Effect of Excessive or Restrictive Energy on Growth Performance, Meat Quality, and Intramuscular Fat Deposition in Finishing Ningxiang Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Slaughter Procedure and Sample Collection
2.3. Meat Quality Index Measurements
2.4. Meat Chemical Composition and Biochemical Parameters Analysis
2.5. Muscle Histological Analysis
2.6. Quantitative Real-Time PCR Analysis
2.7. Muscle Hydrolyzed Amino Acids Analysis
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Muscle Chemical Composition and Biochemical Parameters
3.3. Meat Quality
3.4. Muscle Fiber Morphology
3.5. MyHC Expression and IMF Deposition Related Gene Expression Levels
3.6. Muscle Hydrolyzed Amino Acid
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hausman, G.J.; Dodson, M.V.; Ajuwon, K.; Azain, M.; Barnes, K.M.; Guan, L.L.; Jiang, Z.; Poulos, S.P.; Sainz, R.D.; Smith, S.; et al. Board-invited review: The biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 2009, 87, 1218–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hocquette, J.F.; Gondret, F.; Baéza, E.; Medale, F.; Jurie, C.; Pethick, D.W. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal 2010, 4, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, Y.H.; Kim, G.D.; Jeong, J.Y.; Hur, S.; Joo, S. The relationship between muscle fiber characteristics and meat quality traits of highly marbled Hanwoo (Korean native cattle) steers. Meat Sci. 2010, 86, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.Y.; Huang, J.X.; Zhou, X.R.; Yao, Y.; Jiang, S.; Huan, Y.; Yang, J.; Liu, Z. MyHC fiber type composition in Rongchang and Landrace pigs of similar body weight. J. Food Agric. Environ. 2013, 11, 398–400. [Google Scholar]
- Wojtysiak, D.; Połtowicz, K. Carcass quality, physico-chemical parameters, muscle fiber traits and myosin heavy chain composition of m. longissimus lumborum from Puławska and Polish Large White pigs. Meat Sci. 2014, 97, 395–403. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, J.Q.; Zheng, P.; Yu, B.; Huang, Z.Q.; Mao, X.B.; He, J.; Yu, J.; Chen, J.L.; Chen, D.W. Differential expression of lipid metabolism-related genes and myosin heavy chain isoform genes in pig muscle tissue leading to different meat quality. Animal 2015, 9, 1073–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poklukar, K.; Čandek-Potokar, M.; Batorek Lukač, N.; Tomavzin, U.; Vskrlep, M. Lipid Deposition and Metabolism in Local and Modern Pig Breeds: A Review. Animals 2020, 10, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, S.T.; Kim, G.D.; Hwang, Y.H.; Ryu, Y.C. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 2013, 95, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Joo, S.T.; Ryu, Y.C. Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Sci. 2010, 86, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Yang, F.Y.; Kong, L.J.; Lai, C.H.; Piao, X.S.; Gu, Y.H.; Ou, X.Q. Effects of dietary energy density on growth, carcass quality and mRNA expression of fatty acid synthase and hormone-sensitive lipase in finishing pigs. Asian Austr. J. Anim. Sci. 2007, 20, 1587–1593. [Google Scholar] [CrossRef]
- Feng, Z.M.; Guo, J.P.; Kong, X.F.; Wang, W.C.; Li, F.N.; Nyachoti, M.; Yin, Y.L. Molecular cloning and expression profiling of G protein coupled receptor 120 in Landrace pig and different Chinese indigenous pig breeds. J. Food Agric. Environ. 2012, 10, 809–814. [Google Scholar]
- Jiang, Q.; Li, C.; Yu, Y.; Xing, Y.; Xiao, D.; Zhang, B. Comparison of fatty acid profile of three adipose tissues in Ningxiang pigs. Anim. Nutr. 2018, 4, 256–259. [Google Scholar] [CrossRef]
- Xing, Y.; Wu, X.; Xie, C.; Xiao, D.; Zhang, B. Meat Quality and Fatty Acid Profiles of Chinese Ningxiang Pigs Following Supplementation with N-Carbamylglutamate. Animals 2020, 10, 88. [Google Scholar] [CrossRef] [Green Version]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Yin, J.; Li, Y.; Zhu, X.; Han, H.; Ren, W.; Chen, S.; Bin, P.; Liu, G.; Huang, X.; Fang, R. Effects of long-term protein restriction on meat quality, muscle amino acids, and amino acid transporters in pigs. J. Agric. Food Chem. 2017, 65, 9297–9304. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.E.; Richert, B.T.; Belury, M.A.; Gu, Y.; Enright, K.; Schinckel, A.P. Evaluation of the effects of dietary fat, conjugated linoleic acid, and ractopamine on growth performance, pork quality, and fatty acid profiles in genetically lean gilts. J. Anim. Sci. 2006, 84, 720–732. [Google Scholar] [CrossRef] [PubMed]
- Hinson, R.B.; Wiegand, B.R.; Ritter, M.J.; Allee, G.L.; Carr, S.N. Impact of dietary energy level and ractopamine on growth performance, carcass characteristics, and meat quality of finishing pigs. J. Anim. Sci. 2011, 89, 3572–3579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Llata, M.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L.; Loughin, T.M. Effects of dietary fat on growth performance and carcass characteristics of growing-finishing pigs reared in a commercial environment. J. Anim. Sci. 2001, 79, 2643–2650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, B.J.; Southern, L.L.; Bidner, T.D.; Friesen, K.G.; Easter, R.A. Influence of dietary protein level, amino acid supplementation, and dietary energy levels on growing-finishing pig performance and carcass composition. J. Anim. Sci. 2003, 81, 3075–3087. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.P.; García, L.C.; Valencia, D.G.; Lazaro, R.; Gorriz, M.A.L. Effect of energy concentration on growth performance and carcass quality of Iberian pigs reared under intensive conditions. Span. J. Agric. Res. 2013, 2, 5–416. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.Y.; Kim, M.H.; Ha, D.M.; Park, J.W.; Oh, G.Y.; Lee, J.R.; Ha, Y.J.; Park, B.C. Effects of the energy level of the finisher diet on growth efficiency and carcass traits of high-market weight pigs. J. Anim. Sci. Technol. 2007, 49, 471–480. [Google Scholar]
- Ha, D.M.; Kim, G.D.; Han, J.C.; Jeong, J.; Park, M.; Park, B.; Joo, S.; Lee, C. Effects of dietary energy level on growth efficiency and carcass quality traits of finishing pigs. J. Anim. Sci. Technol. 2010, 52, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Glitsch, K. Consumer perceptions of fresh meat quality: Cross-national comparison. Br. Food J. 2000, 102, 177–194. [Google Scholar] [CrossRef]
- Wood, J.D.; Nute, G.R.; Richardson, R.I.; Whittington, F.M.; Southwood, O.; Plastow, G.; Mansbridge, R.; da Costa, N.; Chang, K.C. Effects of breed, diet and muscle on fat deposition and eating quality in pigs. Meat Sci. 2004, 67, 651–667. [Google Scholar] [CrossRef] [PubMed]
- Fortin, A.; Robertson, W.M.; Tong, A.K.W. The eating quality of Canadian pork and its relationship with intramuscular fat. Meat Sci. 2005, 69, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Heyer, A.; Lebret, B. Compensatory growth response in pigs: Effects on growth performance, composition of weight gain at carcass and muscle levels, and meat quality. J. Anim. Sci. 2007, 85, 769–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skiba, G. Effects of energy or protein restriction followed by realimentation on the composition of gain and meat quality characteristics of Musculus longissimus dorsi in pigs. Arch. Anim. Nutr. 2010, 64, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Belloch, J.; Sanz, M.A.; Joy, M.; Latorre, M.A. Impact of increasing dietary energy level during the finishing period on growth performance, pork quality and fatty acid profile in heavy pigs. Meat Sci. 2013, 93, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Alonso, V.; del Mar Campo, M.; Provincial, L.; Roncales, P.; Beltran, J.A. Effect of protein level in commercial diets on pork meat quality. Meat Sci. 2010, 85, 7–14. [Google Scholar] [CrossRef]
- Lebret, B. Effects of feeding and rearing systems on growth, carcass composition and meat quality in pigs. Anim. Int. J. Anim. Biosci. 2008, 2, 1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luchak, G.L.; Miller, R.K.; Belk, K.E.; Hale, D.S.; Michaelsen, S.A.; Johnson, D.D.; West, R.L.; Leak, F.W.; Cross, H.R.; Savell, J.W. Determination of sensory, chemical and cooking characteristics of retail beef cuts differing in intramuscular and external fat. Meat Sci. 1998, 50, 55–72. [Google Scholar] [CrossRef]
- Chartrin, P.; Méteau, K.; Juin, H.; Bernadet, M.; Guy, G.; Larzul, C.; Remignon, H.; Mourot, J.; Duclos, M.J.; Baeza, E. Effects of intramuscular fat levels on sensory characteristics of duck breast meat. Poultry Sci. 2006, 85, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.C.; Kim, B.C. Comparison of histochemical characteristics in various pork groups categorized by postmortem metabolic rate and pork quality. J. Anim. Sci. 2006, 84, 894–901. [Google Scholar] [CrossRef]
- Kim, G.D.; Jeong, J.Y.; Hur, S.J.; Yang, H.; Jeon, J.; Joo, S. The relationship between meat color (CIE L* and a*), myoglobin content, and their influence on muscle fiber characteristics and pork quality. Korean J. Food Sci. Anim. Resour. 2010, 30, 626–633. [Google Scholar] [CrossRef] [Green Version]
- Matthews, J.O.; Higbie, A.D.; Southern, L.L.; Coombs, D.F.; Bidner, T.D.; Odgaard, R.L. Effect of chromium propionate and metabolizable energy on growth, carcass traits, and pork quality of growing-finishing pigs. J. Anim. Sci. 2003, 81, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Yu, B.; Mao, X.; Chen, D. Effects of dietary digestible energy concentration on growth, meat quality, and PPARγ gene expression in muscle and adipose tissues of Rongchang piglets. Meat Sci. 2012, 90, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.; Therkildsen, M.; Riis, B.; Sorensen, M.T.; Oksbjerg, N.; Purslow, P.P.; Ertbjerg, P. Dietary-induced changes of muscle growth rate in pigs: Effects on in vivo and postmortem muscle proteolysis and meat quality. J. Anim. Sci. 2002, 80, 2862–2871. [Google Scholar] [CrossRef]
- Stolzenbach, S.; Therkildsen, M.; Oksbjerg, N.; Lazarotti, R.; Ertbjerg, P.; Lametsch, R.; Byrne, D.V. Compensatory growth response as a strategy to enhance tenderness in entire male and female pork M. longissimus thoracis. Meat Sci. 2009, 81, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Batorek, N.; Škrlep, M.; Prunier, A.; Louveau, I.; Noblet, J.; Bonneau, M.; Vcandek-Potokar, M. Effect of feed restriction on hormones, performance, carcass traits, and meat quality in immunocastrated pigs. J. Anim. Sci. 2012, 90, 4593–4603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, M.; Armero, E.; Aristoy, M.C.; Toldra, F. Sensory characteristics of cooked pork loin as affected by nucleotide content and post-mortem meat quality. Meat Sci. 1999, 51, 53–59. [Google Scholar] [CrossRef]
- Van Laack, R.; Stevens, S.G.; Stalder, K.J. The influence of ultimate pH and intramuscular fat content on pork tenderness and tenderization. J. Anim. Sci. 2001, 79, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Teye, G.A.; Sheard, P.R.; Whittington, F.M.; Nute, G.R.; Stewart, A.; Wood, J.D. Influence of dietary oils and protein level on pork quality. 1. Effects on muscle fatty acid composition, carcass, meat and eating quality. Meat Sci. 2006, 73, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.C.; Rhee, M.S.; Kim, B.C. Estimation of correlation coefficients between histological parameters and carcass traits of pig longissimus dorsi muscle. Asian Austr. J. Anim. Sci. 2004, 17, 428–433. [Google Scholar] [CrossRef]
- Rehfeldt, C.; Kuhn, G. Consequences of birth weight for postnatal growth performance and carcass quality in pigs as related to myogenesis. J. Anim. Sci. 2006, 84, E113–E123. [Google Scholar] [CrossRef] [PubMed]
- Rehfeldt, C.; Fiedler, I.; Dietl, G.; Ender, K. Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livestock Prod. Sci. 2000, 66, 177–188. [Google Scholar] [CrossRef]
- Renand, G.; Picard, B.; Touraille, C.; Berge, P.; Lepetit, J. Relationships between muscle characteristics and meat quality traits of young Charolais bulls. Meat Sci. 2001, 59, 49–60. [Google Scholar] [CrossRef]
- Karlsson, A.; Enfält, A.C.; Essén-Gustavsson, B.; Lundstrom, K.; Rydhmer, L.; Stern, S. Muscle histochemical and biochemical properties in relation to meat quality during selection for increased lean tissue growth rate in pigs. J. Anim. Sci. 1993, 71, 930–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, Y.C.; Lee, M.H.; Lee, S.K.; KIM, B.-C. Effects of muscle mass and fiber type composition of longissimus dorsi muscle on postmortem metabolic rate and meat quality in pigs. J. Muscle Foods 2006, 17, 343–353. [Google Scholar] [CrossRef]
- Park, S.K.; Gunawan, A.M.; Scheffler, T.L.; Grant, A.L.; Gerrard, D.E. Myosin heavy chain isoform content and energy metabolism can be uncoupled in pig skeletal muscle. J. Anim. Sci. 2009, 87, 522–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G.D.; Jeong, J.Y.; Jung, E.Y.; Yang, H.; Lim, H.; Joo, S. The influence of fiber size distribution of type IIB on carcass traits and meat quality in pigs. Meat Sci. 2013, 94, 267–273. [Google Scholar] [CrossRef]
- Hamill, R.M.; McBryan, J.; McGee, C.; Mullen, A.M.; Sweeney, T.; Talbot, A.; Cairns, M.T.; Davey, G.C. Functional analysis of muscle gene expression profiles associated with tenderness and intramuscular fat content in pork. Meat Sci. 2012, 92, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Realini, C.E.; Vénien, A.; Gou, P.; Gatellier, P.; Perez-Juan, M.; Danon, J.; Astruc, T. Characterization of Longissimus thoracis, Semitendinosus and Masseter muscles and relationships with technological quality in pigs. 1. Microscopic analysis of muscles. Meat Sci. 2013, 94, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Oury, M.P.; Dumont, R.; Jurie, C.; Hocquette, J.; Picard, B. Specific fiber composition and metabolism of the rectus abdominis muscle of bovine Charolais cattle. BMC Biochem. 2010, 11, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, M.B.; Lynch, G.P. Biochemical, histochemical and palatability characteristics of young ram lambs as affected by diet and electrical stimulation. J. Anim. Sci. 1988, 66, 1955–1962. [Google Scholar] [CrossRef]
- Harrison, A.P.; Rowlerson, A.M.; Dauncey, M.J. Selective regulation of myofiber differentiation by energy status during postnatal development. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1996, 270, R667–R674. [Google Scholar] [CrossRef] [PubMed]
- Poleti, M.D.; Regitano LC, A.; Souza, G.H.M.F.; Cesar, A.S.M.; Simas, R.C.; Silva-Vignato, B.; Oliveira, G.B.; Andrade, S.C.S.; Cameron, L.C.; Coutinho, L.L. Longissimus dorsi muscle label-free quantitative proteomic reveals biological mechanisms associated with intramuscular fat deposition. J. Proteomics 2018, 179, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, K.; Julien, P.; Davis, T.A.; Myre, A.; Thivierge, M.C. Long-chain n-3 fatty acids enhance neonatal insulin-regulated protein metabolism in piglets by differentially altering muscle lipid composition. J. Lipid Res. 2007, 48, 2396–2410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brownsey, R.W.; Boone, A.N.; Elliott, J.E.; Kulpa, J.E.; Lee, W.M. Regulation of Acetyl-CoA Carboxylase; Portland Press Ltd.: London, UK, 2006. [Google Scholar]
- Jensen-Urstad, A.P.L.; Semenkovich, C.F. Fatty acid synthase and liver triglyceride metabolism: Housekeeper or messenger? Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2012, 1821, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, J.; Yang, D.; Liu, Z.; Zeng, Y.; Chen, W. Expression of lipid metabolism genes provides new insights into intramuscular fat deposition in Laiwu pigs. Asian Austr. J. Anim. Sci. 2020, 33, 390. [Google Scholar] [CrossRef]
- Duran-Montgé, P.; Theil, P.K.; Lauridsen, C.; Esteve-Garcia, E. Fat metabolism is regulated by altered gene expression of lipogenic enzymes and regulatory factors in liver and adipose tissue but not in semimembranosus muscle of pigs during the fattening period. Animal 2009, 3, 1580–1590. [Google Scholar] [CrossRef]
- Scheeder MR, L.; Gläser, K.R.; Eichenberger, B.; Wenk, C. Influence of different fats in pig feed on fatty acid composition of phospholipids and physical meat quality characteristics. Eur. J. Lipid Sci. Technol. 2000, 102, 391–401. [Google Scholar] [CrossRef]
- Bee, G.; Gebert, S.; Messikommer, R. Effect of dietary energy supply and fat source on the fatty acid pattern of adipose and lean tissues and lipogenesis in the pig. J. Anim. Sci. 2002, 80, 1564–1574. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Xu, H.J.; Liu, Z.Q.; Gu, W.; Tang, B.; Wang, Y.; Yin, R.; Fan, M.Z. Effects of dietary inclusion of soy oil on growth performance, carcass characteristics, serum metabolites, hormones and meat quality in finishing pigs. J. Food Agric. Environ. 2010, 8, 759–766. [Google Scholar]
- Gao, Y.; Zhang, Y.H.; Zhang, S.; Li, F.; Wang, S.; Dai, L.; Jiang, H.; Xiao, S.; Liu, D.; Sun, B.; et al. Association of A-FABP gene polymorphism in intron 1 with meat quality traits in Junmu No. 1 white swine. Gene 2011, 487, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Damon, M.; Louveau, I.; Lefaucheur, L.; Lebret, B.; Vincent, A.; Leroy, P.; Sanchez, M.P.; Herpin, P.; Gondret, F. Number of intramuscular adipocytes and fatty acid binding protein-4 content are significant indicators of intramuscular fat level in crossbred Large White× Duroc pigs. J. Anim. Sci. 2006, 84, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Gerbens, F.; Rettenberger, G.; Lenstra, J.A.; Veerkamp, J.H.; Te Pas, M.F.W. Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene. Mamm. Genome 1997, 8, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Glatz JF, C.; Schaap, F.G.; Binas, B.; Bonen, A.; van der Vusse, G.J.; Luiken, J.J.F.P. Cytoplasmic fatty acid-binding protein facilitates fatty acid utilization by skeletal muscle. Acta Physiol. Scand. 2003, 178, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Haunerland, N.H.; Spener, F. Fatty acid-binding proteins–insights from genetic manipulations. Prog. Lipid Res. 2004, 43, 328–349. [Google Scholar] [CrossRef] [PubMed]
- Joint FAO, World Health Organization. Energy and Protein Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation [Held in Rome from 5–17 October 1981; World Health Organization: Geneva, Switzerland, 1985. [Google Scholar]
- Wang, R.; Yang, C.; Song, H. Key meat flavour compounds formation mechanism in a glutathione–xylose Maillard reaction. Food Chem. 2012, 131, 280–285. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Kim, S.W.; Knabe, D.A.; Li, P.; Li, X.; McKnight, J.R.; Satterfield, M.C.; et al. Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino Acids 2011, 40, 1053–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ingredient, % | CON | EE | RE |
---|---|---|---|
Corn | 54.90 | 57.10 | 47.90 |
Soybean meal | 8.20 | 5.60 | 8.20 |
Peanut meal | 0.00 | 5.00 | 0.00 |
Wheat bran | 21.30 | 0.00 | 29.8 |
Rice bran | 6.40 | 21.40 | 0.00 |
Soybean oil | 3.20 | 7.90 | 0.00 |
CaHPO4 | 0.27 | 0.51 | 0.19 |
Limestone | 1.01 | 0.90 | 1.05 |
L-Lys HCl 98% | 0.11 | 0.11 | 0.13 |
Threonine | 0.01 | 0.00 | 0.03 |
Tryptophan | 0.00 | 0.02 | 0.00 |
Rice chaff | 1.7 | 0.46 | 1.5 |
Zeolite | 1.90 | 0.00 | 10.20 |
Premix 2 | 1.00 | 1.00 | 1.00 |
Total | 100.00 | 100.00 | 100.00 |
Nutrient levels 3 | |||
Digestible energy, MJ/kg | 13.02 | 15.22 | 10.84 |
Crude protein, % | 12.01 | 12.01 | 12.01 |
Crude fiber, % | 4.07 | 3.31 | 4.06 |
Crude fat, % | 5.28 | 9.40 | 2.12 |
Lys, % | 0.60 | 0.60 | 0.60 |
Met, % | 0.20 | 0.20 | 0.20 |
Thr, % | 0.44 | 0.44 | 0.44 |
Try, % | 0.13 | 0.12 | 0.13 |
Calcium, % | 0.50 | 0.50 | 0.50 |
Total phosphorus, % | 0.53 | 0.61 | 0.49 |
Available phosphorus, % | 0.16 | 0.16 | 0.16 |
Gene | Accession No. | Primer Sequence (5′-3′) | Product Size (bp) |
---|---|---|---|
MyHC I | AB053226 | F: AAGGGCTTGAACGAGGAGTAGA | 115 |
R: TTATTCTGCTTCCTCCAAAGGG | |||
MyHC IIa | AB025260 | F: GCTGAGCGAGCTGAAATCC | 137 |
R: ACTGAGACACCAGAGCTTCT | |||
MyHC IIx | AB025262 | F: AGAAGATCAACTGAGTGAACT | 149 |
R: AGAGCTGAGAAACTAACGTG | |||
MyHC IIb | AB025261 | F: ATGAAGAGGAACCACATTA | 166 |
R: TTATTGCCTCAGTAGCTTG | |||
ACC | NM-001114269 | F: GGCCATCAAGGACTTCAACC | 120 |
R: ACGATGTAAGCGCCGAACTT | |||
FAS | NM-001099930 | F: ACACCTTCGTGCTGGCCTAC | 112 |
R: ATGTCGGTGAACTGCTGCAC | |||
PPAR γ | NM-214379 | F: GAGGGCGATCTTGACAGGAA | 124 |
R: GCCACCTCTTTGCTCTGCTC | |||
β-actin | XM-003124280.3 | F: CCTGCGGCATCCACGAAAC | 123 |
R: TGTCGGCGATGCCTGGGTA | |||
GAPDH | NM-001206359.1 | F: TCGGAGTGAACGGATTTGGC | 95 |
R: GAAGGGGTCATTGATGGCGA |
Items | CON | EE | RE | SEM | p Value |
---|---|---|---|---|---|
Initial body weight (kg) | 43.75 | 43.88 | 42.25 | 1.10 | 0.822 |
Final body weight (kg) | 73.92 | 75.25 | 69.00 | 1.48 | 0.176 |
Average daily gain (g) | 372.43 b | 522.92 a | 313.27 b | 32.21 | <0.01 |
Average daily feed intake (ADFI, kg) | 1.74 | 1.76 | 1.73 | 0.05 | 0.969 |
Feed conversion ratio (FCR) | 4.84 b | 3.38 c | 5.55 a | 0.31 | <0.01 |
Duration of fattening (days) | 81 | 60 | 81 | / | / |
Carcass weight (kg) | 54.72 | 56.98 | 51.22 | 1.02 | 0.089 |
Slaughter yield (%) | 73.95 | 73.43 | 72.34 | 0.71 | 0.678 |
Items | CON | EE | RE | SEM | p Value |
---|---|---|---|---|---|
Total moisture (%) | 74.8 | 73.56 | 75.92 | 0.51 | 0.226 |
IMF (%) | 2.13 b | 4.21 a | 1.55 b | 0.41 | <0.05 |
CP (%) | 22.43 | 21.25 | 22.21 | 0.32 | 0.326 |
TG (mmol/L) | 0.73 b | 2.13 a | 1.11 b | 0.24 | <0.05 |
Items | CON | EE | RE | SEM | p Value | |
---|---|---|---|---|---|---|
Cooking loss (%) | 34.45 a | 22.05 b | 35.06 a | 2.17 | <0.05 | |
Drip loss (%) | 1.61 | 1.4 | 1.29 | 0.18 | 0.777 | |
Shear force (N/kg) | 36.80 b | 60.52 a | 44.10 b | 2.41 | <0.05 | |
Lightness | L*45min | 42.36 | 42.01 | 43.74 | 0.85 | 0.734 |
L*24h | 43.84 b | 54.59 a | 45.85 b | 1.51 | <0.01 | |
Redness | a*45min | 10.41 | 10.45 | 8.18 | 0.57 | 0.213 |
a*24h | 11.33 | 12.81 | 8.66 | 0.76 | 0.105 | |
Yellowness | b*45min | 5.44 a | 5.96 a | 4.37 b | 0.23 | <0.01 |
b*24h | 6.30 b | 8.05 a | 4.63 c | 0.43 | <0.01 |
Items | CON | EE | RE | SEM | p Value |
---|---|---|---|---|---|
Asp | 2.01 | 1.91 | 1.97 | 0.02 | 0.261 |
Tyr | 0.79 | 0.79 | 0.77 | 0.02 | 0.925 |
His | 1.04 | 0.96 | 1.02 | 0.02 | 0.14 |
Arg | 1.36 | 1.27 | 1.31 | 0.02 | 0.083 |
Ser | 0.88 | 0.83 | 0.85 | 0.01 | 0.174 |
Glu | 3.6 | 3.46 | 3.51 | 0.04 | 0.335 |
Pro | 0.71 a | 0.63 b | 0.68 a | 0.01 | <0.01 |
Gly | 0.91 | 0.9 | 0.88 | 0.01 | 0.505 |
Ala | 1.22 | 1.24 | 1.19 | 0.02 | 0.47 |
Cys | 0.20 b | 0.35 a | 0.23 b | 0.02 | <0.01 |
Val | 1.04 | 1.11 | 1.02 | 0.02 | 0.221 |
Met | 0.66 | 0.75 | 0.63 | 0.03 | 0.364 |
Ile | 0.98 | 1.05 | 0.96 | 0.02 | 0.292 |
Leu | 1.75 | 1.74 | 1.71 | 0.03 | 0.844 |
Thr | 1.00 | 0.95 | 0.98 | 0.01 | 0.249 |
Phe | 0.89 | 0.87 | 0.86 | 0.02 | 0.682 |
Lys | 1.97 | 1.83 | 1.89 | 0.02 | 0.071 |
TAA | 20.98 | 20.62 | 20.41 | 0.26 | 0.691 |
NEAA | 12.72 | 12.33 | 12.38 | 0.147 | 0.505 |
EAA | 8.25 | 8.29 | 8.03 | 0.126 | 0.713 |
EAA/TAA | 39.34 | 40.19 | 39.35 | 0.219 | 0.219 |
EAA/NEAA | 64.85 | 67.25 | 64.89 | 0.618 | 0.218 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Chen, F.; Lin, X.; Wang, Y.; He, J.; Zhao, Y. Effect of Excessive or Restrictive Energy on Growth Performance, Meat Quality, and Intramuscular Fat Deposition in Finishing Ningxiang Pigs. Animals 2021, 11, 27. https://doi.org/10.3390/ani11010027
Chen J, Chen F, Lin X, Wang Y, He J, Zhao Y. Effect of Excessive or Restrictive Energy on Growth Performance, Meat Quality, and Intramuscular Fat Deposition in Finishing Ningxiang Pigs. Animals. 2021; 11(1):27. https://doi.org/10.3390/ani11010027
Chicago/Turabian StyleChen, Jiayi, Fengming Chen, Xue Lin, Yaodong Wang, Jianhua He, and Yurong Zhao. 2021. "Effect of Excessive or Restrictive Energy on Growth Performance, Meat Quality, and Intramuscular Fat Deposition in Finishing Ningxiang Pigs" Animals 11, no. 1: 27. https://doi.org/10.3390/ani11010027
APA StyleChen, J., Chen, F., Lin, X., Wang, Y., He, J., & Zhao, Y. (2021). Effect of Excessive or Restrictive Energy on Growth Performance, Meat Quality, and Intramuscular Fat Deposition in Finishing Ningxiang Pigs. Animals, 11(1), 27. https://doi.org/10.3390/ani11010027