Effect of Cellulase Enzyme Produced from Penicilliumchrysogenum on the Milk Production, Composition, Amino Acid, and Fatty Acid Profiles of Egyptian Buffaloes Fed a High-Forage Diet
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Treatments, and Management
2.1.1. Enzymes Supplements
2.1.2. Diet, Treatments, and Management
2.2. Sample Analysis
2.2.1. Nutrient Intake and Digestibility
2.2.2. Chemical Analysis
2.3. Statistical Analysis
3. Results
3.1. Nutrient Intake and Digestibility
3.2. Milk Production and Composition
3.3. Milk Amino Acid Profile
3.4. Milk Fatty Acid Profile
4. Discussion
4.1. Nutrient Intake and Digestibility
4.2. Milk Production, Composition, AA and FA Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Díaz, A.; Ranilla, M.J.; Giraldo, L.A.; Tejido, M.L.; Carro, M.D. Treatment of Tropical Forages with Exogenous Fibrolytic Enzymes: Effects on Chemical Composition and in Vitro Rumen Fermentation. J. Anim. Physiol. Anim. Nutr. 2015, 99, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-De Lucio, B.S.; Hernández-Domínguez, E.M.; Villa-García, M.; Díaz-Godínez, G.; Mandujano-Gonzalez, V.; Mendoza-Mendoza, B.; Álvarez-Cervantes, J. Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review. Catalysts 2021, 11, 851. [Google Scholar] [CrossRef]
- Thareja, A.; Puniya, A.K.; Goel, G.; Nagpal, R.; Sehgal, J.P.; Singh, P.K.; Singh, K. In Vitro Degradation of Wheat Straw by Anaerobic Fungi from Small Ruminants. Arch. Anim. Nutr. 2006, 60, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Lebzien, P.; Meyer, U.; Borchert, U.; Bulang, M.; Flachowsky, G. Effect of Exogenous Fibrolytic Enzymes on Ruminal Fermentation and Nutrient Digestion in Dairy Cows. Arch. Anim. Nutr. 2010, 64, 221–237. [Google Scholar] [CrossRef]
- Wang, H.C.; Chen, Y.C.; Hseu, R.S. Purification, and Characterization of a Cellulolytic Multienzyme Complex Produced by Neocallimastix Patriciarum J11. Biochem. Biophys. Res. Commun. 2014, 451, 190–195. [Google Scholar] [CrossRef]
- Azzaz, H.H.; Farahat, E.S.A.; Ebeid, H.M. Effect of Partial Replacement of Corn Grains by Date Seeds on Rahmani Ram’s Nutrients Digestibility and Nubian Goat’s Milk Production. Int. J. Dairy Sci. 2017, 12, 266–274. [Google Scholar] [CrossRef]
- Tagawa, S.I.; Holtshausen, L.; McAllister, T.A.; Yang, W.Z.; Beauchemin, K.A. Effects of Particle Size of Processed Barley Grain, Enzyme Addition and Microwave Treatment on in Vitro Disappearance and Gas Production for Feedlot Cattle. Asian-Australas. J. Anim. Sci. 2017, 30, 479–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd El Tawab, A.M.; Murad, H.A.; Khattab, M.S.A.; Azzaz, H.H. Optimizing Production of Tannase and in Vitro Evaluation on Ruminal Fermentation, Degradability and Gas Production. Int. J. Dairy Sci. 2019, 14, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Beauchemin, K.A.; Colombatto, D.; Morgavi, D.P. A Rationale for the Development of Feed Enzyme Products for Ruminants. Can. J. Anim. Sci. 2004, 84, 23–36. [Google Scholar] [CrossRef]
- Dadheech, T.; Shah, R.; Pandit, R.; Hinsu, A.; Chauhan, P.S.; Jakhesara, S.; Kunjadiya, A.; Rank, D.; Joshi, C. Cloning, Molecular Modeling and Characterization of Acidic Cellulase from Buffalo Rumen and Its Applicability in Saccharification of Lignocellulosic Biomass. Int. J. Biol. Macromol. 2018, 113, 73–81. [Google Scholar] [CrossRef]
- Kong, Y.; Xia, Y.; Seviour, R.; He, M.; Mcallister, T.; Forster, R. In Situ Identification of Carboxymethyl Cellulose-Digesting Bacteria in the Rumen of Cattle Fed Alfalfa or Triticale. FEMS Microbiol. Ecol. 2012, 80, 159–167. [Google Scholar] [CrossRef]
- Pang, J.; Liu, Z.Y.; Hao, M.; Zhang, Y.F.; Qi, Q.S. An Isolated Cellulolytic Escherichia Coli from Bovine Rumen Produces Ethanol and Hydrogen from Corn Straw. Biotechnol. Biofuels 2017, 10, 165. [Google Scholar] [CrossRef]
- Hoda, A.; Tafaj, M.; Sallaku, E. In Silico Structural, Functional and Phylogenetic Analyses of Cellulase from Ruminococcus Albus. J. Genet. Eng. Biotechnol. 2021, 19, 58. [Google Scholar] [CrossRef]
- Facchini, F.D.A.; Vici, A.C.; Reis, V.R.A.; Jorge, J.A.; Terenzi, H.F.; Reis, R.A.; Polizeli, M.D.L.T. Production of Fibrolytic Enzymes by Aspergillus Japonicus C03 Using Agro-Industrial Residues with Potential Application as Additives in Animal Feed. Bioprocess Biosyst. Eng. 2011, 34, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Rashamuse, K.J.; Visser, D.F.; Hennessy, F.; Kemp, J.; Roux-Van Der Merwe, M.P.; Badenhorst, J.; Ronneburg, T.; Francis-Pope, R.; Brady, D. Characterisation of Two Bifunctional Cellulase-Xylanase Enzymes Isolated from a Bovine Rumen Metagenome Library. Curr. Microbiol. 2013, 66, 145–151. [Google Scholar] [CrossRef]
- Khattab, M.S.A.; Azzaz, H.H.; Abd El Tawab, A.M.; Murad, H.A. Production Optimization of Fungal Cellulase and Its Impact on Ruminal Degradability and Fermentation of Diet. Int. J. Dairy Sci. 2019, 14, 61–68. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Subcommittee on Dairy Cattle Nutrition. In Nutrient Requirements of Dairy Cattle; National Academy Press: Washington, DC, USA, 2001; ISBN 0309069971. [Google Scholar]
- Ferret, A.; Plaixats, J.; Caja, G.; Gasa, J.; Prio, P. Using Markers to Estimate Apparent Dry Matter Digestibility, Faecal Output and Dry Matter Intake in Dairy Ewes Fed Italian Ryegrass Hay or Alfalfa Hay. Small Rumin. Res. 1999, 33, 145–152. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1997. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Marrez, D.A.; Cieślak, A.; Gawad, R.; Ebeid, H.M.; Chrenková, M.; Gao, M.; Yanza, Y.R.; El-Sherbiny, M.; Szumacher-Strabel, M. Effect of Freshwater Microalgae Nannochloropsis Limnetica on the Rumen Fermentation In Vitro. J. Anim. Feed. Sci. 2017, 26, 359–364. [Google Scholar] [CrossRef]
- El-Sherbiny, M.; Cieslak, A.; Pers-Kamczyc, E.; Szczechowiak, J.; Kowalczyk, D.; Szumacher-Strabel, M. Short Communication: A Nanoemulsified Form of Oil Blends Positively Affects the Fatty Acid Proportion in Ruminal Batch Cultures. J. Dairy Sci. 2016, 99, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Peters, A.; Meyer, U.; Dänicke, S. Effect of Exogenous Fibrolytic Enzymes on Performance and Blood Profile in Early and Mid-Lactation Holstein Cows. Anim. Nutr. 2015, 1, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Morsy, T.A.; Kholif, A.E.; Kholif, S.M.; Kholif, A.M.; Sun, X.; Salem, A.Z.M. Effects of Two Enzyme Feed Additives on Digestion and Milk Production in Lactating Egyptian Buffaloes. Ann. Anim. Sci. 2016, 16, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Vijay Bhasker, T.; Nagalakshmi, D.; Srinivasa Rao, D. Development of Appropriate Fibrolytic Enzyme Combination for Maize Stover and Its Effect on Rumen Fermentation in Sheep. Asian-Australas. J. Anim. Sci. 2013, 26, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Alsersy, H.; Salem, A.Z.M.; Borhami, B.E.; Olivares, J.; Gado, H.M.; Mariezcurrena, M.D.; Yacuot, M.H.; Kholif, A.E.; El-Adawy, M.; Hernandez, S.R. Effect of Mediterranean Saltbush (Atriplex Halimus) Ensilaging with Two Developed Enzyme Cocktails on Feed Intake, Nutrient Digestibility and Ruminal Fermentation in Sheep. Anim. Sci. J. 2015, 86, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; McAllister, T.A.; Rode, L.M.; Beauchemin, K.A.; Morgavi, D.P.; Nsereko, V.L.; Iwaasa, A.D.; Yang, W. Effects of an Exogenous Enzyme Preparation on Microbial Protein Synthesis, Enzyme Activity and Attachment to Feed in the Rumen Simulation Technique (Rusitec). Br. J. Nutr. 2001, 85, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojo, R.; Kholif, A.E.; Salem, A.Z.M.; Elghandour, M.M.Y.; Odongo, N.E.; Montes De Oca, R.; Rivero, N.; Alonso, M.U. Influence of Cellulase Addition to Dairy Goat Diets on Digestion and Fermentation, Milk Production and Fatty Acid Content. J. Agric. Sci. 2015, 153, 1514–1523. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Rodea, A.; Noriega-Carrillo, A.; Salem, A.Z.M.; Ortega, O.C.; González-Ronquillo, M. Exogenous Enzymes in Dairy Cattle the Use of Exogenous Enzymes in Dairy Cattle on Milk Production and Their Chemical Composition: A Meta-Analysis. Anim. Nutr. Feed. Technol. 2013, 13, 399–409. [Google Scholar]
Item | TMR |
---|---|
Ingredients, g/kg of DM | |
Corn grain | 52.0 |
Soybean meal | 112 |
Wheat bran | 180 |
Sunflower meal | 43.5 |
Berseem hay | 350 |
Beet pulp | 150 |
Rice straw | 100 |
Mineral-vitamin mixture | 12.5 |
Chemical composition, g/kg of DM | |
Organic matter | 908 |
Ash | 92.0 |
Crude Protein | 168 |
Ether Extract | 41.0 |
Neutral detergent fibre | 385 |
Acid detergent fibre | 219 |
Fatty acid composition, g/100g of FA | |
C14:0 | 0.92 |
C16:0 | 26.3 |
C18:0 | 5.93 |
C18:1 cis-9 | 16.9 |
C18:2 cis-9 cis-12 | 38.6 |
C18:3 cis-9 cis-12 cis-15 | 9.83 |
Item | Treatments 1 | SEM | Contrast 2 | |||
---|---|---|---|---|---|---|
CON | CENZ | FENZ | CON vs. ENZ | CFENZ | ||
Nutrient Intake, kg/d | ||||||
Dry matter | 15.9 | 15.7 | 15.7 | 1.404 | 0.347 | 0.886 |
Organic matter | 14.2 | 13.9 | 14.1 | 1.278 | 0.158 | 0.745 |
Crude protein | 2.67 | 2.63 | 2.64 | 0.266 | 0.114 | 0.623 |
Either extract | 0.65 | 0.64 | 0.65 | 0.100 | 0.202 | 0.668 |
Neutral detergent fibre | 6.12 | 6.03 | 6.06 | 0.402 | 0.234 | 0.569 |
Acid detergent fibre | 3.48 | 3.43 | 3.45 | 0.527 | 0.161 | 0.421 |
Nutrient Digestibility, % | ||||||
Dry matter | 60.2 | 63.2 | 66.2 | 1.104 | 0.016 | 0.033 |
Organic matter | 59.5 | 62.5 | 65.4 | 1.277 | 0.008 | 0.021 |
Crude protein | 60.5 | 63.5 | 66.5 | 1.603 | 0.004 | 0.022 |
Either extract | 59.9 | 62.9 | 63.9 | 2.285 | 0.024 | 0.059 |
Neutral detergent fibre | 53.2 | 55.9 | 58.5 | 0.586 | 0.013 | 0.016 |
Acid detergent fibre | 55.3 | 58.1 | 60.8 | 2.458 | 0.029 | 0.039 |
Item | Treatments 1 | SEM | Contrast 2 | |||
---|---|---|---|---|---|---|
CON | CENZ | FENZ | CON vs. ENZ | CFENZ | ||
Milk production (kg/d) | ||||||
Milk yield | 7.90 | 8.30 | 8.69 | 0.223 | 0.028 | 0.041 |
3.5% FCM 3 | 11.8 | 12.8 | 13.9 | 0.421 | 0.014 | 0.019 |
Milk composition, % | ||||||
Fat | 6.52 | 6.85 | 7.19 | 0.023 | 0.038 | 0.022 |
Crude protein | 3.98 | 4.03 | 4.11 | 0.012 | 0.286 | 0.523 |
Lactose | 4.61 | 4.71 | 4.66 | 0.018 | 0.344 | 0.644 |
Total Solids | 15.9 | 16.4 | 16.8 | 0.561 | 0.019 | 0.112 |
SNF 4 | 9.44 | 9.59 | 9.62 | 0.188 | 0.018 | 0.687 |
Energy (Mcal/Kg) | 1.01 | 1.05 | 1.08 | 0.001 | 0.659 | 0.705 |
Milk yields (g/day) | ||||||
Fat | 515 | 568 | 625 | 1.662 | 0.008 | 0.012 |
Crude protein | 314 | 334 | 357 | 1.521 | 0.001 | 0.022 |
Lactose | 364 | 391 | 405 | 1.592 | 0.011 | 0.023 |
Energy (Mcal) | 7.97 | 8.68 | 9.38 | 0.327 | 0.020 | 0.003 |
Item | Treatments 1 | SEM | Contrast 2 | |||
---|---|---|---|---|---|---|
CON | CENZ | FENZ | CON vs. ENZ | CFENZ | ||
Essential Amino Acids (EAA) | ||||||
Arginine | 2.30 | 2.07 | 1.84 | 0.053 | 0.620 | 0.156 |
Histidine | 2.15 | 2.18 | 2.24 | 0.082 | 0.767 | 0.692 |
Isoleucine | 4.62 | 4.78 | 4.68 | 0.048 | 0.691 | 0.855 |
Leucine | 8.30 | 9.62 | 9.82 | 0.051 | 0.217 | 0.743 |
Lysine | 6.60 | 6.89 | 6.52 | 0.058 | 0.058 | 0.066 |
Methionine | 7.39 | 8.42 | 8.15 | 0.053 | 0.106 | 0.644 |
Phenylalanine | 3.61 | 3.61 | 4.03 | 0.089 | 0.648 | 0.532 |
Threonine | 4.07 | 4.46 | 5.32 | 0.068 | 0.138 | 0.522 |
Valine | 5.28 | 5.67 | 5.61 | 0.078 | 0.727 | 0.698 |
Total EAA | 44.3 | 47.7 | 48.2 | 0.835 | 0.031 | 0.069 |
Non-Essential Amino Acids (NEAA) | ||||||
Alanine | 3.35 | 3.15 | 3.62 | 0.112 | 0.728 | 0.779 |
Aspartic acid | 6.71 | 6.87 | 7.06 | 0.076 | 0.412 | 0.685 |
Glutamic acid | 20.7 | 20.2 | 19.9 | 0.032 | 0.769 | 0.532 |
Serine | 4.18 | 4.56 | 4.94 | 0.135 | 0.612 | 0.551 |
Tyrosine | 2.52 | 2.83 | 2.42 | 0.111 | 0.388 | 0.632 |
Total NEAA | 37.5 | 37.6 | 37.9 | 3.927 | 0.684 | 0.895 |
Item | Treatments 1 | SEM | Contrast 2 | |||
---|---|---|---|---|---|---|
CON | CENZ | FENZ | CON vs. ENZ | CFENZ | ||
C8:0 | 1.79 | 1.81 | 1.76 | 0.031 | 0.829 | 0.192 |
C10:0 | 1.56 | 1.43 | 1.52 | 0.066 | 0.757 | 0.059 |
C12:0 | 2.01 | 1.79 | 1.92 | 0.071 | 0.484 | 0.096 |
C14:0 | 11.5 | 11.5 | 10.5 | 0.649 | 0.790 | 0.067 |
C14:1 cis-9 | 0.71 | 0.73 | 0.73 | 0.016 | 0.851 | 0.756 |
C16:0 | 32.9 | 31.0 | 32.5 | 0.959 | 0.459 | 0.264 |
C16:1 cis-9 | 1.35 | 1.36 | 1.06 | 0.091 | 0.041 | 0.001 |
C18:0 | 17.6 | 16.9 | 16.2 | 0.557 | 0.035 | 0.144 |
C18:1 trans-10 | 0.28 | 0.27 | 0.28 | 0.015 | 0.916 | 0.788 |
C18:1 trans-11 | 1.14 | 1.42 | 1.26 | 0.085 | 0.421 | 0.325 |
C18:1 cis-9 | 21.9 | 23.5 | 25.6 | 1.113 | 0.019 | 0.022 |
C18:2 cis-9 cis-12 | 1.56 | 1.89 | 1.88 | 0.019 | 0.019 | 0.242 |
C18:3 cis-9 cis-12 cis-15 | 0.67 | 0.99 | 0.88 | 0.090 | 0.022 | 0.033 |
C18:2 cis-9 trans-11 | 0.40 | 0.64 | 0.63 | 0.008 | 0.012 | 0.346 |
C18:2 trans-10 cis-12 | 0.12 | 0.16 | 0.15 | 0.005 | 0.036 | 0.621 |
C20:0 | 0.73 | 0.55 | 0.79 | 0.015 | 0.002 | 0.001 |
C22:1 | 0.16 | 0.26 | 0.22 | 0.005 | 0.018 | 0.211 |
Other FA 3 | 4.53 | 3.79 | 2.09 | 0.122 | 0.006 | 0.018 |
SFA 4 | 68.1 | 65.1 | 65.2 | 2.356 | 0.013 | 0.452 |
UFA 5 | 31.9 | 34.9 | 34.7 | 1.489 | 0.001 | 0.566 |
MUFA 6 | 25.6 | 27.5 | 29.1 | 1.023 | 0.026 | 0.031 |
PUFA 7 | 6.29 | 7.49 | 5.63 | 0.745 | 0.002 | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azzaz, H.H.; Abd El Tawab, A.M.; Khattab, M.S.A.; Szumacher-Strabel, M.; Cieślak, A.; Murad, H.A.; Kiełbowicz, M.; El-Sherbiny, M. Effect of Cellulase Enzyme Produced from Penicilliumchrysogenum on the Milk Production, Composition, Amino Acid, and Fatty Acid Profiles of Egyptian Buffaloes Fed a High-Forage Diet. Animals 2021, 11, 3066. https://doi.org/10.3390/ani11113066
Azzaz HH, Abd El Tawab AM, Khattab MSA, Szumacher-Strabel M, Cieślak A, Murad HA, Kiełbowicz M, El-Sherbiny M. Effect of Cellulase Enzyme Produced from Penicilliumchrysogenum on the Milk Production, Composition, Amino Acid, and Fatty Acid Profiles of Egyptian Buffaloes Fed a High-Forage Diet. Animals. 2021; 11(11):3066. https://doi.org/10.3390/ani11113066
Chicago/Turabian StyleAzzaz, Hossam H., Ahmed M. Abd El Tawab, Mostafa S. A. Khattab, Małgorzata Szumacher-Strabel, Adam Cieślak, Hussein A. Murad, Maciej Kiełbowicz, and Mohamed El-Sherbiny. 2021. "Effect of Cellulase Enzyme Produced from Penicilliumchrysogenum on the Milk Production, Composition, Amino Acid, and Fatty Acid Profiles of Egyptian Buffaloes Fed a High-Forage Diet" Animals 11, no. 11: 3066. https://doi.org/10.3390/ani11113066
APA StyleAzzaz, H. H., Abd El Tawab, A. M., Khattab, M. S. A., Szumacher-Strabel, M., Cieślak, A., Murad, H. A., Kiełbowicz, M., & El-Sherbiny, M. (2021). Effect of Cellulase Enzyme Produced from Penicilliumchrysogenum on the Milk Production, Composition, Amino Acid, and Fatty Acid Profiles of Egyptian Buffaloes Fed a High-Forage Diet. Animals, 11(11), 3066. https://doi.org/10.3390/ani11113066