Expression of Apoptosis-Related Genes in Cat Testicular Tissue in Relation to Sperm Morphology and Seasonality—A Preliminary Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sample Preparation
2.2. Study Design
2.2.1. Experiment I—Expression of Genes from BCL-2 Family
2.2.2. Experiment II—Expression of Genes of FAS/FAS-Ligand and Caspases
2.3. Gene Expression Analysis
2.3.1. Isolation of RNA and Reverse Transcription
2.3.2. RT-qPCR Technique
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Print, C.G.; Loveland, K.L. Germ cell suicide: New insights into apoptosis during spermatogenesis. Bioessays 2000, 22, 423–430. [Google Scholar] [CrossRef]
- Blanco-Rodríguez, J. A matter of death and life: The significance of germ cell death during spermatogenesis. Int. J. Androl. 1998, 21, 236–248. [Google Scholar] [CrossRef]
- Odorisio, T.; Rodriguez, T.A.; Evans, E.P.; Clarke, A.R.; Burgoyne, P.S. The meiotic checkpoint monitoring synapsis eliminates spermatocytes via p53-independent apoptosis. Nat. Genet. 1998, 18, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Rodríguez, J.; Martínez-García, C. Apoptosis is physiologically restricted to a specialized cytoplasmic compartment in rat spermatids. Biol. Reprod. 1999, 61, 1541–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, K.A.; Nelson, R.J. Mediation of seasonal testicular regression by apoptosis. Reproduction 2001, 122, 677–685. [Google Scholar] [CrossRef]
- Lue, Y.H.; Hikim, A.P.; Swerdloff, R.S.; Im, P.; Taing, K.S.; Bui, T.; Leung, A.; Wang, C. Single exposure to heat induces stage-specific germ cell apoptosis in rats: Role of intratesticular testosterone on stage specificity. Endocrinology 1999, 140, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Shinoda, K.; Mitsumori, K.; Yasuhara, K.; Uneyama, C.; Onodera, H.; Takegawa, K.; Takahashi, M.; Umemura, T. Involvement of apoptosis in the rat germ cell degeneration induced by nitrobenzene. Arch. Toxicol. 1998, 72, 296–302. [Google Scholar] [CrossRef]
- Cai, L.; Hales, B.F.; Robaire, B. Induction of apoptosis in the germ cells of adult male rats after exposure to cyclophosphamide. Biol. Reprod. 1997, 56, 1490–1497. [Google Scholar] [CrossRef] [Green Version]
- Henriksén, K.; Kulmala, J.; Toppari, J.; Mehrotra, K.; Parvinen, M. Stage-specific apoptosis in the rat seminiferous epithelium: Quantification of irradiation effects. J. Androl. 1996, 17, 394–402. [Google Scholar]
- Sinha Hikim, A.P.; Rajavashisth, T.B.; Hikim, I.S.; Lue, Y.; Bonavera, J.J.; Leung, A.; Wang, C.; Swerdloff, R.S. Significance of apoptosis in the temporal and stage-specific loss of germ cells in the adult rat after gonadotropin deprivation. Biol. Reprod. 1997, 57, 1193–1201. [Google Scholar] [CrossRef] [Green Version]
- Tapanainen, J.S.; Tilly, J.L.; Vihko, K.K.; Hsueh, A.J. Hormonal control of apoptotic cell death in the testis: Gonadotropins and androgens as testicular cell survival factors. Mol. Endocrinol. 1993, 7, 643–650. [Google Scholar] [CrossRef]
- Siemieniuch, M.J. Apoptotic changes in the epithelium germinativum of the cat (Felis catus s. domestica, L. 1758) at different ages and breeding seasons. Reprod. Domest. Anim. 2008, 43, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Blottner, S.; Jewgenow, K. Moderate seasonality in testis function of domestic cat. Reprod. Domest. Anim. 2007, 42, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, T.; Onodera, F.; Oba, H.; Mizutani, T.; Hori, T. Plasma hormone levels and semen quality in male cats during non–breeding and breeding seasons. Reprod. Domest. Anim. 2009, 44, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Spindler, R.E.; Wildt, D.E. Circannual variations in intraovarian oocyte but not epididymal sperm quality in the domestic cat. Biol. Reprod. 1999, 61, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Prochowska, S.; Niżański, W.; Ochota, M.; Partyka, A. Characteristics of urethral and epididymal semen collected from domestic cats––A retrospective study of 214 cases. Theriogenology 2015, 84, 1565–1571. [Google Scholar] [CrossRef]
- Howard, J.G.; Brown, J.L.; Bush, M.; Wildt, D.E. Teratospermic and normospermic domestic cats: Ejaculate traits, pituitary–gonadal hormones, and improvement of spermatozoal motility and morphology after swim–up processing. J. Androl. 1990, 11, 204–215. [Google Scholar]
- Jewgenow, K.; Neubauer, K.; Blottner, S.; Schön, J.; Wildt, D.E.; Pukazhenthi, B.S. Reduced germ cell apoptosis during spermatogenesis in the teratospermic domestic cat. J. Androl. 2009, 30, 460–468. [Google Scholar] [CrossRef]
- Neubauer, K.; Jewgenow, K.; Blottner, S.; Wildt, D.E.; Pukazhenthi, B.S. Quantity rather than quality in teratospermic males: A histomorphometric and flow cytometric evaluation of spermatogenesis in the domestic cat (Felis catus). Biol. Reprod. 2004, 71, 1517–1524. [Google Scholar] [CrossRef]
- Pukazhenthi, B.S.; Neubauer, K.; Jewgenow, K.; Howard, J.; Wildt, D.E. The impact and potential etiology of teratospermia in the domestic cat and its wild relatives. Theriogenology 2006, 66, 112–121. [Google Scholar] [CrossRef]
- Jewgenow, K.; Pukazhenthi, B.S.; Schoen, J. Analysis of Sertoli cell efficiency allows the differentiation between two fundamentally different forms of feline teratospermia. Theriogenology 2013, 79, 261–266. [Google Scholar] [CrossRef]
- Zambelli, D.; Prati, F.; Cunto, M.; Iacono, E.; Merlo, B. Quality and in vitro fertilizing ability of cryopreserved cat spermatozoa obtained by urethral catheterization after medetomidine administration. Theriogenology 2008, 69, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper––Excel–based tool using pair–wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.; Martino–Andrade, A.J.; Santos, A.S.; Reghelin, A.L.; Garcia, D.M.; Sant’Ana, G.R.; Spercoski, K.M.; Meyer, K.B.; Torres, S.M.; Júnior, V.S.; et al. Testicular testosterone: Estradiol ratio in domestic cats and its relationship to spermatogenesis and epididymal sperm morphology. Theriogenology 2012, 78, 1224–1234. [Google Scholar] [CrossRef] [PubMed]
- Swanson, W.; Johnson, W.; Cambre, R.C.; Citino, S.; Quigley, K.B.; Brousset, D.; Morais, R.; Moreira, N.; O’Brien, S.J.; Wildt, D.E. Reproductive status of endemic felid species in Latin American Zoos and implications for ex situ conservation. Zoo Biology 2003, 22, 421–441. [Google Scholar] [CrossRef]
- Axnér, E.; Linde Forsberg, C. Sperm morphology in the domestic cat, and its relation with fertility: A retrospective study. Reprod. Domest. Anim. 2007, 42, 282–291. [Google Scholar] [CrossRef]
- Sinha Hikim, A.P.; Lue, Y.; Diaz–Romero, M.; Yen, P.H.; Wang, C.; Swerdloff, R.S. Deciphering the pathways of germ cell apoptosis in the testis. J. Steroid Biochem. Mol. Biol. 2003, 85, 175–182. [Google Scholar] [CrossRef]
- Murphy, C.J.; Richburg, J.H. Implications of Sertoli cell induced germ cell apoptosis to testicular pathology. Spermatogenesis 2015, 4, e979110. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, J. Seasonal testosterone levels, testosterone clearance, and testicular weights in male domestic cats. Can. J. Zool. 2011, 63, 1285–1287. [Google Scholar] [CrossRef]
- Cohen, G.M. Caspases: The executioners of apoptosis. Biochem. J. 1997, 326, 1–16. [Google Scholar] [CrossRef] [Green Version]
Name | Accession No. | Primers Sequence (5′–3′) | Amplicon Size (bp) |
---|---|---|---|
RPS7 | NM_001009832.1 | F: GGGCAAGAGAATCCGTGTGA R: CCTTGCCCGTGAGCTTCTTA | 131 |
GAPDH | NM_001009307.1 | F: GGAGAAAGCTGCCAAATATG R: CAGGAAATGAGCTTGACAAAGTGG | 192 |
BCL2L1 | NM_001009228.1 | F: GCTTGGATGGCCACTTACCT R: TGCTGCATTGTTCCCGTAGA | 99 |
BCL2 | NM_001009340.1 | F: GGAGGATTGTGGCCTTCT R: GTTATCCTGGATCCAGGTGT | 143 |
BAX | NM_001009282.2 | F: GCTCTGAGCAGATCATGAAGACA R: CATTCGCCCTGCTCGATCTT | 71 |
BAD | XM_003993558.3 | F: GGGCTCCTTCAAGGGACTTC R: TCCTCTCCCCAAGTTCCGAT | 118 |
FAS | NM_001009314.1 | F: GCTCCTGATTCTACCGTCCG R: CCGGAGCAGTTGGACTTTCT | 283 |
FASLG | NM_001009352.1 | F: TCCACCAGCCAAAAGCATGT R: TTGAGTTGGGCTTGCCTGTT | 118 |
CASP3 | NM_001009338.1 | F: CCGGCAAACCCAAACTCTTC R: AACCAGGGGCTGTGGAATAC | 153 |
CASP8 | XM_006935474.2 | F: CGCTTCTTTGGTAAGGCTACA R: GGATGTAGTCCAGGCTCAGG | 140 |
CASP9 | XM_011284592.1 | F: CTAGTTTGCCCACACCCAGT R: ACAGCATTAGCGACCCTGAG | 175 |
CASP10 | XM_006935472.2 | F: CCGAGCATTCACCTCCTACC R: TCAGTCCGGGGAAAACCAAC | 435 |
Study Group | According to Morphology | According to Season | ||
---|---|---|---|---|
Normospermic (n = 5) | Teratospermic (n = 7) | Reproductive (n = 5) | Non-Reproductive (n = 7) | |
Subjective motility [%] | 80.0 ± 7.1 | 65.7 ± 15.1 | 74.3 ± 11.3 | 68.0 ± 17.9 |
MORPHOLOGY | ||||
Normal [%] | 66.2 ± 5.8 | 31.1 ± 13.5 | 50.9 ± 20.4 | 38.6 ± 21.7 |
Distal droplet [%] | 11.6 ± 7.7 | 11.2 ± 9.3 | 14.1 ± 8.0 | 7.6 ± 7.9 |
Bent tail [%] | 5.7 ± 5.8 | 18.3 ± 19.4 | 8.2 ± 9.4 | 19.8 ± 22.0 |
Detached head [%] | 1.8 ± 0.7 | 1.6 ± 1.3 | 1.6 ± 0.9 | 1.7 ± 1.3 |
Coiled tail [%] | 0.1 ± 0.2 | 0.3 ± 0.5 | 0.1 ± 0.2 | 0.4 ± 0.5 |
Proximal droplet [%] | 3.0 ± 2.2 | 4.8 ± 7.5 | 5.6 ± 7.2 | 1.9 ± 1.5 |
Head abnormalities [%] | 1.8 ± 0.4 | 3.5 ± 3.0 | 2.0 ± 1.9 | 3.9 ± 2.8 |
Acrosome abnormalities [%] | 6.1 ± 6.1 | 7.1 ± 3.7 | 6.1 ± 5.3 | 7.4 ± 4.0 |
Midpiece defects [%] | 3.4 ± 3.1 | 19.5 ± 8.1 | 10.2 ± 9.5 | 16.4 ± 11.6 |
Dag-like defect [%] | 0.3 ± 0.7 | 2.6 ± 1.8 | 1.2 ± 1.7 | 2.3 ± 2.1 |
Study Group: | Normospermic in Reproductive Season (n = 6) | Teratospermic in Reproductive Season (n = 6) | Teratospermic in Non- Reproductive Season (n = 6) |
---|---|---|---|
Subjective motility [%] | 81.7 ± 7.5 | 77.5 ± 11.7 | 53.3±19.7 |
MORPHOLOGY Normal [%] | 65.6 ± 5.6 | 38.6 ± 9.7 | 21.5 ± 7.6 |
Distal droplet [%] | 8.8 ± 6.6 | 14.5 ± 9.2 | 11.8 ± 14.3 |
Bent tail [%] | 4.8 ± 5.6 | 6.3 ± 4.2 | 20.3 ± 18.9 |
Detached head [%] | 2.0 ± 1.0 | 2.1 ± 3.0 | 4.0 ± 7.5 |
Coiled tail [%] | 0.1 ± 0.2 | 0.3 ± 0.6 | 0.9 ± 0.9 |
Proximal droplet [%] | 2.8 ± 2.0 | 11.0 ± 8.0 | 4.4 ± 5.7 |
Head abnormalities [%] | 1.5 ± 0.5 | 4.6 ± 4.6 | 5.8 ± 3.8 |
Acrosome abnormalities [%] | 6.2 ± 5.6 | 6.4 ± 3.0 | 6.1 ± 3.9 |
Midpiece defects [%] | 6.6 ± 5.6 | 13.8 ± 10.5 | 19.8 ± 8.4 |
Dag-like defect [%] | 1.7 ± 3.2 | 2.5 ± 1.4 | 5.2 ± 4.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prochowska, S.; Partyka, A.; Niżański, W. Expression of Apoptosis-Related Genes in Cat Testicular Tissue in Relation to Sperm Morphology and Seasonality—A Preliminary Study. Animals 2021, 11, 489. https://doi.org/10.3390/ani11020489
Prochowska S, Partyka A, Niżański W. Expression of Apoptosis-Related Genes in Cat Testicular Tissue in Relation to Sperm Morphology and Seasonality—A Preliminary Study. Animals. 2021; 11(2):489. https://doi.org/10.3390/ani11020489
Chicago/Turabian StyleProchowska, Sylwia, Agnieszka Partyka, and Wojciech Niżański. 2021. "Expression of Apoptosis-Related Genes in Cat Testicular Tissue in Relation to Sperm Morphology and Seasonality—A Preliminary Study" Animals 11, no. 2: 489. https://doi.org/10.3390/ani11020489
APA StyleProchowska, S., Partyka, A., & Niżański, W. (2021). Expression of Apoptosis-Related Genes in Cat Testicular Tissue in Relation to Sperm Morphology and Seasonality—A Preliminary Study. Animals, 11(2), 489. https://doi.org/10.3390/ani11020489