Dietary Resin Acid Concentrate Improved Performance of Broiler Chickens and Litter Quality in Three Experiments
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Animals and Housing
2.3. Experimental Protocols
2.4. Statistical Analysis
3. Results
3.1. Feed Analyses
3.2. Bird Health
3.3. Results of Trial 1
3.4. Results of Trial 2
3.5. Results of Trial 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oviedo-Rondón, E.O. Holistic view of intestinal health in poultry. Anim. Feed Sci. Technol. 2019, 250, 1–8. [Google Scholar] [CrossRef]
- Ducatelle, R.; Goossens, E.; De Meyer, F.; Eeckhaut, V.; Antonissen, G.; Haesebrouck, F.; Van Immerseel, F. Biomarkers for monitoring intestinal health in poultry: Present status and future perspectives. Vet. Res. 2018, 49, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celi, P.; Verlhac, V.; Calvo, E.P.; Schmeisser, J.; Kluenter, A.M. Biomarkers of gastrointestinal functionality in animal nutrition and health. Anim. Feed Sci. Technol. 2019, 250, 9–31. [Google Scholar] [CrossRef]
- Bielke, L.R.; Hargis, B.M.; Latorre, J.D. Impact of enteric health and mucosal permeability on skeletal health and lameness in poultry. Adv. Exp. Med. Biol. 2017, 1033, 185–197. [Google Scholar]
- Huyghebaert, G.; Ducatelle, R.; Van Immerseel, F. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 2011, 187, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Polycarpo, G.V.; Andretta, I.; Kipper, M.; Cruz-Polycarpo, V.C.; Dadalt, J.C.; Rodrigues, P.H.M.; Albuquerque, R. Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens. Poult. Sci. 2017, 96, 3645–3653. [Google Scholar] [CrossRef]
- Rehman, A.; Arif, M.; Sajjad, N.; Al-Ghadi, M.Q.; Alagawany, M.; Abd El-Hack, M.E.; Alhimaidi, A.R.; Elnesr, S.S.; Almutairi, B.O.; Amran, R.A.; et al. Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. Poult. Sci. 2020, 99, 6946–6953. [Google Scholar] [CrossRef]
- Manafi, M.; Hedayati, M.; Pirany, N.; Omede, A.A. Comparison of performance and feed digestibility of the non-antibiotic feed supplement (Novacid) and an antibiotic growth promoter in broiler chickens. Poult. Sci. 2019, 98, 904–911. [Google Scholar] [CrossRef]
- Kettunen, H.; Vuorenmaa, J.; Rinttilä, T.; Grönberg, H.; Valkonen, E.; Apajalahti, J. Natural resin acid-enriched composition as modulator of intestinal microbiota and performance enhancer in broiler chicken. J. Appl. Anim. Nutr. 2015, 3, e2. [Google Scholar] [CrossRef]
- Kettunen, H.; van Eerden, E.; Lipiński, K.; Rinttilä, T.; Valkonen, E.; Vuorenmaa, J. Dietary resin acid composition as a performance enhancer for broiler chickens. J. Appl. Anim. Nutr. 2017, 5, e3. [Google Scholar] [CrossRef]
- Vienola, K.; Jurgens, G.; Vuorenmaa, J.; Apajalahti, J. Tall oil fatty acid inclusion in the diet improves performance and increases ileal density of lactobacilli in broiler chickens. Br. Poult. Sci. 2018, 59, 349–355. [Google Scholar] [CrossRef]
- Lipiński, K.; Vuorenmaa, J.; Mazur-Kuśnirek, M.; Antoszkiewicz, Z. Effect of resin acid composition on growth performance, footpad dermatitis, slaughter value, and gastrointestinal tract development in turkeys. J. Appl. Poult. Res. 2020, 30, 1056–6171. [Google Scholar] [CrossRef]
- Hasan, S.; Saha, S.; Junnikkala, S.; Orro, T.; Peltoniemi, O.; Oliviero, C. Late gestation diet supplementation of resin acid-enriched composition increases sow colostrum immunoglobulin G content, piglet colostrum intake and improve sow gut microbiota. Animal 2019, 8, 1599–1606. [Google Scholar] [CrossRef] [Green Version]
- Roy, K.; Lyhs, U.; Vuorenmaa, J.; Pedersen, K. In vitro inhibition studies of natural resin acids to Clostridium perfringens, Staphylococcus aureus and Escherichia coli O149. J. Appl. Anim. Nutr. 2018, 6, e2. [Google Scholar] [CrossRef]
- San Feliciano, A.; Gordaliza, M.; Salinero, M.A.; del Corral, J.M.M. Abietane acids: Sources, biological activities, and therapeutic uses. Planta Med. 1993, 59, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Savluchinske-Feio, S.; Curto, M.J.; Gigante, B.; Roseiro, J.C. Antimicrobial activity of resin acid derivatives. Appl. Microbiol. Biotechnol. 2006, 72, 430–436. [Google Scholar] [CrossRef]
- Helfenstein, A.; Vahermo, M.; Nawrot, D.A.; Demirci, F.; İşcan, G.; Krogerus, S.; Yli-Kauhaluoma, J.; Moreira, V.M.; Tammela, P. Antibacterial profiling of abietane-type diterpenoids. Bioorg. Med. Chem. 2017, 25, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Hovelstad, H.; Leirset, I.; Oyaas, K.; Fiksdahl, A. Screening analyses of pinosylvin stilbenes, resin acids and lignans in Norwegian conifers. Molecules 2006, 11, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.; Roberts, J.C. Solubility and toxicity of resin acids. Water Res. 2000, 34, 2779–2785. [Google Scholar] [CrossRef]
- Jokinen, J.J.; Sipponen, A. Refined spruce resin to treat chronic wounds: Rebirth of an old folkloristic therapy. Adv. Wound Care (New Rochelle) 2016, 5, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, M.; Vuorenmaa, J.; Valkonen, E.; Kettunen, H.; Callens, C.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F.; Goossens, E. In-feed resin acids reduce matrix metalloproteinase activity in the ileal mucosa of healthy broilers without inducing major effects on the gut microbiota. Vet. Res. 2019, 50, 15. [Google Scholar] [CrossRef] [Green Version]
- Van Limbergen, T.; Sarrazin, S.; Chantziaras, I.; Dewulf, J.; Ducatelle, R.; Kyriazakis, I.; McMullin, P.; Méndez, J.; Niemi, J.K.; Papasolomontos, S.; et al. Risk factors for poor health and performance in European broiler production systems. BMC Vet. Res. 2020, 16, 287. [Google Scholar] [CrossRef]
- Shepherd, E.M.; Fairchild, B.D.; Ritz, C.W. Alternative bedding materials and litter depth impact litter moisture and footpad dermatitis. J. Appl. Poult. Res. 2017, 26, 518–528. [Google Scholar] [CrossRef]
- Kuttappan, V.A.; Vicuna, E.A.; Latorre, J.D.; Wolfenden, A.D.; Tellez, G.I.; Hargis, B.M.; Bielke, L.R. Evaluation of gastrointestinal leakage in multiple enteric inflammation models in chickens. Front. Vet. Sci. 2015, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Rakoczy, B. Act of 15 January 2015 on the protection of animals used for scientific or educational purposes. J. Laws 2015, 266, 79–88. [Google Scholar]
- Smulikowska, S.; Rutkowski, A. (Eds.) Nutritional Recommendations and Nutritive Value of Feed, 4th ed.; Instytut Fizjologii i Żywienia Zwierząt PAN: Jabłonna, Poland, 2005. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W., Latimer, G., Eds.; Association of Officiating Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Ekstrand, C.; Algers, B.; Svedberg, J. Rearing conditions and foot-pad dermatitis in Swedish broiler chickens. Prev. Vet. Med. 1997, 31, 167–174. [Google Scholar] [CrossRef]
- de Jong, I.C.; Gunnink, H.; van Harn, J. Wet litter not only induces footpad dermatitis but also reduces overall welfare, technical performance, and carcass yield in broiler chickens. J. Appl. Poult. Res. 2014, 23, 51–58. [Google Scholar] [CrossRef]
- Martrenchar, A.; Boilletot, E.; Huonnic, D.; Pol, F. Risk factors for foot-pad dermatitis in chicken and turkey broilers in France. Prev. Vet. Med. 2002, 52, 213–226. [Google Scholar] [CrossRef]
- Hashimoto, S.; Yamazaki, K.; Obi, T.; Takase, K. Relationship between severity of footpad dermatitis and carcass performance in broiler chickens. J. Vet. Med. Sci. 2013, 5, 1547–1549. [Google Scholar] [CrossRef] [Green Version]
- Cardinal, K.M.; Kipper, M.; Andretta, I.; Ribeiro, A.M.L. Withdrawal of antibiotic growth promoters from broiler diets: Performance indexes and economic impact. Poult. Sci. 2019, 98, 6659–6667. [Google Scholar] [CrossRef]
- Yaqoob, M.U.; El-Hack, M.E.A.; Hassan, F.; El-Saadony, M.T.; Khafaga, A.F.; Batiha, G.E.; Yehia, N.; Elnesr, S.S.; Alagawany, M.; El-Tarabily, K.A.; et al. The potential mechanistic insights and future implications for the effect of prebiotics on poultry performance, gut microbiome, and intestinal morphology. Poult. Sci. 2021, 100, 101143. [Google Scholar] [CrossRef] [PubMed]
- Mayne, R.K.; Else, R.W.; Hocking, P.M. High litter moisture alone is sufficient to cause footpad dermatitis in growing turkeys. Brit. Poult. Sci. 2007, 48, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Flores, K.R.; Fahrenholz, A.; Grimes, J.L. Effect of pellet quality and biochar litter amendment on male turkey performance. Poult. Sci. 2021, 100, 101002. [Google Scholar] [CrossRef] [PubMed]
- Apajalahti, J.; Vienola, K.; Raatikainen, K.; Kettunen, H.; Vuorenmaa, J. Distribution, metabolism and recovery of resin acids in the intestine and tissues of broiler chickens in a feeding trial with tall oil fatty acid-supplemented diets. Front. Vet. Sci. 2020, 7, 437. [Google Scholar] [CrossRef]
Item | Trial 1 | ||
---|---|---|---|
Starter d1–10 | Grower 1 d11–21 | Grower 2 d22–35 | |
Composition (%): | |||
Wheat | 29.34 | 36.17 | 41.39 |
Maize | 25 | 20 | 15 |
Triticale | 5 | 6 | 8 |
Soybean meal | 29.66 | 23.89 | 20.84 |
Rapeseed meal | 4 | 6 | 6 |
Soybean oil | 3.10 | 4.30 | 5.30 |
Limestone | 1.22 | 1.2 | 1.17 |
Calcium phosphate | 1.12 | 0.88 | 0.7 |
Fodder salt | 0.23 | 0.21 | 0.23 |
Sodium bicarbonate | 0.21 | 0.16 | 0.14 |
L-lysine HCL | 0.24 | 0.29 | 0.32 |
DL-Methionine | 0.25 | 0.22 | 0.23 |
L-Threonine | 0.04 | 0.08 | 0.09 |
Premix * | 0.5 | 0.5 | 0.5 |
Nutritional value: | |||
EM, kcal/kg | 2960 | 3060 | 3150 |
Crude protein, % | 21.5 | 20.5 | 19.5 |
Lysine, % | 1.28 | 1.2 | 1.13 |
Lysine, dig., % | 1.16 | 1.08 | 1.02 |
Methionine + cystine, % | 0.94 | 0.89 | 0.85 |
Methionine + cystine, dig., % | 0.83 | 0.78 | 0.75 |
Threonine, % | 0.83 | 0.80 | 0.78 |
Threonine, dig., % | 0.71 | 0.68 | 0.66 |
Tryptophan, % | 0.25 | 0.24 | 0.23 |
Tryptophan, dig., % | 0.22 | 0.21 | 0.20 |
Calcium, % | 0.95 | 0.9 | 0.85 |
Available phosphorus, % | 0.45 | 0.4 | 0.36 |
Sodium, % | 0.18 | 0.16 | 0.15 |
Analyzed chemical composition, %: | |||
Dry matter | 88.38 | 88.76 | 89.16 |
Crude ash | 4.72 | 4.39 | 4.2 |
Crude protein | 21.44 | 20.36 | 19.76 |
Ether extract | 4.55 | 5.77 | 6.89 |
Crude fiber | 3.29 | 3.31 | 3.53 |
Item | Trial 2 | Trial 3 | ||||
---|---|---|---|---|---|---|
Starter d1–10 | Grower 1 d11–21 | Grower 2 d22–35 | Starter d1–10 | Grower 1 d11–21 | Grower 2 d22–35 | |
Composition (%): | ||||||
Wheat | 29.34 | 36.17 | 41.39 | 24.23 | 29.88 | 33.08 |
Maize | 25 | 20 | 15 | 25 | 20 | 15 |
Barley | - | - | - | 5 | 6 | 8 |
Triticale | 5 | 6 | 8 | 5 | 6 | 8 |
Soybean meal | 29.66 | 23.89 | 20.84 | 29.66 | 23.89 | 20.84 |
Rapeseed meal | 4 | 6 | 6 | 4 | 6 | 6 |
Soybean oil | 3.10 | 4.30 | 5.30 | 3.30 | 4.60 | 5.70 |
Limestone | 1.22 | 1.2 | 1.17 | 1.22 | 1.2 | 1.17 |
Calcium phosphate | 1.12 | 0.88 | 0.7 | 1.12 | 0.88 | 0.7 |
Fodder salt | 0.23 | 0.21 | 0.23 | 0.23 | 0.21 | 0.23 |
Sodium bicarbonate | 0.21 | 0.16 | 0.14 | 0.21 | 0.16 | 0.14 |
L-lysine HCL | 0.24 | 0.29 | 0.32 | 0.24 | 0.29 | 0.32 |
DL-methionine | 0.25 | 0.22 | 0.23 | 0.25 | 0.22 | 0.23 |
L-threonine | 0.04 | 0.08 | 0.09 | 0.04 | 0.08 | 0.09 |
Premix * | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Nutritional value: | ||||||
EM, kcal/kg | 2960 | 3060 | 3150 | 2960 | 3060 | 3150 |
Crude protein, % | 22.5 | 21.5 | 20.5 | 22.5 | 21.5 | 20.5 |
Lysine, % | 1.28 | 1.2 | 1.13 | 1.28 | 1.2 | 1.13 |
Lysine, dig., % | 1.15 | 1.08 | 1.02 | 1.15 | 1.08 | 1.02 |
Methionine + cystine, % | 0.94 | 0.89 | 0.85 | 0.94 | 0.89 | 0.85 |
Methionine + cystine, dig., % | 0.83 | 0.78 | 0.75 | 0.83 | 0.78 | 0.75 |
Threonine, % | 0.83 | 0.80 | 0.78 | 0.83 | 0.80 | 0.78 |
Threonine, dig., % | 0.71 | 0.68 | 0.66 | 0.71 | 0.68 | 0.66 |
Tryptophan, % | 0.25 | 0.24 | 0.23 | 0.25 | 0.24 | 0.23 |
Tryptophan, dig., % | 0.22 | 0.21 | 0.20 | 0.22 | 0.21 | 0.20 |
Calcium, % | 0.95 | 0.9 | 0.85 | 0.95 | 0.9 | 0.85 |
Available phosphorus, % | 0.45 | 0.4 | 0.36 | 0.45 | 0.4 | 0.36 |
Sodium, % | 0.18 | 0.16 | 0.15 | 0.18 | 0.16 | 0.15 |
Analyzed chemical composition, %: | ||||||
Dry matter | 89.01 | 88.57 | 88.38 | 88.88 | 89.2 | 88.28 |
Crude ash | 4.87 | 4.14 | 4.02 | 4.52 | 4.23 | 4.15 |
Crude protein | 22.06 | 21.66 | 20.52 | 22.18 | 21.54 | 20.73 |
Ether extract | 4.65 | 5.75 | 6.86 | 5.19 | 6.21 | 7.24 |
Crude fiber | 3.22 | 3.2 | 3.15 | 3.22 | 3.41 | 3.38 |
Item | Resin Acids | |||||
---|---|---|---|---|---|---|
RAC | Starter | Grower 1 | Grower 2 | |||
Trial | Diet Groups | Added, g/ton | Calculated, g/ton | Analyzed, g/ton | ||
Control | 0 | 0 | 0 | 0 | 0 | |
Trial 1 | RAC125 | 125 | 47 | 38 | 55 | 42 |
RAC250 | 250 | 94 | 87 | 82 | 98 | |
RAC1250 | 1250 | 469 | 379 | 513 | 459 | |
Trial 2 | Control | 0 | 0 | 0 | 0 | 0 |
RAC175 | 175 | 66 | 46 | 66 | 71 | |
Trial 3 | Control | 0 | 0 | 0 | 0 | 0 |
RAC175 | 175 | 66 | 47 | 72 | 63 |
Item | Diet Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | RAC125 | RAC250 | RAC1250 | |||
Bird weight, kg | ||||||
Day 1 | 0.04 | 0.04 | 0.04 | 0.04 | 0.001 | 0.137 |
Day 7 | 0.17 | 0.18 | 0.18 | 0.17 | 0.001 | 0.205 |
Day 14 | 0.45 ax | 0.48 b | 0.47 y | 0.47 y | 0.004 | 0.022 |
Day 21 | 0.91 x | 0.95 y | 0.95 y | 0.93 | 0.007 | 0.072 |
Day 28 | 1.57 a | 1.65 b | 1.63 b | 1.57 ab | 0.011 | 0.009 |
Day 35 | 2.32 a | 2.43 b | 2.44 b | 2.33 ab | 0.016 | 0.002 |
Feed intake per pen, kg | ||||||
Days 1–7 | 0.14 | 0.15 | 0.15 | 0.15 | 0.002 | 0.168 |
Days 1–14 | 0.50 | 0.52 | 0.51 | 0.53 | 0.005 | 0.231 |
Days 1–21 | 1.14 | 1.16 | 1.16 | 1.17 | 0.009 | 0.789 |
Days 1–28 | 2.25 | 2.32 | 2.30 | 2.26 | 0.016 | 0.104 |
Days 1–35 | 3.49 | 3.61 | 3.55 | 3.53 | 0.023 | 0.343 |
Feed conversion ratio | ||||||
Days 1–7 | 1.10 | 1.10 | 1.10 | 1.12 | 0.008 | 0.661 |
Days 1–14 | 1.23 | 1.18 | 1.19 | 1.23 | 0.010 | 0.150 |
Days 1–21 | 1.31 x | 1.27 y | 1.27 y | 1.31 x | 0.009 | 0.085 |
Days 1–28 | 1.47 | 1.45 | 1.45 | 1.46 | 0.007 | 0.714 |
Days 1–35 | 1.53 | 1.51 | 1.48 | 1.54 | 0.010 | 0.162 |
Mortality, % | 4.76 | 3.33 | 2.86 | 3.33 | 0.451 | 0.497 |
EEI, points | 412.4 ac | 445.9 bx | 457.5 ba | 418.7 bcy | 5.814 | 0.008 |
Item | Diet Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | RAC125 | RAC250 | RAC1250 | |||
Litter quality | ||||||
Day 14 | 15.20 a | 15.09 a | 14.93 a | 12.73 b | 0.304 | 0.004 |
Day 28 | 32.33 x | 30.84 xy | 28.26 y | 28.18 y | 0.663 | 0.059 |
Day 35 | 56.59 a | 54.54 ab | 52.99 b | 51.63 b | 0.534 | 0.003 |
FPD score | ||||||
Day 14 | 4.29 | 4.29 | 4.29 | 4.29 | 0.638 | 1.000 |
Day 28 | 41.43 | 38.57 | 36.67 | 35.71 | 3.040 | 0.925 |
Day 35 | 63.33 | 56.19 | 58.1 | 55.24 | 3.233 | 0.834 |
Item | Diet Groups | SEM | p-Value | |
---|---|---|---|---|
Control | RAC175 | |||
Bird weight, kg | ||||
Day 1 | 0.04 | 0.04 | 0.001 | 0.485 |
Day 7 | 0.17 | 0.17 | 0.001 | 0.469 |
Day 14 | 0.46 | 0.46 | 0.003 | 0.819 |
Day 21 | 0.94 x | 0.96 y | 0.006 | 0.056 |
Day 28 | 1.65 | 1.67 | 0.009 | 0.236 |
Day 35 | 2.34 a | 2.41 b | 0.015 | 0.017 |
Feed intake per pen, kg | ||||
Days 1–7 | 0.17 | 0.17 | 0.002 | 0.393 |
Days 1–14 | 0.59 | 0.58 | 0.006 | 0.206 |
Days 1–21 | 1.31 | 1.35 | 0.012 | 0.127 |
Days 1–28 | 2.50 | 2.53 | 0.017 | 0.420 |
Days 1–35 | 3.79 | 3.83 | 0.027 | 0.523 |
Feed conversion ratio | ||||
Days 1–7 | 1.02 | 1.01 | 0.014 | 0.666 |
Days 1–14 | 1.28 | 1.25 | 0.015 | 0.319 |
Days 1–21 | 1.40 | 1.41 | 0.013 | 0.791 |
Days 1–28 | 1.52 | 1.52 | 0.011 | 0.871 |
Days 1–35 | 1.62 x | 1.59 y | 0.009 | 0.067 |
Mortality, % | 3.33 | 3.33 | 0.642 | 1.000 |
EEI, points | 397.6 a | 418.2 b | 5.076 | 0.040 |
Litter quality | ||||
Day 14 | 15.25 a | 14.11 b | 0.291 | 0.049 |
Day 28 | 29.58 | 29.02 | 0.750 | 0.720 |
Day 35 | 57.69 | 56.10 | 0.933 | 0.405 |
Item | Diet Groups | SEM | p-Value | |
---|---|---|---|---|
Control | RAC175 | |||
Bird weight, kg | ||||
Day 1 | 0.04 | 0.04 | 0.001 | 0.182 |
Day 7 | 0.16 | 0.17 | 0.001 | 0.340 |
Day 14 | 0.45 | 0.46 | 0.003 | 0.396 |
Day 21 | 0.88 | 0.88 | 0.008 | 0.867 |
Day 28 | 1.59 | 1.61 | 0.008 | 0.162 |
Day 35 | 2.13 a | 2.26 b | 0.018 | <0.001 |
Feed intake per pen, kg | ||||
Days 1–7 | 0.17 | 0.17 | 0.002 | 0.787 |
Days 1–14 | 0.59 | 0.59 | 0.005 | 0.794 |
Days 1–21 | 1.25 | 1.24 | 0.018 | 0.721 |
Days 1–28 | 2.46 | 2.46 | 0.017 | 0.808 |
Days 1–35 | 3.54 | 3.63 | 0.034 | 0.179 |
Feed conversion ratio | ||||
Days 1–7 | 1.03 | 1.01 | 0.010 | 0.358 |
Days 1–14 | 1.30 | 1.28 | 0.012 | 0.359 |
Days 1–21 | 1.41 | 1.40 | 0.015 | 0.722 |
Days 1–28 | 1.55 | 1.52 | 0.012 | 0.250 |
Days 1–35 | 1.66 a | 1.61 b | 0.011 | 0.012 |
Mortality, % | 4.29 | 3.33 | 0.799 | 0.561 |
EEI, points | 351.9 a | 388.3 b | 5.641 | <0.001 |
Litter quality | ||||
Day 14 | 14.55 | 13.53 | 0.394 | 0.203 |
Day 28 | 30.04 x | 27.74 y | 0.686 | 0.095 |
Day 35 | 59.03 a | 54.81 b | 0.920 | 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipiński, K.; Vuorenmaa, J.; Mazur-Kuśnirek, M.; Sartowska-Żygowska, K.; Kettunen, H. Dietary Resin Acid Concentrate Improved Performance of Broiler Chickens and Litter Quality in Three Experiments. Animals 2021, 11, 3045. https://doi.org/10.3390/ani11113045
Lipiński K, Vuorenmaa J, Mazur-Kuśnirek M, Sartowska-Żygowska K, Kettunen H. Dietary Resin Acid Concentrate Improved Performance of Broiler Chickens and Litter Quality in Three Experiments. Animals. 2021; 11(11):3045. https://doi.org/10.3390/ani11113045
Chicago/Turabian StyleLipiński, Krzysztof, Juhani Vuorenmaa, Magdalena Mazur-Kuśnirek, Katarzyna Sartowska-Żygowska, and Hannele Kettunen. 2021. "Dietary Resin Acid Concentrate Improved Performance of Broiler Chickens and Litter Quality in Three Experiments" Animals 11, no. 11: 3045. https://doi.org/10.3390/ani11113045
APA StyleLipiński, K., Vuorenmaa, J., Mazur-Kuśnirek, M., Sartowska-Żygowska, K., & Kettunen, H. (2021). Dietary Resin Acid Concentrate Improved Performance of Broiler Chickens and Litter Quality in Three Experiments. Animals, 11(11), 3045. https://doi.org/10.3390/ani11113045