch. Fur Tierheilkd. 2007, 149, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, M.; Switonski, M.; Yang, F. A low-level X chromosome mosaicism in mares, detected by chromosome painting. J. Appl. Genet. 2001, 42, 205–209. [Google Scholar]
- Pawlak, M.; Rogalska-Niżnik, N.; Cholewiński, G.; Świtoński, M. Study on the origin of 64,XX/63,X karyotype in four sterile mares. Vet. Med. Czech. 2000, 45, 01–06. [Google Scholar]
- Bugno-Poniewierska, M.; Wojtaszek, M.; Pawlina-Tyszko, K.; Kowalska, K.; Witarski, W.; Raudsepp, T. Evaluation of the prevalence of sex chromosome aberrations in a population of young horses—Preliminary results. In Proceedings of the Doroty Russell Havemeyer 12th International Horse Genome Workshop, Pavia, Italy, 12–15 September 2018. [Google Scholar]
- Wojtaszek, M.; Kowalska, K.; Witarski, W.; Bugno-Poniewierska, M. Diagnostics of horse karyotype aberrations—The initial results of screening. Wiadomości Zootech. R. Lv. 2017, 5, 49–55. [Google Scholar]
- Raudsepp, T.; Das, P.J.; Avila, F.; Chowdhary, B.P. The pseudoautosomal region and sex chromosome aneuploidies in domestic species. Sex. Dev. 2012, 6, 72–83. [Google Scholar] [CrossRef]
- Ruiz, A.J.; Castaneda, C.; Raudsepp, T.; Tibary, A. Azoospermia and Y chromosome-autosome translocation in a Friesian stallion. J. Equine Vet. Sci. 2019, 82, 102781. [Google Scholar] [CrossRef]
- Juras, R.; Raudsepp, T.; Das, P.J.; Conant, E.; Cothran, E.G. XX/XY Blood Lymphocyte Chimerism in Heterosexual Dizygotic Twins from an American Bashkir Curly Horse. Case Report. J. Equine Vet. Sci. 2010, 30, 575–580. [Google Scholar] [CrossRef]
- Ghosh, S.; Carden, C.F.; Juras, R.; Mendoza, M.N.; Jevit, M.J.; Castaneda, C.; Phelps, O.; Dube, J.; Kelley, D.E.; Varner, D.D.; et al. Two Novel Cases of Autosomal Translocations in the Horse: Warmblood Family Segregating t(4;30) and a Cloned Arabian with a de novo t(12;25). Cytogenet. Genome Res. 2020, 16, 1–10. [Google Scholar]
- Ghosh, S.; Das, P.J.; Avila, F.; Thwaits, B.K.; Chowdhary, B.P.; Raudsepp, T. A Non-Reciprocal Autosomal Translocation 64,XX, t(4;10)(q21;p15) in an Arabian Mare with Repeated Early Embryonic Loss. Reprod. Domest. Anim. 2016, 51, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Lear, T.L.; Raudsepp, T.; Lundquist, J.M.; Brown, S.E. Repeated early embryonic loss in a thoroughbred mare with a chromosomal translocation [64, XX, t (2; 13)]. J. Equine Vet. Sci. 2014, 34, 805–809. [Google Scholar] [CrossRef]
- Brito, L.F.C.; Sertich, P.L.; Durkin, K.; Chowdhary, B.P.; Turner, R.M.; Greene, L.M.; McDonnell, S. Autosomic 27 trisomy in a standardbred colt. J. Equine Vet. Sci. 2008, 28, 431–436. [Google Scholar] [CrossRef]
- Ghosh, S.; Davis, B.W.; Rosengren, M.; Jevit, M.J.; Castaneda, C.; Arnold, C.; Jaxheimer, J.; Love, C.C.; Varner, D.D.; Lindgren, G.; et al. Characterization of A Homozygous Deletion of Steroid Hormone Biosynthesis Genes in Horse Chromosome 29 as A Risk Factor for Disorders of Sex Development and Reproduction. Genes 2020, 11, 251. [Google Scholar] [CrossRef] [Green Version]
- Gill, J.J.; Kempski, H.M.; Hallows, B.J.; Warren, A.M. A 64XX/65XXX mosaic mare (Equus caballus) and associated infertility. Equine Vet. J. 1988, 20, 128–130. [Google Scholar] [CrossRef]
- Höhn, H.; Klug, E.; Rieck, G.W. A 63,XO/65,XYY mosaic in a case of questionable equine male pseudohermaphroditism. In Proceedings of the 4 th European Colloquium on Cytogenetics of Domestic Animals, Uppsala, Sweden, 10–13 June 1980; pp. 82–92. [Google Scholar]
- Paget, S.; Ducos, A.; Mignotte, F.; Raymond, I.; Pinton, A.; Seguela, A.; Berland, H.M.; Brun-Baronnat, C.; Darre, A.; Darre, R.; et al. 63,XO/65,XYY mosaicism in a case of equine male pseudohermaphroditism. Vet. Rec. 2001, 148, 24–25. [Google Scholar] [CrossRef]
- Stewart-Scott, I.A. Infertile mares with chromosome abnormalities. N. Z. Vet. J. 1988, 36, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Halnan, C.R.E.; Watson, J.I.; Pryde, L.C. Detection by G-and C-band karyotyping of gonosome anomalies in horses of different breeds. J. Reprod. Fert. Suppl. 1982, 32, 627–662. [Google Scholar]
- Bugno, M.; Zabek, T.; Golonka, P.; Pienkowska-Schelling, A.; Schelling, C.; Slota, E. A case of an intersex horse with 63,X/64,XX/65,XX,del(Y)(q?) karyotype. Cytogenet. Genome Res. 2008, 120, 123–126. [Google Scholar] [CrossRef]
- Klunder, L.R.; McFeely, R.A.; Willard, J.P. Six separate sex chromosome anomalies in an Arabian mare. Equine Vet. J. 1990, 22, 218–220. [Google Scholar] [CrossRef]
- Neuhauser, S.; Handler, J.; Schelling, C.; Pienkowska-Schelling, A. Fertility and 63,X Mosaicism in a Haflinger Sibship. J. Equine Vet. Sci 2019, 78, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Mushtag, A.; Memon, B.V. Sterility Associated with 64,XX/64,XY,63,X0 mosaic karyotype in a Belgian mare. Equine Pract. 1994, 16, 24–26. [Google Scholar]
- Mäkinen, A.; Hasegawa, T.; Syriä, P.; Katila, T. Infertile mares with XO and XY sex chromosome deviations. Equine Vet. Educ. 2006, 18, 60–62. [Google Scholar] [CrossRef]
- Jaszczak, K.; Sysa, P. Anomalie chromosomowe u koni i ich skutki w reprodukcji. Przegląd. Hod. 1992, 12, 13–15. [Google Scholar]
- Halnan, C.R. Equine cytogenetics: Role in equine veterinary practice. Equine Vet. J. 1985, 17, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Bugno, M.; Słota, E.; Ząbek, T. Two cases of subfertile mares with 64,XX/63,X mosa-ic karyotype. Ann. Anim. Sci. 2001, 1, 7–11. [Google Scholar]
- Breen, M.; Langford, C.F.; Carter, N.P.; Fischer, P.E.; Marti, E.; Gerstenberg, C.; Allen, W.R.; Lear, T.L.; Binns, M.M. Detection of equine X chromosome abnormalities in equids using a horse X whole chromosome paint probe (WCPP). Vet. J. 1997, 153, 235–238. [Google Scholar] [CrossRef]
- Mäkinen, A.; Hasegawa, T.; Makila, M.; Katila, T. Infertility in two mares with XY and XXX sex chromosomes. Equine Vet. J. 1999, 31, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Bugno, M.; Slota, E.; Wieczorek, M.; Yang, F.; Buczynski, J.; Switonski, M. Nonmosaic X trisomy, detected by chromosome painting, in an infertile mare. Equine Vet. J. 2003, 35, 209–210. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzi, L.; Molteni, L.; Zannotti, M.; Galli, C.; Parma, P. X trisomy in a sterile mare. Equine Vet. J. 2010, 42, 469–470. [Google Scholar] [CrossRef]
- Kubien, E.M.; Pozor, M.A.; Tischner, M. Clinical, cytogenetic and endocrine evaluation of a horse with a 65,XXY karyotype. Equine Vet. J. 1993, 25, 333–335. [Google Scholar] [CrossRef]
- Mäkinen, A.; Katila, T.; Andersson, M.; Gustavsson, I. Two sterile stallions with XXY-syndrome. Equine Vet. J. 2000, 32, 358–360. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Di Meo, G.P.; Perucatti, A.; Spadetta, M.; Incarnato, D.; Parma, P.; Iannuzzi, A.; Ciotola, F.; Peretti, V.; Perrotta, G.; et al. Clinical, cytogenetic and molecular studies on sterile stallion and mare affected by XXY and sex reversal syndromes, respectively. Caryologia 2004, 57, 400–404. [Google Scholar]
- Bouters, R.; Vandeplassche, M.; de Moor, A. An intersex (male pseudohermaphrodite) horse with 64 XX-65 XXY mosaicism. Equine Vet. J. 1972, 4, 150–153. [Google Scholar] [CrossRef]
- Bielański, W.; Kleczkowska, A.; Tischner, M.; Jagiarz, M. Comparative cytogenetic examinations of parents and sibilding of colt with a false masculine hermaphroditism. Med. Wet. 1980, 36, 492–494. [Google Scholar]
- Bugno, M.; Pieńkowska-Schelling, A.; Schelling, C.; Włodarczyk, N.; Słota, E. A probe generated by chromosome microdissection, useful for detection of equine X chromosome aneuploidy. Ann. Anim. Sci. 2006, 6, 205–210. [Google Scholar]
- Basrur, P.K.; Kanagawa, H.; Gilman, J.P. An equine intersex with unilateral gonadal agenesis. Can. J. Comp. Med. 1969, 33, 297–306. [Google Scholar]
- Dunn, H.O.; Vaughan, J.T.; McEntee, K. Bilaterally cryptorchid stallion with female karyotype. Cornell Vet. 1974, 64, 265–275. [Google Scholar]
- Klunder, L.R.; McFeeley, R.A. Chromosome analysis of 130 equine clinical cases. In Proceedings of the 6th North American Colloquium on Cytogenetics of Domestic Animals, West Lafayette, IN, USA; 1989; p. 8. [Google Scholar]
- Chandley, A.C. Infertility and chromosome abnormality. Oxf. Rev. Rep. Biol. 1984, 6, 1–46. [Google Scholar]
- Nicolas, F.W. Veterinary Genetics; Oxford University Press: New York, NY, USA, 1987; p. 580. [Google Scholar]
- Marx, M.B.; Melnyk, J.; Persinger, G.; Ono, S.; McGee, W.; Kaufman, W.; Pessin, A.; Gillespie, R. Cytogenetics of the superhorse. J. Hered. 1973, 64, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Shilton, C.A.; Kahler, A.; Davis, B.W.; Crabtree, J.R.; Crowhurst, J.; McGladdery, A.J.; Wathes, D.C.; Raudsepp, T.; de Mestre, A.M. Whole genome analysis reveals aneuploidies in early pregnancy loss in the horse. Sci. Rep. 2020, 10, 13314. [Google Scholar] [CrossRef] [PubMed]
- Colley, E.; Hamilton, S.; Smith, P.; Morgan, N.V.; Coomarasamy, A.; Allen, S. Potential genetic causes of miscarriage in euploid pregnancies: A systematic review. Hum. Reprod. Update 2019, 25, 452–472. [Google Scholar] [CrossRef] [PubMed]
- Hyde, K.J.; Schust, D.J. Genetic considerations in recurrent pregnancy loss. Cold Spring Harb. Perspect. Med. 2015, 5, a023119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Power, M.M. Equine half sibs with an unbalanced X;15 translocation or trisomy 28. Cytogenet. Cell Genet. 1987, 45, 163–168. [Google Scholar] [CrossRef]
- Bowling, A.T.; Millon, L.V. Two autosomal trisomies in the horse: 64,XX,-26,+t(26q26q) and 65,XX,+30. Genome 1990, 33, 679–682. [Google Scholar] [CrossRef]
- Zhang, T.Q.; Bellamy, J.; Buwn, L.C.; Weber, A.F.; Ruth, G.R. Autosomal trisomy in a foal with contracted tendon syndrome. In Proceedings of the 10th European Colloqium on Cytogenetics of Domestic Animals, Utrecht, The Netherlands, 18–21 August 1992; pp. 281–284. [Google Scholar]
- Buoen, L.C.; Zhang, T.Q.; Weber, A.F.; Turner, T.; Bellamy, J.; Ruth, G.R. Arthrogryposis in the foal and its possible relation to autosomal trisomy. Equine Vet. J. 1997, 29, 60–62. [Google Scholar] [CrossRef] [PubMed]
- Holl, H.M.; Lear, T.L.; Nolen-Walston, R.D.; Slack, J.; Brooks, S.A. Detection of two equine trisomies using SNP-CGH. Mamm. Genome 2013, 24, 252–256. [Google Scholar] [CrossRef]
- Lear, T.L.; Cox, J.H.; Kennedy, G.A. Autosomal trisomy in a Thoroughbred colt: 65,XY,+31. Equine Vet. J. 1999, 31, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Kubien, E.M.; Tischner, M. Reproductive success of a mare with a mosaic karyotype: 64,XX/65,XX,+30. Equine Vet. J. 2002, 34, 99–100. [Google Scholar] [CrossRef] [PubMed]
- Cuckle, H.; Morris, J. Maternal age in the epidemiology of common autosomal trisomies. Prenat. Diagn. 2020. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Weckselblatt, B.; Rudd, M.K. Human Structural Variation: Mechanisms of Chromosome Rearrangements. Trends Genet. 2015, 31, 587–599. [Google Scholar] [CrossRef] [Green Version]
- Morin, S.J.; Eccles, J.; Iturriaga, A.; Zimmerman, R.S. Translocations, inversions and other chromosome rearrangements. Fertil. Steril. 2017, 107, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, W.A. Chromosome variation in the embryos of domestic animals. Cytogenet. Genome Res. 2008, 120, 81–90. [Google Scholar] [CrossRef]
- Power, M.M. The first description of a balanced reciprocal translocation [t(1q;3q)] and its clinical effects in a mare. Equine Vet. J. 1991, 23, 146–149. [Google Scholar] [CrossRef]
- Long, S.E. Tandem 1;30 translocation: A new structural abnormality in the horse (Equus caballus). Cytogenet. Cell Genet. 1996, 72, 162–163. [Google Scholar] [CrossRef] [PubMed]
- Lear, T.L.; Layton, G. Use of zoo-FISH to characterise a reciprocal translocation in a thoroughbred mare: T(1;1 6)(q16;q21.3). Equine Vet. J. 2002, 34, 207–209. [Google Scholar] [CrossRef] [PubMed]
- Lear, T.L.; Lundquist, J.; Zent, W.W.; Fishback, W.D., Jr.; Clark, A. Three autosomal chromosome translocations associated with repeated early embryonic loss (REEL) in the domestic horse (Equus caballus). Cytogenet. Genome Res. 2008, 120, 117–122. [Google Scholar] [CrossRef]
- Lyon, M.F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961, 190, 372–373. [Google Scholar] [CrossRef] [PubMed]
- Lyon, M.F. Sex chromatin and gene action in the mammalian X-chromosome. Am. J. Hum. Genet. 1962, 14, 135–148. [Google Scholar] [PubMed]
- Cantone, I.; Fisher, A.G. Human X chromosome inactivation and reactivation: Implications for cell reprogramming and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372. [Google Scholar] [CrossRef] [PubMed]
- Carrel, L.; Brown, C.J. When the Lyon(ized chromosome) roars: Ongoing expression from an inactive X chromosome. Philos Trans. R. Soc. Lond. B Biol. Sci. 2017, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, P.D.; Ruiz-Herrera, A. Meiotic Executioner Genes Protect the Y from Extinction. Trends Genet. 2020, 36, 728–738. [Google Scholar] [CrossRef]
- Donaldson, B.; Villagomez, D.A.F.; Revay, T.; Rezaei, S.; King, W.A. Non-Random Distribution of Reciprocal Translocation Breakpoints in the Pig Genome. Genes 2019, 10, 769. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Qu, Z.; Das, P.J.; Fang, E.; Juras, R.; Cothran, E.G.; McDonell, S.; Kenney, D.G.; Lear, T.L.; Adelson, D.L.; et al. Copy number variation in the horse genome. PLoS Genet. 2014, 10, e1004712. [Google Scholar] [CrossRef] [Green Version]
- McFeely, R.A.; Klunder, L.R.; Byars, D. Equine infertility associated with autosomal mixoploidy. In Proceedings of the 6th North American Colloquium on Domestic Animal Cytogenetics, West Lafayette, IN, USA; 1989; p. 7. [Google Scholar]
- Brooks, S.A.; Lear, T.L.; Adelson, D.L.; Bailey, E. A chromosome inversion near the KIT gene and the Tobiano spotting pattern in horses. Cytogenet. Genome Res. 2007, 119, 225–230. [Google Scholar] [CrossRef]
- ISCN. An International System for Human Cytogenomic Nomenclature; McGowan-Jordan, J., Hastings, R.J., Moore, S., Eds.; S. Karger AG: Basel, Switzerland, 2020; p. 163. [Google Scholar]
- Mäkela, O.; Gustavsson, I.; Hollmen, T. A 64,X,i(Xq) karyotype in a standardbred filly. Equine Vet. J. 1994, 26, 251–254. [Google Scholar] [CrossRef]
- Herzog, A.; Hohn, H.; Klug, E.; Hecht, W. A sex chromosome mosaic in male pseudohermaphroditism in a horse. Tierarztl. Prax. 1989, 17, 171–175. [Google Scholar]
- Bugno-Poniewierska, M.; Ząbek, T.; Pawlina, K.; Klukowska-Rötzler, J.; Rojek, M.; Słota, E. Y isochromosome in mare with sex chromosome mosaicism 63,X/64,XYqi. In Proceedings of the 19th International Colloquium on Animal Cytogenetics and Gene Mapping, Balice/Kraków, Poland, 6–9 June 2010; p. 86. [Google Scholar]
- Riggs, P.K.; Rønne, M. Fragile sites in domestic animal chromosomes: Molecular insights and challenges. Cytogenet. Genome Res. 2009, 126, 97–109. [Google Scholar] [CrossRef]
- Durkin, S.G.; Glover, T.W. Chromosome fragile sites. Annu. Rev. Genet. 2007, 41, 169–192. [Google Scholar] [CrossRef] [PubMed]
- Santagostino, M.; Piras, F.M.; Cappelletti, E.; del Giudice, S.; Semino, O.; Nergadze, S.G.; Giulotto, E. Insertion of Telomeric Repeats in the Human and Horse Genomes: An Evolutionary Perspective. Int. J. Mol. Sci. 2020, 21, 2838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malan, V.; Vekemans, M.; Turleau, C. Chimera and other fertilization errors. Clin. Genet. 2006, 70, 363–373. [Google Scholar] [CrossRef]
- Keszka, J.; Jaszczak, K.; Klewiec, J. High frequency of lymphocyte chimerism XX/XY and an analysis of hereditary occurrence of placental anastomoses in Booroola sheep. J. Anim. Breed. Genet. Z. Fur Tierz. Und. Zucht. 2001, 118, 135–140. [Google Scholar] [CrossRef]
- Komisarek, J.; Dorynek, Z. Genetic aspects of twinning in cattle. J. Appl. Genet. 2002, 43, 55–68. [Google Scholar] [PubMed]
- Albarella, S.; de Lorenzi, L.; Catone, G.; Magi, G.E.; Petrucci, L.; Vullo, C.; D’Anza, E.; Parma, P.; Raudsepp, T.; Ciotola, F.; et al. Diagnosis of XX/XY Blood Cell Chimerism at a Low Percentage in Horses. J. Equine Vet. Sci. 2018, 69, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Demyda-Peyras, S.; Anaya, G.; Bugno-Poniewierska, M.; Pawlina, K.; Membrillo, A.; Valera, M.; Moreno-Millan, M. The use of a novel combination of diagnostic molecular and cytogenetic approaches in horses with sexual karyotype abnormalities: A rare case with an abnormal cellular chimerism. Theriogenology 2014, 81, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Demyda-Peyras, S.; Membrillo, A.; Bugno-Poniewierska, M.; Pawlina, K.; Anaya, G.; Moreno-Millan, M. The use of molecular and cytogenetic methods as a valuable tool in the detection of chromosomal abnormalities in horses: A case of sex chromosome chimerism in a Spanish purebred colt. Cytogenet. Genome Res. 2013, 141, 277–283. [Google Scholar] [CrossRef]
- Bowling, A.T.; Stott, M.L.; Bickel, L. Silent blood chimaerism in a mare confirmed by DNA marker analysis of hair bulbs. Anim. Genet. 1993, 24, 323–324. [Google Scholar] [CrossRef]
- Bugno, M.; Slota, E.; Tischner, M.; Kozubska-Sobocinska, A. A case of 64,XX/64,XY leucocytic chimerism in a fertile mare of the Wielkopolska breed. Ann. Anim. Sci. 1999, 26, 9–16. [Google Scholar]
- Gustavsson, I. Fertility of sires born as dizygotic twins and sex ratio in their progeny groups. Ann. Genet. Sel Anim 1977, 9, 531. [Google Scholar] [CrossRef]
- Zhang, T.; Buoen, L.C.; Seguin, B.E.; Ruth, G.R.; Weber, A.F. Diagnosis of freemartinism in cattle: The need for clinical and cytogenic evaluation. J. Am. Vet. Med. Assoc. 1994, 204, 1672–1675. [Google Scholar] [PubMed]
- Lee, P.A.; Houk, C.P.; Ahmed, S.F.; Hughes, I.A. International Consensus Conference on Intersex organized by the Lawson Wilkins Pediatric Endocrine, and E. the European Society for Paediatric. Consensus statement on management of intersex disorders. International Consensus Conference on Intersex. Pediatrics 2006, 118, e488–e500. [Google Scholar] [CrossRef] [Green Version]
- Villagomez, D.A.; Lear, T.L.; Chenier, T.; Lee, S.; McGee, R.B.; Cahill, J.; Foster, R.A.; Reyes, E.; John, E.S.; King, W.A. Equine disorders of sexual development in 17 mares including XX, SRY-negative, XY, SRY-negative and XY, SRY-positive genotypes. Sex. Dev. 2011, 5, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Raudsepp, T. Genetics of Equine Reproductive Diseases. Vet. Clin. N. Am. Equine Pract. 2020, 36, 395–409. [Google Scholar] [CrossRef]
- Power, M.M. XY sex reversal in a mare. Equine Vet. J. 1986, 18, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Kent, M.G.; Shoffner, R.N.; Buoen, L.; Weber, A.F. XY sex-reversal syndrome in the domestic horse. Cytogenet. Cell Genet. 1986, 42, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Kent, M.G.; Shoffner, R.N.; Hunter, A.; Elliston, K.O.; Schroder, W.; Tolley, E.; Wachtel, S.S. XY sex reversal syndrome in the mare: Clinical and behavioral studies, H-Y phenotype. Hum. Genet. 1988, 79, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Pailhoux, E.; Cribiu, E.P.; Parma, P.; Cotinot, C. Molecular analysis of an XY mare with gonadal dysgenesis. Hereditas 1995, 122, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Meyers-Wallen, V.N.; Hurtgen, J.; Schlafer, D.; Tulleners, E.; Cleland, W.R.; Ruth, G.R.; Acland, G.M. Sry-negative XX true hermaphroditism in a Pasa Fino horse. Equine Vet. J. 1997, 29, 404–408. [Google Scholar] [CrossRef]
- Abe, S.; Miyake, Y.I.; Kageyama, S.I.; Watanabe, G.; Taya, K.; Kawakura, K. Deletion of the Sry region on the Y chromosome detected in a case of equine gonadal hypoplasia (XY female) with abnormal hormonal profiles. Equine Vet. J. 1999, 31, 336–338. [Google Scholar] [CrossRef]
- Anaya, G.; Moreno-Millan, M.; Bugno-Poniewierska, M.; Pawlina, K.; Membrillo, A.; Molina, A.; Demyda-Peyras, S. Sex reversal syndrome in the horse: Four new cases of feminization in individuals carrying a 64,XY SRY negative chromosomal complement. Anim. Reprod. Sci. 2014, 151, 22–27. [Google Scholar] [CrossRef]
- Pienkowska-Schelling, A.; Becker, D.; Bracher, V.; Pineroli, B.; Schelling, C. Cytogenetical and molecular analyses in a horse with SRY-negative sex reversal. Schweiz. Arch. Tierheilkd. 2014, 156, 341–344. [Google Scholar]
- Martinez, M.M.; Costa, M.; Ratti, C. Molecular screening of XY SRY-negative sex reversal cases in horses revealed anomalies in amelogenin testing. J. Vet. Diagn. Investig. 2020, 32, 938–941. [Google Scholar] [CrossRef]
- Bugno, M.; Klukowska, J.; Slota, E.; Tischner, M.; Switonski, M. A sporadic case of the sex-reversed mare (64,XY.; SRY-negative): Molecular and cytogenetic studies of the Y chromosome. Theriogenology 2003, 59, 1597–1603. [Google Scholar] [CrossRef]
- Sant’Anna Monteiro da Silva, E.; Delfiol, D.J.Z.; Fabris, V.H.; Santos, B.M.; Nogueira, G.M.; Guimaraes, G.B.O.; Nogueira, P.P.d.; da Mota, L.S.L.S. Teratoma Associated With Testicular Tissue in a Female-Like Horse With 64,XY (SRY-Positive) Disorder of Sex Development. J. Equine Vet. Sci. 2020, 92, 103177. [Google Scholar] [CrossRef]
- Knobbe, M.G.; Maenhoudt, C.; Turner, R.M.; McDonnell, S.M. Physical, behavioral, endocrinologic, and cytogenetic evaluation of two Standardbred racehorses competing as mares with an intersex condition and high postrace serum testosterone concentrations. J. Am. Vet. Med. Assoc. 2011, 238, 751–754. [Google Scholar] [CrossRef] [Green Version]
- Howden, K.J. Androgen insensitivity syndrome in a thoroughbred mare (64, XY--testicular feminization). Can. Vet. J. 2004, 45, 501–503. [Google Scholar]
- Crabbe, B.G.; Freeman, D.A.; Grant, B.D.; Kennedy, P.; Whitlatch, L.; MacRae, K. Testicular feminization syndrome in a mare. J. Am. Vet. Med. Assoc. 1992, 200, 1689–1691. [Google Scholar]
- Switonski, M.; Chmurzynska, A.; Szczerbal, I.; Lipczynski, A.; Yang, F.; Nowicka-Posluszna, A. Sex reversal syndrome (64,XY.; SRY-positive) in a mare demonstrating masculine behaviour. J. Anim. Breed. Genet. 2005, 122 (Suppl. 1), 60–63. [Google Scholar] [CrossRef] [PubMed]
- Révay, T.; Villagomez, D.A.; Brewer, D.; Chenier, T.; King, W.A. GTG mutation in the start codon of the androgen receptor gene in a family of horses with 64,XY disorder of sex development. Sex. Dev. 2012, 6, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Bolzon, C.; Joone, C.J.; Schulman, M.L.; Harper, C.K.; Villagomez, D.A.; King, W.A.; Revay, T. Missense Mutation in the Ligand-Binding Domain of the Horse Androgen Receptor Gene in a Thoroughbred Family with Inherited 64,XY (SRY+) Disorder of Sex Development. Sex. Dev. 2016, 10, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welsford, G.E.; Munk, R.; Villagomez, D.A.; Hyttel, P.; King, W.A.; Revay, T. Androgen Insensitivity Syndrome in a Family of Warmblood Horses Caused by a 25-bp Deletion of the DNA-Binding Domain of the Androgen Receptor Gene. Sex. Dev. 2017, 11, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Terribile, M.; Stizzo, M.; Manfredi, C.; Quattrone, C.; Bottone, F.; Giordano, D.R.; Bellastella, G.; Arcaniolo, D.; de Sio, M. 46,XX Testicular Disorder of Sex Development (DSD): A Case Report and Systematic Review. Medicina (Kaunas) 2019, 55, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannasch, D.; Rinaldo, C.; Millon, L.; Latson, K.; Spangler, T.; Hubberty, S.; Galuppo, L.; Lowenstine, L. SRY negative 64,XX intersex phenotype in an American saddlebred horse. Vet. J. 2007, 173, 437–439. [Google Scholar] [CrossRef] [PubMed]
- Buoen, L.C.; Zhang, T.Q.; Weber, A.F.; Ruth, G.R. SRY-negative, XX intersex horses: The need for pedigree studies to examine the mode of inheritance of the condition. Equine Vet. J. 2000, 32, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Jaszczak, K.; Sysa, P.; Sacharczuk, M.; Parada, R.; Romanowicz, K.; Kawka, M.; Jarmuz, W. SRY-negative, 64,XX sex reversal in a Konik Polski horse: A case report. Anim. Sci. Pap. Rep. 2010, 28, 381–388. [Google Scholar]
- Vaughan, L.; Schofield, W.; Ennis, S. SRY-negative XX sex reversal in a pony: A case report. Theriogenology 2001, 55, 1051–1057. [Google Scholar] [CrossRef]
- Peretti, V.; Satue, K.; Ciotola, F.; Cristarella, S.; de Majo, M.; Biondi, V.; D’Anza, E.; Albarella, S.; Quartuccio, M. An Unusual Case of Testicular Disorder in Sex Development of Arabian Mare (64,XX SRY-Negative). Animals 2020, 10, 1963. [Google Scholar] [CrossRef] [PubMed]
- Ciotola, F.; Albarella, S.; Pasolini, M.P.; Auletta, L.; Esposito, L.; Iannuzzi, L.; Peretti, V. Molecular and cytogenetic studies in a case of XX SRY-negative sex reversal in an Arabian horse. Sex. Dev. 2012, 6, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Silva, J.F.; Bernardes, N.; Luis, J.S.; da Costa, L.L. 64, XX, SRY-negative, testicular DSD syndrome in a Lusitano horse. Reprod. Domest. Anim. 2013, 48, e33–e37. [Google Scholar] [CrossRef]
- Huber, D.; von Voithenberg, L.V.; Kaigala, G.V. Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH? Micro Nano Eng. 2018, 1, 15–24. [Google Scholar] [CrossRef]
- Raudsepp, T.; Chowdhary, B.P. FISH for mapping single copy genes. Methods Mol. Biol. 2008, 422, 31–49. [Google Scholar] [PubMed]
- Rubes, J.; Pinton, A.; Bonnet-Garnier, A.; Fillon, V.; Musilova, P.; Michalova, K.; Kubickova, S.; Ducos, A.; Yerle, M. Fluorescence in situ hybridization applied to domestic animal cytogenetics. Cytogenet. Genome Res. 2009, 126, 34–48. [Google Scholar] [CrossRef]
- Raudsepp, T.; Gustafson-Seabury, A.; Durkin, K.; Wagner, M.L.; Goh, G.; Seabury, C.M.; Brinkmeyer-Langford, C.; Lee, E.J.; Agarwala, R.; Stallknecht-Rice, E.; et al. A 4,103 marker integrated physical and comparative map of the horse genome. Cytogenet. Genome Res. 2008, 122, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Leeb, T.; Vogl, C.; Zhu, B.; de Jong, P.J.; Binns, M.M.; Chowdhary, B.P.; Scharfe, M.; Jarek, M.; Nordsiek, G.; Schrader, F.; et al. A human-horse comparative map based on equine BAC end sequences. Genomics 2006, 87, 772–776. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Fu, B.; O’Brien, P.C.; Nie, W.; Ryder, O.A.; Ferguson-Smith, M.A. Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: Insight into the occasional fertility of mules. Chromosome Res. 2004, 12, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Bugno, M.; Slota, E.; Pienkowska-Schelling, A.; Schelling, C. Identification of chromosome abnormalities in the horse using a panel of chromosome-specific painting probes generated by microdissection. Acta Vet. Hung. 2009, 57, 369–381. [Google Scholar] [CrossRef]
- Raudsepp, T.; Chowdhary, B.P. Construction of chromosome-specific paints for meta- and submetacentric autosomes and the sex chromosomes in the horse and their use to detect homologous chromosomal segments in the donkey. Chromosome Res. 1999, 7, 103–114. [Google Scholar] [CrossRef]
- Bugno, M.; Slota, E.; Pienkowska-Schelling, A.; Schelling, C. Detection of equine X chromosome mosaicism in a mare using an equine X whole chromosome painting probe (WCPP)—A case report. Acta Vet. Hung. 2007, 55, 207–212. [Google Scholar] [CrossRef]
- Pienkowska-Schelling, A.; Bugno, M.; Owczarek-Lipska, M.; Schelling, C.; Slota, E. Probe generated by Y chromosome microdissection is useful for analysing the sex chromosomes of the domestic horse. J. Anim. Feed Sci. 2006, 15, 173–178. [Google Scholar] [CrossRef]
- Bugno, M.; Slota, E. Application of arm-specific painting probes of horse X chromosome for karyotype analysis in an infertile Hutsul mare with 64,XX/65,XX+Xp karyotype: Case report. Acta Vet. Hung. 2007, 55, 309–314. [Google Scholar] [CrossRef]
- Alkan, C.; Cardone, M.F.; Catacchio, C.R.; Antonacci, F.; O’Brien, S.J.; Ryder, O.A.; Purgato, S.; Zoli, M.; della Valle, G.; Eichler, E.E.; et al. Genome-wide characterization of centromeric satellites from multiple mammalian genomes. Genome Res. 2011, 21, 137–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bugno-Poniewierska, M.; Wnuk, M.; Witarski, W.; Slota, E. The fluorescence in situ study of highly repeated DNA sequences in domestic horse (Equus caballus) and domestic donkey (Equus asinus)—Advantages and limits of usefulness in phylogenetic analyses. J. Anim. Feed Sci. 2009, 18, 723–732. [Google Scholar] [CrossRef] [Green Version]
- Wnuk, M.; Bugno, M.; Slota, E. Application of primed in situ DNA synthesis (PRINS) with telomere human commercial kit in molecular cytogenetics of Equus caballus and Sus scrofa scrofa. Folia Histochem. Cytobiol. 2008, 46, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Bugno-Poniewierska, M.; Zabek, T.; Semik, E.; Pawlina, K.; Tischner, M. A case of sex chromosome mosaicism 64,XX/65,XXY/66,XXYY in mare. Chromosome Res. 2014, 22, 400–401. [Google Scholar]
- Witarski, W.; Kij, B.; Nowak, A.; Bugno-Poniewierska, M. Premature centromere division (PCD) identified in a hucul mare with reproductive difficulties. Reprod. Domest. Anim. 2020, 55, 248–251. [Google Scholar] [CrossRef]
- Wyrobek, A.J.; Alhborn, T.; Balhorn, R.; Stanker, L.; Pinkel, D. Fluorescence in situ hybridization to Y chromosomes in decondensed human sperm nuclei. Mol. Reprod. Dev. 1990, 27, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Bugno-Poniewierska, M.; Jablonska, Z.; Slota, E. Modification of equine sperm chromatin decondensation method to use fluorescence in situ hybridization (FISH). Folia Histochem. Cytobiol. 2009, 47, 663–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bugno, M.; Jablonska, Z.; Tischner, M.; Klukowska-Rotzler, J.; Pienkowska-Schelling, A.; Schelling, C.; Slota, E. Detection of sex chromosome aneuploidy in equine spermatozoa using fluorescence in situ hybridization. Reprod. Domest. Anim. 2010, 45, 1015–1019. [Google Scholar] [CrossRef]
- Bugno-Poniewierska, M.; Kozub, D.; Pawlina, K.; Tischner, M.; Tischner, M., Jr.; Slota, E.; Wnuk, M. Determination of the correlation between stallion’s age and number of sex chromosome aberrations in spermatozoa. Reprod. Domest. Anim. 2011, 46, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Bugno-Poniewierska, M.; Pawlina, K.; Tischner, M.; Tischner, M. Age-related effects on sex chromosome aberrations in equine spermatozoa. J. Equine Vet. Sci. 2014, 34, 34. [Google Scholar] [CrossRef]
- Kjöllerström, H.J.; Oom, M.d.M.; Chowdhary, B.P.; Raudsepp, T. Fertility Assessment in Sorraia Stallions by Sperm-Fish and Fkbp6 Genotyping. Reprod. Domest. Anim. 2016, 51, 351–359. [Google Scholar] [CrossRef]
- Kallioniemi, A.; Kallioniemi, O.P.; Sudar, D.; Rutovitz, D.; Gray, J.W.; Waldman, F.; Pinkel, D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992, 258, 818–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bugno-Poniewierska, M.; Staron, B.; Potocki, L.; Gurgul, A.; Wnuk, M. Identification of Unbalanced Aberrations in the Genome of Equine Sarcoid Cells Using Cgh Technique. Ann. Anim. Sci. 2016, 16, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Pinkel, D.; Albertson, D.G. Comparative genomic hybridization. Annu. Rev. Genom. Hum. Genet. 2005, 6, 331–354. [Google Scholar] [CrossRef] [PubMed]
- Pinkel, D.; Albertson, D.G. Array comparative genomic hybridization and its applications in cancer. Nat. Genet. 2005, 37, S11–S17. [Google Scholar] [CrossRef]
- Bugno-Poniewierska, M.; Ząbek, T.; Gurgul, A.; Pawlina, K. Characteristics of chromosome rearrangements of an intersex horse using molecular cytogenetic techniques. In Proceedings of the 22nd International Colloquium on Animal Cytogenetics and Genomics, Tolouse, France, 2–5 July 2016; p. 38. [Google Scholar]
- Schaefer, R.J.; Schubert, M.; Bailey, E.; Bannasch, D.L.; Barrey, E.; Bar-Gal, G.K.; Brem, G.; Brooks, S.A.; Distl, O.; Fries, R.; et al. Developing a 670k genotyping array to tag ~2M SNPs across 24 horse breeds. BMC Genom. 2017, 18, 565. [Google Scholar] [CrossRef]
- Villagomez, D.A.; Pinton, A. Chromosomal abnormalities, meiotic behavior and fertility in domestic animals. Cytogenet. Genome Res. 2008, 120, 69–80. [Google Scholar] [PubMed]
- Purgato, S.; Belloni, E.; Piras, F.M.; Zoli, M.; Badiale, C.; Cerutti, F.; Mazzagatti, A.; Perini, G.; della Valle, G.; Nergadze, S.G.; et al. Centromere sliding on a mammalian chromosome. Chromosoma 2015, 124, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Giulotto, E.; Raimondi, E.; Sullivan, K.F. The Unique DNA Sequences Underlying Equine Centromeres. Cent. Kinetochores 2017, 56, 337–354. [Google Scholar]
- Al-Jaru, A.; Goodwin, W.; Skidmore, J.; Khazanehdari, K. Distribution of MLH1 foci in horse male synaptonemal complex. Cytogenet. Genome Res. 2014, 142, 87–94. [Google Scholar] [CrossRef]
- Al-Jaru, A.; Goodwin, W.; Skidmore, J.; Raudsepp, T.; Khazanehdari, K. Male horse meiosis: Metaphase I chromosome configuration and chiasmata distribution. Cytogenet. Genome Res. 2014, 143, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Kakoi, H.; Hirota, K.; Gawahara, H.; Kurosawa, M.; Kuwajima, M. Genetic diagnosis of sex chromosome aberrations in horses based on parentage test by microsatellite DNA and analysis of X- and Y-linked markers. Equine Vet. J. 2005, 37, 143–147. [Google Scholar] [CrossRef]
- Anaya, G.; Molina, A.; Valera, M.; Moreno-Millan, M.; Azor, P.; Peral-Garcia, P.; Demyda-Peyras, S. Sex chromosomal abnormalities associated with equine infertility: Validation of a simple molecular screening tool in the Purebred Spanish Horse. Anim. Genet. 2017, 48, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Gamo, S.; Tozaki, T.; Kakoi, H.; Hirota, K.I.; Nakamura, K.; Nishii, N.; Alumunia, J.; Takasu, M. X monosomy in the endangered Kiso horse breed detected by a parentage test using sex chromosome linked genes and microsatellites. J. Vet. Med. Sci. 2019, 81, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Bowling, A.T.; Millon, L.V.; Dileanis, S. Physical mapping of genetic markers to chromosome 30 using a trisomic horse and evidence for maternal origin of the extra chromosome. Chromosome Res. 1997, 5, 429–431. [Google Scholar] [CrossRef]
- Raudsepp, T.; Chowdhary, B.P. The Eutherian Pseudoautosomal Region. Cytogenet. Genome Res. 2015, 147, 81–94. [Google Scholar] [CrossRef]
- Chowdhary, B.P.; Raudsepp, T. The horse genome derby: Racing from map to whole genome sequence. Chromosome Res. 2008, 16, 109–127. [Google Scholar] [CrossRef]
- Blackmon, H.; Brandvain, Y. Long-Term Fragility of Y Chromosomes Is Dominated by Short-Term Resolution of Sexual Antagonism. Genetics 2017, 207, 1621–1629. [Google Scholar] [CrossRef] [Green Version]
- Bondy, C.A.; Cheng, C. Monosomy for the X chromosome. Chromosome Res. 2009, 17, 649–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lupski, J.R.; Stankiewicz, P. Genomic disorders: Molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet. 2005, 1, e49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonomi, M.; Rochira, V.; Pasquali, D.; Balercia, G.; Jannini, E.A.; Ferlin, A.; Italia, N.G.K. Klinefelter syndrome (KS): Genetics, clinical phenotype and hypogonadism. J. Endocrinol. Investig. 2017, 40, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Skuse, D.; Printzlau, F.; Wolstencroft, J. Sex chromosome aneuploidies. Handb. Clin. Neurol. 2018, 147, 355–376. [Google Scholar] [PubMed]
- Lange, J.; Skaletsky, H.; van Daalen, S.K.; Embry, S.L.; Korver, C.M.; Brown, L.G.; Oates, R.D.; Silber, S.; Repping, S.; Page, D.C. Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palindromes. Cell 2009, 138, 855–869. [Google Scholar] [CrossRef] [Green Version]
- Michala, L.; Goswami, D.; Creighton, S.M.; Conway, G.S. Swyer syndrome: Presentation and outcomes. BJOG 2008, 115, 737–741. [Google Scholar] [CrossRef]
- Mantere, T.; Neveling, K.; Pebrel-Richard, C.; Benoist, M.; van der Zande, G.; Kater-Baats, E.; Baatout, I.; van Beek, R.; Yammine, T.; Oorsprong, M.; et al. Next generation cytogenetics: Genome-imaging enables comprehensive structural variant detection for 100 constitutional chromosomal aberrations in 85 samples. bioRxiv 2020. [Google Scholar] [CrossRef]
Problem Horses | Total Number of Individuals | % of All Horses Studied | % of All Chromosome Abnormalities | Reference |
---|---|---|---|---|
Subjected for karyotyping due to reproductive or developmental problems | 766 | - | - | |
Males | 244 | 31.9 | - | |
Females | 427 | 55.7 | - | |
Ambiguous sex | 95 | 12.4 | - | |
Horses with chromosome abnormalities | 215 | 28.1 | - | |
Types of chromosome abnormalities | ||||
X-monosomy | 76 | 9.9; (17.8) * | 35.3 | [51] |
X-trisomy | 5 | 0.7; (1.2) * | 2.3 | [51] |
Sex chromosome and ploidy mosaicism
| 3 | 0.4 | 1.4 | [37] |
X chromosome structural rearrangements
| 5 | 0.7 | 2.3 | |
X-autosome complex rearrangement
| 1 | 0.1 | 0.5 | [27] |
Y chromosome structural rearrangements
| 1 | 0.1 | 0.5 | |
Y-autosome structural rearrangement
| 1 | 0.1 | 0.5 | [52] |
XX/XY blood chimerism | 4 | 0.5 | 1.9 | [53] |
Autosomal translocations
| 20 | 2.6 | 9.3 | [4,54,55,56] |
Autosomal aneuploidies
| 4 | 0.5 | 1.9 | [57] |
XY Sex reversal conditions
| 44 24 20 | 5.7; (10.3) * 3.1; (5.6) * 2.6; (4.7) * | 20.5 11.2 9.3 | [28,58] |
XX DSDs; ambiguous sex | 41 | 5.4 | 19.1 | [58] |
SRY-pos XY DSDs; male-like | 8 | 1.0 | 3.7 | [58] |
Chr. | Karyotype/Type of Aneuploidy | Mosaicism | Phenotype | Methods | Breed | Maternal Age | Reference |
---|---|---|---|---|---|---|---|
1 | n/a; trisomy | n/a | Early pregnancy loss fetus | SNP-CGH; WGS; ddPCR | WB | 4 | [88] |
3 | n/a; trisomy | n/a | Early pregnancy loss fetus | SNP-CGH; WGS; ddPCR | TB | 6 | [88] |
15 | n/a; trisomy | n/a | Early pregnancy loss fetus | SNP-CGH; WGS; ddPCR | TB | 19 | [88] |
20 | n/a; trisomy | n/a | Early pregnancy loss fetus | SNP-CGH; WGS; ddPCR | TB | 13 | [88] |
20 | n/a; trisomy | n/a | Early pregnancy loss fetus | SNP-CGH; WGS; ddPCR | TB | 19 | [88] |
23 | 65,XY,+23 | non-mosaic | Liveborn, congenital defects | G- and C-banding | STB | n/a | [84] |
23, 24 | n/a; double trisomy | n/a | Early pregnancy loss fetus | SNP-CGH; WGS; ddPCR | TB | 3 | [88] |
26 | 64,XX,i(26q) or 64,XX,rob(26q26q) | non-mosaic | Liveborn, congenital defects, fertile | G-, R- and C-banding | TB | 3 | [92] |
26 | 64,XX,i(26q) or 64,XX,rob(26q26q) | non-mosaic | Liveborn, congenital defects | G-banding; BAC-FISH | TB | 5 | TAMUMCL |
27 | 65,XY,+27 | non-mosaic | Liveborn, congenital defects | G-banding | QH | 26 | [93] |
27 | 65,XY,+27 | non-mosaic | Liveborn, congenital defects | G-banding | AR | 25 | [94] |
27 | 65,XY,+27 | non-mosaic | Liveborn, congenital defects | G-banding; BAC-FISH | STB | 5 | [57] |
27 | 64,XX/65,XX,+27 | mosaic | Liveborn, congenital defects | G-banding, BAC-FISH; SNP-CGH | FR | n/a | [95] |
27 | n/a; monosomy | n/a | Early pregnancy loss fetus | SNP-CGH; WGS; ddPCR | TB | 10 | [88] |
27 | n/a; monosomy | n/a | Early pregnancy loss fetus | SNP-CGH; WGS; ddPCR | TB | 19 | [88] |
28 | 65,XY,+28 | non-mosaic | Liveborn, congenital defects | G- and R-banding | TB | 14 | [91] |
30 | 65,XX,+30 | non-mosaic | Liveborn, congenital defects | G-, R- and C-banding | AR | 23 | [92] |
30 | n/a; trisomy | non-mosaic | Liveborn, congenital defects | SNP-CGH | WP | n/a | [95] |
30 | 65,XX,+30 | non-mosaic | Liveborn, congenital defects | G-banding; BAC-FISH | M | 23 | TAMUMCL |
30 | 65,XY,+30 | non-mosaic | Liveborn, congenital defects | G-banding; BAC-FISH | AR | 9 | TAMUMCL |
30 | 64,XX/65,XX,+30 | mosaic | Liveborn, fertile | G-banding | PK | n/a | [97] |
30 | n/a; trisomy | n/a | Early pregnancy loss fetus | SNP-CGH; WGS; ddPCR | TB | 9 | [88] |
30 | n/a; trisomy | n/a | Early pregnancy loss fetus | SNP-CGH; WGS; ddPCR | TB | 19 | [88] |
31 | 65,XY,+31 | non-mosaic | Liveborn, congenital defects | G-banding | TB | 26 | [96] |
31 | n/a; trisomy | n/a | Early pregnancy loss fetus | SNP-CGH; WGS; ddPCR | WB | 10 | [88] |
31 | 64,XX/65,XX,+31 | mosaic | Liveborn, normal | G-and C-banding | TB | n/a | [46] |
Karyotype | Type | Genetic Balance | Evidence of Transmission | Reproductive Phenotype | Methods | Breed | Reference |
---|---|---|---|---|---|---|---|
64,XX,t(1q;3q) | Reciprocal | balanced | no | REEL | G- and R-banding | TB | [102] |
64,XY,t(1;30) | Tandem | balanced | no | subfertility | G- and C-banding | TB | [103] |
64,XX,t(1;16) | Reciprocal | balanced | no | subfertility | G-and C-banding; BAC-FISH; Zoo-FISH | TB | [104] |
64,XX,t(1;21) | nonreciprocal | balanced | no | REEL | G-and C-banding; BAC-FISH | TB | [105] |
64,XX,t(2;13) | nonreciprocal | balanced | yes | REEL | G-banding; BAC-FISH | TB | [56] |
64,XX,t(4;13) | Reciprocal | balanced | no | REEL | G-and C-banding; BAC-FISH | TB | [105] |
64,XX,t(4;10) | nonreciprocal | balanced | no | REEL | G-banding; BAC-FISH | AR | [55] |
64,XY,t(4;30),der(4q) and 64,XY,t(4;30),+4p | nonreciprocal | balanced/ unbalanced | yes | foals with congenital abnormalities | G-banding; BAC-FISH | WB | [58] |
64,XY,t(5;16),+mar | nonreciprocal | balanced | yes | REEL | G-banding; BAC-FISH | TB | [4] |
64,XY,t(12;25),der(12p) | nonreciprocal | balanced | no | azoospermia, small testes | G-banding; BAC-FISH | AR | [58] |
64,XX,t(16;22),+mar | Reciprocal | balanced | no | REEL | G-and C-banding; BAC-FISH | TB | [105] |
64,X,t(1p;Xp)(1q;Xq) | Reciprocal | balanced | no | n/a | G-banding; BAC-FISH | n/a | [49] |
63,X,t(Xq;16),+ complex X rearrangements | nonreciprocal | unbalanced | no | n/a | G-banding; BAC-FISH | TB | [27] |
64,X,t(15;X),-Xp,+15 * | nonreciprocal | unbalanced | no | infertility | G- and R-banding | TB | [91] |
64,X,t(13;Y) | Reciprocal | balanced | no | azoospermia | G-and C-banding; BAC-FISH | FR | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bugno-Poniewierska, M.; Raudsepp, T. Horse Clinical Cytogenetics: Recurrent Themes and Novel Findings. Animals 2021, 11, 831. https://doi.org/10.3390/ani11030831
Bugno-Poniewierska M, Raudsepp T. Horse Clinical Cytogenetics: Recurrent Themes and Novel Findings. Animals. 2021; 11(3):831. https://doi.org/10.3390/ani11030831
Chicago/Turabian StyleBugno-Poniewierska, Monika, and Terje Raudsepp. 2021. "Horse Clinical Cytogenetics: Recurrent Themes and Novel Findings" Animals 11, no. 3: 831. https://doi.org/10.3390/ani11030831
APA StyleBugno-Poniewierska, M., & Raudsepp, T. (2021). Horse Clinical Cytogenetics: Recurrent Themes and Novel Findings. Animals, 11(3), 831. https://doi.org/10.3390/ani11030831