Processing Matters in Nutrient-Matched Laboratory Diets for Mice—Energy and Nutrient Digestibility
Abstract
Simple Summary
Abstract
1. Introduction
2. Animals, Materials and Methods
2.1. Animals and Diets
2.2. Digestibility Trial
2.3. Organic Acids
2.4. Post-Mortem Sampling
2.5. Statistics
3. Results
3.1. Diets
3.2. Trial 1
3.3. Trial 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, L.; Combs, G.F., Jr.; DeMars, L.C.; Johnson, L.K. Effects of the physical form of the diet on food intake, growth, and body composition changes in mice. J. Am. Assoc. Anim. Sci. 2011, 50, 488–494. [Google Scholar]
- Levy, D.R.; Flores, R.; Garcia, G.E.; Craig, S.L.; Jensen, V.B. Effects of Extruded Compared with Pelleted Diets on Laboratory Mice Housed in Individually Ventilated Cages and the Cage Environment. J. Am. Assoc. Anim. Sci. 2018, 57, 686–694. [Google Scholar] [CrossRef]
- Jane, J. Starch properties, modifications, and applications. J. Macromol. Sci. Part A Pure Appl. Chem. 1995, 32, 751–757. [Google Scholar] [CrossRef]
- Zhu, L.; Jones, C.; Guo, Q.; Lewis, L.; Stark, C.R.; Alavi, S. An evaluation of total starch and starch gelatinization methodologies in pelleted animal feed. J. Anim. Sci. 2016, 94, 1501–1507. [Google Scholar] [CrossRef]
- Case, S.; Hamann, D.; Schwartz, S. Effect of starch gelatinization on physical properties of extrused wheat-and corn-based products. Cereal Chem. 1992, 69, 401–404. [Google Scholar]
- Zimonja, O.; Svihus, B. Effects of processing of wheat or oats starch on physical pellet quality and nutritional value for broilers. Anim. Feed Sci. Technol. 2009, 149, 287–297. [Google Scholar] [CrossRef]
- Tran, Q.; van Lin, C.; Hendriks, W.; van der Poel, A. Lysine reactivity and starch gelatinization in extruded and pelleted canine diets. Anim. Feed Sci. Technol. 2007, 138, 162–168. [Google Scholar] [CrossRef]
- Böswald, L.; Kienzle, E. Differences in starch gelatinisation between differently processed laboratory rodent maintenance diets labelled as identical. In Proceedings of the 73rd Society of Nutrition Physiology (GfE) Conference, Goettingen, Germany, 13–15 March 2019. [Google Scholar]
- Bergman, E. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef]
- Wong, J.M.; Jenkins, D.J. Carbohydrate digestibility and metabolic effects. J. Nutr. 2007, 137, 2539S–2546S. [Google Scholar] [CrossRef]
- Houdijk, J.; Hartemink, R.; Verstegen, M.; Bosch, M. Effects of dietary non-digestible oligosaccharides on microbial characteristics of ileal chyme and faeces in weaner pigs. Arch. Anim. Nutr. 2002, 56, 297–307. [Google Scholar] [CrossRef]
- Zentek, J. Influence of diet composition on the microbial activity in the gastro-intestinal tract of dogs. I. Effects of varying protein intake on the composition of the ileum chyme and the faeces. J. Anim. Physiol. Anim. Nutr. 1995, 74, 43–52. [Google Scholar] [CrossRef]
- Drochner, W.; Kerler, A.; Zacharias, B. Pectin in pig nutrition, a comparative review. J. Anim. Physiol. Anim. Nutr. 2004, 88, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Kienzle, E.; Ahlborn, H.H.; Meyer, H.; Ganter, M. Effect of lactose on apparent prececal and fecal digestibility of crude nutrients and minerals in minipig. J. Anim. Physiol. Anim. Nutr. 1995, 74, 227–234. [Google Scholar] [CrossRef]
- Jiang, F.; Du, C.; Jiang, W.; Wang, L.; Du, S.-K. The preparation, formation, fermentability, and applications of resistant starch. Int. J. Biol. Macromol. 2020, 150, 1155–1161. [Google Scholar] [CrossRef]
- Holm, J.; Lundquist, I.; Björck, I.; Eliasson, A.-C.; Asp, N.-G. Degree of starch gelatinization, digestion rate of starch in vitro, and metabolic response in rats. Am. J. Clin. Nutr. 1988, 47, 1010–1016. [Google Scholar] [CrossRef]
- Naumann, C.; Bassler, R. Die Chemische Untersuchung von Futtermitteln. Band III: Methodenbuch; Verlag J. Naumann: Neudamm, Germany, 1986. [Google Scholar]
- FEDIAF. Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs; Fediaf: Brussels, Belgium, 2020. [Google Scholar]
- GfE. Opinion on the indispensability of animal experiments in animal nutrition research and suitability of alternative methods. Proc. Soc. Nutr. Physiol. 2017, 26, 218–224. [Google Scholar]
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique; Methuen & Co: London, UK, 1959. [Google Scholar]
- Hald, S.; Schioldan, A.G.; Moore, M.E.; Dige, A.; Lærke, H.N.; Agnholt, J.; Bach Knudsen, K.E.; Hermansen, K.; Marco, M.L.; Gregersen, S. Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: A randomised crossover study. PLoS ONE 2016, 11, e0159223. [Google Scholar] [CrossRef] [PubMed]
- Haidar, M.N.; Petie, M.; Heinsbroek, L.T.; Verreth, J.A.; Schrama, J.W. The effect of type of carbohydrate (starch vs. nonstarch polysaccharides) on nutrients digestibility, energy retention and maintenance requirements in Nile tilapia. Aquaculture 2016, 463, 241–247. [Google Scholar] [CrossRef]
- Högberg, A.; Lindberg, J.E. Influence of cereal non-starch polysaccharides and enzyme supplementation on digestion site and gut environment in weaned piglets. Anim. Feed Sci. Technol. 2004, 116, 113–128. [Google Scholar] [CrossRef]
- Sasaki, T.; Kohyama, K. Influence of non-starch polysaccharides on the in vitro digestibility and viscosity of starch suspensions. Food Chem. 2012, 133, 1420–1426. [Google Scholar] [CrossRef]
- Spiller, G.A.; Chernoff, M.C.; Hill, R.A.; Gates, J.E.; Nassar, J.J.; Shipley, E.A. Effect of purified cellulose, pectin, and a low-residue diet on fecal volatile fatty acids, transit time, and fecal weight in humans. Am. J. Clin. Nutr. 1980, 33, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Bjornvad, C.R.; Nielsen, D.H.; Armstrong, P.J.; McEvoy, F.; Hoelmkjaer, K.M.; Jensen, K.S.; Pedersen, G.F.; Kristensen, A.T. Evaluation of a nine-point body condition scoring system in physically inactive pet cats. Am. J. Vet. Res. 2011, 72, 433–437. [Google Scholar] [CrossRef]
- Foulis, S.A.; Hughes, J.M.; Friedl, K.E. New concerns about military recruits with metabolic obesity but normal weight (“skinny fat”). Obesity 2020, 28, 223. [Google Scholar] [CrossRef]
- Stewart, R.; Preece, R.; Sheppard, H.G. Twelve generations of marginal protein deficiency. Br. J. Nutr. 1975, 33, 233–253. [Google Scholar] [CrossRef] [PubMed]
- Le Leu, R.K.; Brown, I.L.; Hu, Y.; Morita, T.; Esterman, A.; Young, G.P. Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats. Carcinogenesis 2007, 28, 240–245. [Google Scholar] [CrossRef] [PubMed]
Diet Parameter | Labeled Content | Trial 1 | Trial 2 | ||
---|---|---|---|---|---|
P1 | E1 | P2 | E2 | ||
Gross energy (MJ/kg) | - | 17.23 | 17.56 | 16.6 | 17.3 |
Dry matter (%) | 88.8 | 89.8 | 89.8 | 89.5 | 88.5 |
Crude protein (%) | 20.6 | 23.4 * | 19.5 | 18.7 | 22.5 |
Crude fat (%) | 4.1 | 3.6 | 4.3 | 2.5 * | 5.1 * |
Crude ash (%) | 5.9 | 5.8 | 5.6 | 4.8 | 6.1 |
Crude fiber (%) | 6.1 | 6.1 | 8.2 * | 5.2 | 5.8 |
Nitrogen-free extracts (%, calculated) | 55.0 | 50.9 | 52.2 | 58.3 | 49.0 |
Starch (%) | - | 27 | 27 | 43 | 28 |
Starch gelatinization (%) | |||||
- before autoclaving | - | 22 | 64 | 22 | 50 |
- after autoclaving | 15 | 57 | 17 | 70 | |
Total dietary fiber (%) | - | 27.8 | 24.5 | 15.9 | 23.3 |
Soluble dietary fiber (%) | - | 3.4 | 4.0 | 2.0 | 3.9 |
Insoluble dietary fiber (%) | - | 24.4 | 20.5 | 13.9 | 19.4 |
Sugars (%) | - | 6.2 | 6.1 | 4.6 | 6.5 |
aD [%] | Trial 1 | Trial 2 | ||||
---|---|---|---|---|---|---|
Diet P1 n = 11 | Diet E1 n = 11 | p | Diet P2 n = 16 | Diet E2 n = 16 | p | |
GE | 74.8 ± 0.5 | 80.9 ± 0.6 | <0.001 | 84.4 ± 0.3 | 81.9 ± 0.6 | <0.001 |
DM | 70.8 ± 0.8 | 77.2 ± 0.7 | <0.001 | 81.3 ± 0.2 | 77.6 ± 0.8 | <0.001 |
OM | 73.7 ± 0.6 | 80.3 ± 0.5 | <0.001 | 84.7 ± 0.2 | 80.8 ± 0.7 | <0.001 |
CP | 82.2 ± 0.5 | 81.7 ± 0.9 | 0.31 | 83.8 ± 0.3 | 85.1 ± 0.4 | <0.001 |
EE | 91.2 ± 0.7 | 92.0 ± 0.5 | 0.09 | 92.9 ± 1.4 | 93.4 ± 1.0 | 0.71 |
CH+F | 69.2 ± 0.7 | 79.1 ± 0.4 | <0.001 | 85.1 ± 1.7 | 81.7 ± 4.5 | <0.05 |
Sample | Trial 1 | Trial 2 | ||||
---|---|---|---|---|---|---|
Diet P1 n = 11 | Diet E1 n = 11 | p | Diet P2 n = 16 | Diet E2 n = 16 | p | |
stomach | 3.9 ± 0.5 | 3.7 ± 0.7 | 0.46 | 3.9 ± 0.9 | 3.6 ± 0.5 | 0.33 |
anterior small intestine | 6.7 ± 0.3 | 6.6 ± 0.3 | 0.54 | 6.7 ± 0.5 | 6.7 ± 0.3 | 0.76 |
posterior small intestine | 7.0 ± 0.4 | 7.0 ± 0.3 | 0.70 | 7.3 ± 0.3 | 7.2 ± 0.2 | 0.11 |
cecum | 6.5 ± 1.1 | 6.9 ± 0.4 | 0.24 | 7.2 ± 0.3 | 7.1 ± 0.2 | 0.16 |
colon | 6.9 ± 0.3 | 7.2 ± 0.1 | <0.05 | 7.6 ± 0.3 | 7.5 ± 0.3 | 0.14 |
faeces | 7.6 ± 0.1 | 7.4 ± 0.1 | <0.05 | 7.9 ± 0.2 | 7.7 ± 0.4 | 0.33 |
mmol/L | Trial 1 | Trial 2 | ||||
---|---|---|---|---|---|---|
Diet P1 n = 11 | Diet E1 n = 11 | p | Diet P2 n = 16 | Diet E2 n = 16 | p | |
acetic acid | 8.37 ± 1.52 | 6.95 ± 1.61 | 0.09 | 6.44 ± 1.16 | 6.73 ± 0.97 | 0.60 |
propionic acid | 1.16 ± 0.15 | 1.17 ± 0.15 | 0.92 | 1.19 ± 0.17 | 1.25 ± 0.18 | 0.47 |
n-butyric acid | 1.18 ± 0.21 | 1.09 ± 0.02 | 0.57 | 0.47 ± 0.08 | 0.55 ± 0.08 | 0.06 |
acetic acid/propionic acid | 7.15 / 1 | 5.92/1 | 5.41/1 | 5.38/1 |
Parameter | Diet P2 n = 16 | Diet E2 n = 16 | p |
---|---|---|---|
Gross energy (MJ/kg DM) | 25.1 ± 1.9 | 23.7 ± 1.2 | <0.05 |
Crude protein (% DM) | 46.1 ± 7.3 | 51.9 ± 4.7 | <0.05 |
Fat (% DM) | 35.4 ± 9.6 | 28.4 ± 5.9 | <0.05 |
Ash (% DM) | 10.9 ± 1.6 | 12.1 ± 1.3 | <0.05 |
Liver energy content (MJ/kg) | 7.1 ± 0.3 | 6.9 ± 0.2 | 0.26 |
Liver weight in % final BW | 4.7 ± 0.6 | 5.2 ± 0.3 | <0.01 |
GIT weight in % final BW | 13.1 ± 1.6 | 13.8 ± 3.1 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böswald, L.F.; Wenderlein, J.; Straubinger, R.K.; Ulrich, S.; Kienzle, E. Processing Matters in Nutrient-Matched Laboratory Diets for Mice—Energy and Nutrient Digestibility. Animals 2021, 11, 523. https://doi.org/10.3390/ani11020523
Böswald LF, Wenderlein J, Straubinger RK, Ulrich S, Kienzle E. Processing Matters in Nutrient-Matched Laboratory Diets for Mice—Energy and Nutrient Digestibility. Animals. 2021; 11(2):523. https://doi.org/10.3390/ani11020523
Chicago/Turabian StyleBöswald, Linda F., Jasmin Wenderlein, Reinhard K. Straubinger, Sebastian Ulrich, and Ellen Kienzle. 2021. "Processing Matters in Nutrient-Matched Laboratory Diets for Mice—Energy and Nutrient Digestibility" Animals 11, no. 2: 523. https://doi.org/10.3390/ani11020523
APA StyleBöswald, L. F., Wenderlein, J., Straubinger, R. K., Ulrich, S., & Kienzle, E. (2021). Processing Matters in Nutrient-Matched Laboratory Diets for Mice—Energy and Nutrient Digestibility. Animals, 11(2), 523. https://doi.org/10.3390/ani11020523