Single-Blinded Study Highlighting the Differences between the Small Intestines of Neonatal and Weaned Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Material Collection and Preparation
2.3. Histological Analysis
2.4. Immunohistochemistry
2.5. Immunofluorescence
2.6. RNA Isolation and Real-Time Quantitative PCR
2.7. Flow Cytometry
2.8. Statistical Analysis
3. Results
3.1. Histological Differences between Neonatal and Weaned Piglet Intestines
3.2. Weaners Have Superior Intestinal Barrier Function than Neonates
3.3. Characteristics of Mucosal Immunity in Neonatal and Weaned Piglet Intestines
3.4. Differences in Pattern Recognition Receptor Genes in the Intestinal Mucosa of Neonatal and Weaned Piglets
3.5. Expression of Cytokines in the Intestinal Mucosa of Neonatal and Weaned Piglets
3.6. Percentage of CD3+, CD4+, and CD8+ T Lymphocytes in Peripheral Blood Mononuclear Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PRR | Pattern recognition receptor |
PEDV | Porcine epidemic diarrhea virus |
TGEV | Transmissible gastroenteritis virus |
RVA | Rotavirus A |
PBS | phosphate-buffered saline |
H&E | Hematoxylin and eosin |
DAPI | 4′,6-diamidino-2-phenylindole |
PPs | Peyer’s patches |
IELs | Intraepithelial lymphocytes |
GC | Goblet cell |
UEA-1 | Ulex europaeous agglutinin-1 |
TLR | Toll-like receptor |
RLR | RIG-I-like receptor |
PAMP | Pathogen-associated molecular pattern |
References
- Taylorpickard, J.A.; Spring, P. (Eds.) Gut Efficiency: The Key Ingredient in Pig and Poultry Production; Wageningen Academic Publishers: Wageningen, The Netherlands, 2008. [Google Scholar]
- Brandtzaeg, P. Mucosal Immunity: Induction, Dissemination, and Effector Functions. Scand. J. Immunol. 2009, 70, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Pluske, J.R. Gut development: Interactions between nutrition, gut health and immunity in young pigs. In Gut Efficiency: The Key Ingredient in Pig and Poultry Production; Taylorpickard, J.A., Spring, P., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2008. [Google Scholar]
- Lallès, J.-P.; Boudry, G.; Favier, C.; Le Floc’H, N.; Luron, I.; Montagne, L.; Oswald, I.P.; Pié, S.; Piel, C.; Sève, B. Gut function and dysfunction in young pigs: Physiology. Anim. Res. 2004, 53, 301–316. [Google Scholar] [CrossRef] [Green Version]
- AbreuMartin, M.T.; Targan, S.R. Regulation of immune responses of the intestinal mucosa. Crit. Rev. Immunol. 1996, 16, 277–309. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, Q.X.; Huang, L.L.; Yuan, C.; Wang, J.L.; Yang, Q. An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Laude, H.; Rasschaert, D.; Delmas, B.; Godet, M.; Gelfi, J.; Charley, B. Molecular biology of transmissible gastroenteritis virus. Vet. Microbiol. 1990, 23, 147–154. [Google Scholar] [CrossRef]
- Katsuda, K.; Kohmoto, M.; Kawashima, K.; Tsunemitsu, H. Frequency of enteropathogen detection in suckling and weaned pigs with diarrhea in Japan. J. Vet. Diagn. 2006, 18, 350–354. [Google Scholar] [CrossRef]
- Mesonero-Escuredo, S.; Strutzberg-Minder, K.; Casanovas, C.; Segalés, J. Viral and bacterial investigations on the aetiology of recurrent pig neonatal diarrhoea cases in Spain. Porc. Health Manag. 2018, 4. [Google Scholar] [CrossRef]
- Baxter, E. Causes and mitigation strategies for mortality in neonatal and weaned piglets. J. Anim. Sci. 1998, 96. [Google Scholar] [CrossRef]
- Hampson, D.J. Alterations in piglet small intestinal structure at weaning. Res. Vet. Sci. 1986, 40, 32–40. [Google Scholar] [CrossRef]
- Basha, S.; Surendran, N.; Pichichero, M. Immune responses in neonates. Expert Rev. Clin. Immunol. 2014, 10, 1171–1184. [Google Scholar] [CrossRef]
- Holland, R.E. Some infectious causes of diarrhea in young farm animals. Clin. Microbiol. Rev. 1990, 3, 345–375. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xiong, X.; Wang, X.; Bie, T.; Li, T.; Yin, Y.; Han, X. Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets. PLoS ONE 2016, 11, e0150216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xun, W.; Shi, L.; Zhou, H.; Hou, G.; Cao, T. Effect of weaning age on intestinal mucosal morphology, permeability, gene expression of tight junction proteins, cytokines and secretory IgA in Wuzhishan mini piglets. Ital. J. Anim. Sci. 2018, 17, 976–983. [Google Scholar] [CrossRef] [Green Version]
- Verdile, N.; Mirmahmoudi, R.; Brevini, T.A.L.; Gandolfi, F. Evolution of pig intestinal stem cells from birth to weaning. Animal 2019, 13, 2830–2839. [Google Scholar] [CrossRef] [PubMed]
- Kararli, T.T. Comparison of the Gastrointestinal Anatomy, Physiology, and Biochemistry of Humans and Commonly Used Laboratory-Animals. Biopharm. Drug Dispos. 1995, 16, 351–380. [Google Scholar] [CrossRef] [PubMed]
- Nejdfors, P.; Ekelund, M.; Jeppsson, B.; Westrom, B.R. Mucosal in vitro permeability in the intestinal tract of the pig, the rat, and man: Species- and region-related differences. Scand. J. Gastroenterol. 2000, 35, 501–507. [Google Scholar] [PubMed]
- Patterson, J.K.; Lei, X.G.; Miller, D.D. The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Exp. Biol. Med. 2008, 233, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Mou, C.; Zhu, L.; Xing, X.; Lin, J.; Yang, Q. Immune Responses Induced by Recombinant Bacillus Subtilis Expressing the Spike Protein of Transmissible Gastroenteritis Virus in pigs. Antivir. Res. 2016, 131, 74–84. [Google Scholar] [CrossRef]
- Zhang, E.; Wang, J.; Li, Y.; Huang, L.; Yang, Q. Comparison of oral and nasal immunization with inactivated porcine epidemic diarrhea virus on intestinal immunity in piglets. Exp. Ther. Med. 2020, 20, 1596–1606. [Google Scholar] [CrossRef]
- Zong, Q.F.; Huang, Y.J.; Wu, L.S.; Wu, Z.C.; Wu, S.L.; Bao, W.B. Effects of porcine epidemic diarrhea virus infection on tight junction protein gene expression and morphology of the intestinal mucosa in pigs. Pol. J. Vet. Sci. 2019, 22, 345–353. [Google Scholar]
- Temeeyasen, G.; Sinha, A.; Gimenez-Lirola, L.G.; Zhang, J.Q.; Pi Eyro, P.E. Differential gene modulation of pattern-recognition receptor TLR and RIG-I-like and downstream mediators on intestinal mucosa of pigs infected with PEDV non S-INDEL and PEDV S-INDEL strains. Virology 2018, 517, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Yunhan, Y.; Jialu, W.; Yuchao, J.; Qian, Y. Impact of TGEV infection on the pig small intestine. Virol. J. 2018, 15, 1–7. [Google Scholar]
- Wang, F.; Wang, S.Q.; Wang, H.F.; Wu, Z.C.; Wu, S.L. Effects of porcine epidemic diarrhea virus infection on Toll-like receptor expression and cytokine levels in porcine intestinal epithelial cells. Pol. J. Vet. Sci. 2020, 23, 119–126. [Google Scholar] [PubMed]
- Jung, K.; Eyerly, B.; Annamalai, T.; Lu, Z.; Saif, L.J. Structural alteration of tight and adherens junctions in villous and crypt epithelium of the small and large intestine of conventional nursing piglets infected with porcine epidemic diarrhea virus. Vet. Microbiol. 2015, 177, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Haverson, K.; Bailey, M.; Stokes, C.R. T-cell populations in the pig intestinal lamina propria: Memory cells with unusual phenotypic characteristics. Immunology 1999, 96, 66–73. [Google Scholar] [CrossRef]
- Kokuina, E.; Breff-Fonseca, M.C.; Villegas-Valverde, C.A.; Mora-Diaz, I. Normal Values of T, B and NK Lymphocyte Subpopulations in Peripheral Blood of Healthy Cuban Adults. MEDICC Rev. 2019, 21, 16–21. [Google Scholar] [PubMed]
- Pabst, O.; Slack, E. IgA and the intestinal microbiota: The importance of being specific. Mucosal Immunol. 2020, 13, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Mantis, N.J.; Rol, N.; Corthesy, B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011, 4, 603–611. [Google Scholar] [CrossRef]
- Knoop, K.A.; Newberry, R.D. Goblet cells: Multifaceted players in immunity at mucosal surfaces. Mucosal Immunol. 2018, 11, 1551–1557. [Google Scholar] [CrossRef]
- Gonzalez, L.M.; Williamson, I.; Piedrahita, J.A.; Blikslager, A.T.; Magness, S.T. Cell Lineage Identification and Stem Cell Culture in a Porcine Model for the Study of Intestinal Epithelial Regeneration. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 2009, 22, 240–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimbeni, M.; Shin, E.C.; Chiriboga, L.; Kleiner, D.E.; Rehermann, B. Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions. Blood 2004, 104, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Morin, M.; Turgeon, D.; Jolette, J.; Robinson, Y.; Larivière, S. Neonatal diarrhea of pigs in Quebec: Infectious causes of significant outbreaks. Can. J. Comp. Med. 1983, 47, 11–17. [Google Scholar] [PubMed]
- Han, F.; Hu, L.; Xuan, Y.; Ding, X.; Luo, Y.; Bai, S.; He, S.; Zhang, K.; Che, L. Effects of high nutrient intake on the growth performance, intestinal morphology and immune function of neonatal intra-uterine growth-retarded pigs. Br. J. Nutr. 2013, 110, 1819–1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, T.; Clevers, H. Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications. Science 2013, 340, 1190–1194. [Google Scholar] [CrossRef] [Green Version]
- Moossavi, S.; Zhang, H.; Sun, J.; Rezaei, N. Host-microbiota interaction and intestinal stem cells in chronic inflammation and colorectal cancer. Expert Rev. Clin. Immunol. 2013, 9, 409–422. [Google Scholar] [CrossRef]
- Olivares-Villagómez, D.; Kaer, L.V. Intestinal Intraepithelial Lymphocytes: Sentinels of the Mucosal Barrier. Trends Immunol. 2018, 39, 264–275. [Google Scholar] [CrossRef]
- Nakamura, S.; Irie, K.; Tanaka, H.; Nishikawa, K.; Suzuki, H.; Saitoh, Y.; Tamura, A.; Tsukita, S.; Fujiyoshi, Y. Morphologic determinant of tight junctions revealed by claudin-3 structures. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Luettig, J.; Rosenthal, R.; Barmeyer, C.; Schulzke, J. Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue Barriers 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [Green Version]
- Uematsu, S.; Akira, S. Toll-Like receptors (TLRs) and their ligands. Handb. Exp. Pharmacol. 2008, 183, 1–20. [Google Scholar]
- Flaherty, S.; Reynolds, J.M. TLR Function in Murine CD4(+) T Lymphocytes and Their Role in Inflammation. Methods. Mol. Biol. 2016, 1390, 215–227. [Google Scholar] [PubMed]
- Bailey, M.; Haverson, K.; Inman, C.; Harris, C.; Jones, P.; Corfield, G.; Miller, B.; Stokes, C. The development of the mucosal immune system pre- and post-weaning: Balancing regulatory and effector function. Proc. Nutr. Soc. 2005, 64, 451–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Sadi, R. Mechanism of cytokine modulation of epithelial tight junction barrier. Front. Biosci. 2009, 14, 2765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Huang, J.; Hou, Y.; Zhu, H.; Zhao, S.; Ding, B.; Yin, Y.; Yi, G.; Shi, J.; Fan, W. Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br. J. Nutr. 2008, 100, 552–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, K.L.; Lewis, S.A.; Tavernini, M.M.; Hibbard, J.; Fedorak, R.N. Interleukin 10 prevents cytokine-induced disruption of T84 monolayer barrier integrity and limits chloride secretion. Gastroenterology 1997, 113, 151–159. [Google Scholar] [CrossRef]
- Hu, C.H.; Xiao, K.; Luan, Z.S.; Song, J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 2013, 91, 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Andrade, W.N.; Johnston, M.G.; Hay, J.B. The relationship of blood lymphocytes to the recirculating lymphocyte pool. Blood 1998, 91, 1653–1661. [Google Scholar] [CrossRef] [Green Version]
- Mccauley, I.; Hartmann, P.E. Changes in the proportion and absolute number of T lymphocytes in piglets from birth until after weaning and in adults. Res. Vet. Sci. 1984, 37, 52–57. [Google Scholar] [CrossRef]
Primary Antibody | Secondary Antibody |
---|---|
Name; Catalog Number; Supplier; Dilution | Name, Catalog Number; Supplier |
Rabbit anti-pig CD3 antibody; ab 16669 Abcam: 1:200 | SABC-POD (rabbit IgG) Kit SA1022: BOSTER |
Goat anti-pig IgA antibody; A100-102P: Bethyl; 1:100 | SABC-POD (goat IgG) Kit; SA1023 BOSTER |
Rabbit anti-Claudin3 antibody; ab 15102; abcam; 1:100 | SABC-POD (rabbit IgG) Kit SA1022: BOSTER |
FITC-UEA-I: 9006: sioma: 1:100 | |
Alexa FluorR 647 Mouse Anti-Pig CD38 BB23-8E6-8C8: BD Biosciences: 1:100 | |
PE Mouse Anti-Pig CD8a: 76-2-11: BD Biosciences: 1:100 | |
FITC Mouse anti-Pig CD4a 74-12-4: BD Biosciences: 1:100 |
Gene | Primers Sequence (5–3) | Orientation |
---|---|---|
Claudin | AAGCCAAGATCCTCTACTCC | Forward |
GTAGTCCTT′GCGGTCGTA | Reverse | |
E-cadherin | AAATGCTTAGCTGGTGGGGAC | Forward |
GCCTCCCATTGCTAACACCT | Reverse | |
Occludin | ATCAACAAAGGCAACTCT | Forward |
GCAGCAGCCAT′GTACTCT | Reverse | |
Zo-1 | AGCCCGAGGGGTGTTT | Forward |
GGTGGGAGGATGCTGTTG | Reverse | |
TLR1 | AGATTTCGTGCCACCCTATG | Forward |
CCTGGGGGATAAACAATGTG | Reverse | |
TLR2 | GAGTCTGCCACAACTCAAAGA | Forward |
CAGAACTGACAACATGGGTAGAA | Reverse | |
TLR3 | GAGCAGGAGTTTGCCTTGTC | Forward |
GGAGGTCATCGGGTATTTGA | Reverse | |
TLR4 | TCATCCAGGAAGGTTTCCAC | Forward |
TGTCCTCCCACTCCAGGTAG | Reverse | |
TLR5 | GGTCCCTGCCTCAGTATCAA | Forward |
GTTGAGAAACCAGCTTGACG | Reverse | |
TLR6 | TCAAGCATTTGGACCTCTCA | Forward |
TTCCAAATCCAGAAGGATGC | Reverse | |
TLR7 | TCTGCCCTGTGATGTCAGTC | Forward |
GCTGGTTTCCATCCAGGTAA | Reverse | |
TLR8 | CTGGGATGCTTGGTTCATCT | Forward |
CATGAGGTTGTCGATGATGG | Reverse | |
TLR9 | AGGGAGACCTCTATCTCCGC | Forward |
AAGTCCAGGGTTTCCAGCTT | Reverse | |
TLR10 | GCCCAAGGATAGGCGTAAAT | Forward |
CTCGAGACCCTTCATTCAGC | Reverse | |
Mda5 | CAAGCTTGGGGAACGATGATG | Forward |
TAGCTGGTGATGGGGTCCTC | Reverse | |
RIG-I | GAGCCCTTGTGGATGCTTTA | Forward |
GGGTCATCCCTATGTTCTGATTC | Reverse | |
β-actin | GGACTTCGAGCAGGAGATGG | Forward |
AGGAAGGAGGGCTGGAAGAG | Reverse | |
IL-1β | AGAGGGACATGGAGAAGCGA | Forward |
GCCCTCTGGGTATGGCTTT | Reverse | |
TNF-α | GCCCTTCCACCAACGTTTTC | Forward |
TCCCAGGTAGATGGGTTCGT | Reverse | |
IL-6 | F:CCTCGGCAAAATCTCTGCAA | Forward |
TGAAACTCCACAAGACCGGT | Reverse | |
IL-10 | TCTGAGAACAGCTGCATCCAC | Forward |
CGCCCATCTGGTCCTTCGTT | Reverse |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Zhang, P.; Jin, Y.; Ullah Shah, A.; Zhang, E.; Yang, Q. Single-Blinded Study Highlighting the Differences between the Small Intestines of Neonatal and Weaned Piglets. Animals 2021, 11, 271. https://doi.org/10.3390/ani11020271
Yuan C, Zhang P, Jin Y, Ullah Shah A, Zhang E, Yang Q. Single-Blinded Study Highlighting the Differences between the Small Intestines of Neonatal and Weaned Piglets. Animals. 2021; 11(2):271. https://doi.org/10.3390/ani11020271
Chicago/Turabian StyleYuan, Chen, Penghao Zhang, Yuxin Jin, Abid Ullah Shah, En Zhang, and Qian Yang. 2021. "Single-Blinded Study Highlighting the Differences between the Small Intestines of Neonatal and Weaned Piglets" Animals 11, no. 2: 271. https://doi.org/10.3390/ani11020271
APA StyleYuan, C., Zhang, P., Jin, Y., Ullah Shah, A., Zhang, E., & Yang, Q. (2021). Single-Blinded Study Highlighting the Differences between the Small Intestines of Neonatal and Weaned Piglets. Animals, 11(2), 271. https://doi.org/10.3390/ani11020271