The Influence of Dietary Gallic Acid on Growth Performance and Plasma Antioxidant Status of High and Low Weaning Weight Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sample Collection
2.3. Antioxidant Parameters Analysis
2.4. Statistical Analysis
3. Results
3.1. Growth Performance and Diarrhea Incidence
3.2. Plasma Antioxidant Capacity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother. 2021, 133, 110985. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Habtemariam, S.; Di Lorenzo, A.; Sureda, A.; Khanjani, S.; Nabavi, S.M.; Daglia, M. Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System. Nutrients. 2016, 8, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arcan, I.; Yemenicioğlu, A. Antioxidant activity and phenolic content of fresh and dry nuts with or without the seed coat. J. Food Compos. Anal. 2009, 22, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Ferk, F.; Chakraborty, A.; Simic, T.; Kundi, M.; Knasmüller, S. Antioxidant and free radical scavenging activities of sumac (Rhus coriaria) and identification of gallic acid as its active principle. BMC Pharmacol. 2007, 7, A71. [Google Scholar] [CrossRef] [Green Version]
- Yen, G.C.; Der Duh, P.; Tsai, H.L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002, 79, 307–313. [Google Scholar] [CrossRef]
- Shao, D.; Li, J.; Li, J.; Tang, R.; Liu, L.; Shi, J.; Huang, Q.; Yang, H. Inhibition of gallic acid on the growth and biofilm formation of escherichia coli and streptococcus mutans. J. Food Sci. 2015, 80, M1299–M1305. [Google Scholar] [CrossRef]
- Borges, A.; Saavedra, M.J.; Simões, M. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling. 2012, 28, 755–767. [Google Scholar] [CrossRef]
- Oh, E.; Jeon, B. Synergistic anti-campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds. Front. Microbiol. 2015, 6, 1129. [Google Scholar] [CrossRef] [Green Version]
- Samuel, K.G.; Wang, J.; Yue, H.Y.; Wu, S.G.; Zhang, H.J.; Duan, Z.Y.; Qi, G.H. Effects of dietary gallic acid supplementation on performance, antioxidant status, and jejunum intestinal morphology in broiler chicks. Poult. Sci. 2017, 96, 2768–2775. [Google Scholar] [CrossRef]
- Cai, L.; Li, Y.P.; Wei, Z.X.; Li, X.L.; Jiang, X.R. Effects of dietary gallic acid on growth performance, diarrhea incidence, intestinal morphology, plasma antioxidant indices, and immune response in weaned piglets. Anim. Feed Sci. Technol. 2020, 261, 114391. [Google Scholar] [CrossRef]
- Mota, F.L.; Queimada, A.J.; Pinho, S.P.; Macedo, E.A. Aqueous solubility of some natural phenolic compounds. Ind. Eng. Chem. Res. 2008, 47, 5182–5189. [Google Scholar] [CrossRef] [Green Version]
- Konishi, Y.; Zhao, Z.; Shimizu, M. Phenolic acids are absorbed from the rat stomach with different absorption rates. J. Agric. Food Chem. 2006, 54, 7539–7543. [Google Scholar] [CrossRef]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef] [Green Version]
- Zong, L.; Inoue, M.; Nose, M.; Kojima, K.; Sakaguchi, N.; Isuzugawa, K.; Takeda, T.; OgiharaG, Y. Metabolic fate of gallic acid orally administered to rats. Biol. Pharm. Bull. 1999, 22, 326–329. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.H.; Zhao, K.L.; Chen, X.L.; Xu, J.X. Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs. J. Anim. Sci. 2012, 90, 2581–2589. [Google Scholar] [CrossRef]
- Blecha, F.; Pollman, D.S.; Nichols, D.A. Weaning pigs at an early age decreases cellular immunity. J. Anim. Sci. 1983, 56, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.R.; Agazzi, A.; Awati, A.; Vitari, F.; Bento, H.; Ferrari, A.; Alborali, G.L.; Crestani, M.; Domeneghini, C.; Bontempo, V. Influence of a blend of essential oils and an enzyme combination on growth performance, microbial counts, ileum microscopic anatomy and the expression of inflammatory mediators in weaned piglets following an Escherichia coli infection. Anim. Feed Sci. Technol. 2015, 209, 219–229. [Google Scholar] [CrossRef]
- Jiang, X.R.; Awati, A.; Agazzi, A.; Vitari, F.; Ferrari, A.; Bento, H.; Crestani, M.; Domeneghini, C.; Bontempo, V. Effects of a blend of essential oils and an enzyme combination on nutrient digestibility, ileum histology and expression of inflammatory mediators in weaned piglets. Animal. 2015, 9, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Mahan, D.C. Effect of weight, split-weaning, and nursery feeding programs on performance responses of pigs to 105 kilograms body weight and subsequent effects on sow rebreeding interval. J. Anim. Sci. 1993, 71, 1991–1995. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, R.A.; Boyd, R.D.; Jungst, S.B.; Wilson, E.R.; Johnston, M.E.; Vignes, J.L.; Odle, J. Impact of lactation length and piglet weaning weight on long-term growth and viability of progeny. J. Anim. Sci. 2010, 88, 2265–2276. [Google Scholar] [CrossRef] [PubMed]
- Wijtten, P.J.A.; van der Meulen, J.; Verstegen, M.W.A. Intestinal barrier function and absorption in pigs after weaning: A review. Br. J. Nutr. 2011, 105, 967–981. [Google Scholar] [CrossRef] [PubMed]
- Pié, S.; Lallès, J.P.; Blazy, F.; Laffitte, J.; Seève, B.; Oswald, I.P. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 2004, 134, 641–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogler, G.; Brand, K.; Vogl, D.; Page, S.; Hofmeister, R.; Andus, T.; Knuechel, R.; Baeuerle, P.A.; Schölmerich, J.; Gross, V. Nuclear factor κB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology. 1998, 115, 357–369. [Google Scholar] [CrossRef]
- Gessner, D.K.; Fiesel, A.; Most, E.; Dinges, J.; Wen, G.; Ringseis, R.; Eder, K. Supplementation of a grape seed and grape marc meal extract decreases activities of the oxidative stress-responsive transcription factors NF-κB and Nrf2 in the duodenal mucosa of pigs. Acta Vet. Scand. 2013, 55, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, L.; Wei, Z.X.; Zhao, X.M.; Li, Y.P.; Li, X.L.; Jiang, X.R. Gallic acid mitigates LPS-induced inflammatory response via suppressing NF-κB signalling pathway in IPEC-J2 cells. J. Anim. Physiol. Anim. Nutr. 2021. Available online: https://doi.org/10.1111/jpn.13612 (accessed on 20 November 2021). [CrossRef]
- Michiels, J.; De Vos, M.; Missotten, J.; Ovyn, A.; De Smet, S.; Van Ginneken, C. Maturation of digestive function is retarded and plasma antioxidant capacity lowered in fully weaned low birth weight piglets. Br. J. Nutr. 2013, 109, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Chedea, V.S.; Palade, L.M.; Pelmus, R.S.; Dragomir, C.; Taranu, I. Red grape pomace rich in polyphenols diet increases the antioxidant status in key organs—kidneys, liver, and spleen of piglets. Animals. 2019, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Hanczakowska, E.; Świątkiewicz, M. Gallic acid or sage extract supplement in feed mixtures for finishing pigs. J. Anim. Feed Sci. 2005, 14, 353–356. [Google Scholar] [CrossRef] [Green Version]
Items | Pre-Starter (Day 0–14) | Starter (Day 14–42) |
---|---|---|
Ingredients, % | ||
Extruded corn | 46.20 | 60.17 |
Soybean meal, 46% CP | 14.60 | 17.50 |
Extruded soybean | 11.50 | 5.00 |
Fish meal | 5.00 | 3.00 |
Dried whey | 15.00 | 5.00 |
Bran | 2.842 | 4.142 |
Soybean oil | 1.00 | 1.20 |
CaH2PO4 | 0.40 | 0.50 |
Limestone | 0.80 | 1.00 |
NaCl | 0.30 | 0.30 |
Choline chloride, 60% | 0.05 | 0.05 |
L-Lysine H2SO4, 52.4% | 1.20 | 1.08 |
DL-Methionine, 98.5% | 0.09 | 0.08 |
L-Threonine, 98.5% | 0.27 | 0.24 |
L-Tryptophan, 98.5% | 0.02 | 0.01 |
Phytase | 0.02 | 0.02 |
Acidifier | 0.20 | 0.20 |
Butyric acid | 0.15 | 0.15 |
Flavour | 0.05 | 0.05 |
Ethoxyquin | 0.02 | 0.02 |
Vitamin premix 1 | 0.048 | 0.048 |
Trace mineral premix 1 | 0.20 | 0.20 |
Total | 100.00 | 100.00 |
Analyzed nutrient content | ||
Crude protein, % | 19.43 | 17.69 |
Calcium, % | 0.75 | 0.66 |
Phosphotus, % | 0.66 | 0.61 |
Calculated nutrient content | ||
ME, kcal/kg | 3400 | 3350 |
Lysine, % | 1.30 | 1.15 |
Methionine, % | 0.38 | 0.34 |
Threonine, % | 0.76 | 0.68 |
Tryptophan, % | 0.21 | 0.19 |
Treatment | Weight (W) | Diet (D) | p-Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HWCT | HWGA | LWCT | LWGA | SEM | HW | LW | SEM | CT | GA | SEM | W | D | W×D | |
BW, kg | ||||||||||||||
Day 0 | 8.49 | 8.49 | 5.46 | 5.45 | 0.24 | 8.49 | 5.45 | 0.15 | 6.97 | 6.97 | 0.70 | <0.001 | 0.977 | 0.973 |
Day 14 | 10.80 | 11.33 | 7.73 | 7.80 | 0.24 | 11.07 | 7.77 | 0.18 | 9.27 | 9.57 | 0.76 | <0.001 | 0.321 | 0.435 |
Day 28 | 15.42 | 16.03 | 10.93 | 12.13 | 0.52 | 15.73 | 11.53 | 0.41 | 13.17 | 14.08 | 1.00 | <0.001 | 0.140 | 0.607 |
Day 42 | 23.84 | 24.53 | 17.36 | 19.10 | 0.50 | 24.19 | 18.23 | 0.42 | 20.60 | 21.82 | 1.37 | <0.001 | 0.045 | 0.334 |
ADG, g | ||||||||||||||
Day 0–14 | 165 | 203 | 162 | 168 | 28 | 184 | 165 | 19 | 164 | 186 | 20 | 0.554 | 0.498 | 0.618 |
Day 14–28 | 330 | 336 | 228 | 310 | 25 | 333 | 269 | 22 | 279 | 323 | 22 | 0.057 | 0.170 | 0.226 |
Day 28–42 | 602 | 607 | 460 | 498 | 30 | 604 | 479 | 20 | 531 | 552 | 34 | 0.004 | 0.502 | 0.613 |
Day 0–42 | 366 | 382 | 283 | 325 | 12 | 374 | 304 | 11 | 325 | 354 | 18 | <0.001 | 0.049 | 0.341 |
ADFI, g | ||||||||||||||
Day 0–14 | 318 | 323 | 265 | 264 | 21 | 320 | 264 | 13 | 291 | 293 | 18 | 0.031 | 0.932 | 0.867 |
Day 14–28 | 660 | 555 | 420 | 499 | 38 | 608 | 460 | 33 | 540 | 527 | 48 | 0.013 | 0.791 | 0.086 |
Day 28–42 | 1017 | 988 | 731 | 885 | 34 | 1002 | 808 | 37 | 874 | 936 | 50 | 0.002 | 0.186 | 0.065 |
Day 0–42 | 665 | 622 | 472 | 549 | 28 | 644 | 511 | 24 | 569 | 586 | 37 | 0.004 | 0.616 | 0.105 |
G:F ratio | ||||||||||||||
Day 0–14 | 0.53 | 0.62 | 0.61 | 0.64 | 0.08 | 0.57 | 0.63 | 0.05 | 0.57 | 0.63 | 0.06 | 0.537 | 0.510 | 0.707 |
Day 14–28 | 0.51 | 0.62 | 0.54 | 0.62 | 0.05 | 0.56 | 0.58 | 0.04 | 0.52 | 0.62 | 0.04 | 0.805 | 0.135 | 0.819 |
Day 28–42 | 0.59 | 0.62 | 0.63 | 0.56 | 0.03 | 0.61 | 0.60 | 0.02 | 0.61 | 0.59 | 0.02 | 0.750 | 0.510 | 0.182 |
Day 0–42 | 0.56 | 0.62 | 0.60 | 0.59 | 0.03 | 0.59 | 0.60 | 0.02 | 0.58 | 0.61 | 0.02 | 0.770 | 0.370 | 0.256 |
Treatment | Weight (W) | Diet (D) | p-Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HWCT | HWGA | LWCT | LWGA | SEM | HW | LW | SEM | CT | GA | SEM | W | D | W×D | |
MDA, mg/mL | ||||||||||||||
Day 14 | 1.13 | 0.95 | 1.21 | 0.95 | 0.20 | 1.04 | 1.08 | 0.15 | 1.17 | 0.95 | 0.14 | 0.858 | 0.315 | 0.858 |
Day 42 | 2.13 | 1.95 | 5.42 | 2.72 | 0.78 | 2.04 | 4.07 | 0.70 | 3.78 | 2.34 | 0.75 | 0.129 | 0.275 | 0.337 |
SOD, U/mL | ||||||||||||||
Day 14 | 16.77 | 16.44 | 17.20 | 17.47 | 0.63 | 16.61 | 17.34 | 0.44 | 16.99 | 16.96 | 0.44 | 0.272 | 0.965 | 0.643 |
Day 42 | 19.44 | 20.97 | 16.90 | 18.29 | 1.20 | 20.21 | 17.60 | 0.84 | 18.17 | 19.63 | 0.90 | 0.043 | 0.240 | 0.954 |
GSH-Px, U/mL | ||||||||||||||
Day 14 | 568 | 585 | 500 | 493 | 23 | 577 | 496 | 16 | 534 | 539 | 21 | 0.005 | 0.840 | 0.651 |
Day 42 | 564 | 564 | 484 | 487 | 28 | 564 | 485 | 19 | 524 | 525 | 22 | 0.012 | 0.954 | 0.973 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Wang, J.; Gao, G.; Bontempo, V.; Chen, C.; Schroyen, M.; Li, X.; Jiang, X. The Influence of Dietary Gallic Acid on Growth Performance and Plasma Antioxidant Status of High and Low Weaning Weight Piglets. Animals 2021, 11, 3323. https://doi.org/10.3390/ani11113323
Zhao X, Wang J, Gao G, Bontempo V, Chen C, Schroyen M, Li X, Jiang X. The Influence of Dietary Gallic Acid on Growth Performance and Plasma Antioxidant Status of High and Low Weaning Weight Piglets. Animals. 2021; 11(11):3323. https://doi.org/10.3390/ani11113323
Chicago/Turabian StyleZhao, Xuemei, Jizhe Wang, Ge Gao, Valentino Bontempo, Chiqing Chen, Martine Schroyen, Xilong Li, and Xianren Jiang. 2021. "The Influence of Dietary Gallic Acid on Growth Performance and Plasma Antioxidant Status of High and Low Weaning Weight Piglets" Animals 11, no. 11: 3323. https://doi.org/10.3390/ani11113323
APA StyleZhao, X., Wang, J., Gao, G., Bontempo, V., Chen, C., Schroyen, M., Li, X., & Jiang, X. (2021). The Influence of Dietary Gallic Acid on Growth Performance and Plasma Antioxidant Status of High and Low Weaning Weight Piglets. Animals, 11(11), 3323. https://doi.org/10.3390/ani11113323