Bayesian Linear Regression Modelling for Sperm Quality Parameters Using Age, Body Weight, Testicular Morphometry, and Combined Biometric Indices in Donkeys
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Testicular Morphometry Evaluation
2.3. Semen Collection and Evaluation
2.4. Statistical Analysis
2.4.1. Parametric Assumptions Testing and Approach Decision
2.4.2. Comparative Analysis of US and Caliper Testicular Morphometry between Juvenile and Mature Jacks
2.4.3. Analysis of US Testicular Morphometry, Age and BW
2.4.4. Analysis of US and Caliper Testicular Morphometry
2.4.5. Bayesian Linear Regression Modelling for Sperm Quality and Output Predictions
2.4.6. Jeffrey–Zellner–Siow (JZS) Mixture of g-Priors
2.4.7. Factor and Covariate Effects Bayesian Modelling (FCEBM)
2.4.8. Factors and Covariate Effect Bayesian Interpretation (CEBI)
2.4.9. Convergence Criterion
2.4.10. Model Validity, Explanatory Power of Present Data, and Predictive Power of Future Data
3. Results
3.1. Descriptive Analysis for US Testicular Morphometry, Combined Biometric Indices and Sperm Output
3.2. Statistical Analyses
3.2.1. Bayesian Pearson’s Correlation Coefficients Preliminary Testing
3.2.2. Bayesian Linear Regression Modelling for Sperm Quality and Output Predictions
Model Explicative Power
Predictive Power and Model Validity
4. Discussion
4.1. Testicular Morphometry (Juveniles and Matures) and Sperm Quality Parameters in Miranda Donkey Breed
4.2. Bayesian Approach and Predictive Models
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, D.L., Jr.; Pickett, B.W.; Squires, E.L.; Amann, R.P. Testicular measurements and reproductive characteristics in stallions. J. Reprod. Fertil. Suppl. 1979, 27, 13–17. [Google Scholar]
- Kavak, A.; Lundeheim, N.; Aidnik, M.; Einarsson, S. Testicular measurements and daily sperm output of Tori and Estonian breed stallions. Reprod. Domest. Anim. 2003, 38, 167–169. [Google Scholar]
- Pricking, S.; Bollwein, H.; Spilker, K.; Martinsson, G.; Schweizer, A.; Thomas, S.; Oldenhof, H.; Sieme, H. Testicular volumetry and prediction of daily sperm output in stallions by orchidometry and two-and three-dimensional sonography. Theriogenology 2017, 104, 149–155. [Google Scholar] [PubMed]
- Love, C. How to measure testes size and evaluate scrotal contents in the stallion. In Proceedings of the 60th AAEP Annual Convention, Salt Lake City, UT, USA, 6–10 December 2014; Volume 60, pp. 302–308. [Google Scholar]
- Lara, N.L.; Costa, G.M.; Avelar, G.F.; Lacerda, S.; Hess, R.A.; França, L.R. Testis physiology—overview and histology. In Encyclopedia of Reproduction; Skinner, M.K., Ed.; Academic Press: New York, NY, USA, 2018; pp. 105–116. [Google Scholar]
- Neves, E.S.; Chiarini-Garcia, H.; França, L.R. Comparative testis morphometry and seminiferous epithelium cycle length in donkeys and mules. Biol. Reprod. 2002, 67, 247–255. [Google Scholar]
- Kugler, W.; Grunenfelder, H.P.; Broxham, E. Donkey Breeds in Europe: Inventory, Description, Need for Action, Conservation; Report 2007/2008; Monitoring Institute for Rare Breeds and Seeds in Europe: St. Gallen, Switzerland, 2008; p. 26. [Google Scholar]
- Quaresma, M.; Payan-Carreira, R. Characterization of the estrous cycle of Asinina de Miranda jennies (Equus asinus). Theriogenology 2015, 83, 616–624. [Google Scholar] [PubMed]
- Oravecz, Z.; Muth, C. Fitting growth curve models in the Bayesian framework. Psychon. Bull. Rev. 2018, 25, 235–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knecht, D.; Jankowska-Mąkosa, A.; Duziński, K. Boar genotype as a factor shaping age-related changes in semen parameters and reproduction longevity simulations. Theriogenology 2017, 98, 50–56. [Google Scholar] [PubMed]
- Hox, J.; Moerbeek, M.; Kluytmans, A.; Van De Schoot, R. Analyzing indirect effects in cluster randomized trials. The effect of estimation method, number of groups and group sizes on accuracy and power. Front. Psychol. 2014, 5, 78. [Google Scholar] [PubMed] [Green Version]
- Lee, S.-Y.; Song, X.-Y. Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivar. Behav. Res. 2004, 39, 653–686. [Google Scholar]
- Peto, R.; Pike, M.; Armitage, P.; Breslow, N.; Cox, D.; Howard, S.V.; Mantel, N.; McPherson, K.; Peto, J.; Smith, P. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. I. Introduction and design. Br. J. Cancer 1976, 34, 585–612. [Google Scholar]
- Button, K.S.; Ioannidis, J.P.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.; Munafò, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [PubMed] [Green Version]
- Stoltzfus, J.C. Logistic Regression: A Brief Primer. Acad. Emerg. Med. 2011, 18, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Y.; Wu, H.; Liang, L. Data envelopment analysis with missing data: A multiple linear regression analysis approach. Int. J. Inf. Tech. Decis. 2014, 13, 137–153. [Google Scholar] [CrossRef]
- Navas, F.J.; Jordana, J.; León, J.M.; Barba, C.; Delgado, J.V. A model to infer the demographic structure evolution of endangered donkey populations. Animal 2017, 11, 2129–2138. [Google Scholar] [CrossRef]
- Johnson, L.; Neaves, W.B. Age-related changes in the Leydig cell population, seminiferous tubules, and sperm production in stallions. Biol. Reprod. 1981, 24, 703–712. [Google Scholar]
- Quartuccio, M.; Marino, G.; Zanghì, A.; Garufi, G.; Cristarella, S. Testicular volume and daily sperm output in Ragusano donkeys. J. Equine Vet. Sci. 2011, 31, 143–146. [Google Scholar] [CrossRef]
- Kenney, R.M. Society for Theriogenology Manual for Clinical Evaluation of the Stallion; The Society for Theriogenology: Montgomery, AL, USA, 1983. [Google Scholar]
- StataCorp. Stata Statistical Software, 15; StataCorp: College Station, TX, USA, 2017. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, 25th ed.; IBM Corp: Armonk, NY, USA, 2017. [Google Scholar]
- Bakdash, J.Z.; Marusich, L.R. Repeated Measures Correlation. Front. Psychol. 2017, 8, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IBM Corp. IBM SPSS Statistics Algorithms, 25th ed.; IBM Corp: Armonk, NY, USA, 2017; p. 110. [Google Scholar]
- Profillidis, V.A.; Botzoris, G.N. Chapter 5—Statistical Methods for Transport Demand Modeling. In Modeling of Transport Demand; Profillidis, V.A., Botzoris, G.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Doğan, N.Ö. Bland-Altman analysis: A paradigm to understand correlation and agreement. Turk. J. Emerg. Med. 2018, 18, 139–141. [Google Scholar] [CrossRef]
- Batterham, A.M. Bias in Bland-Altman but not Regression Validity Analyses. Sportscience 2004, 8, 42–47. [Google Scholar]
- Gelman, A.; Carlin, J.; Stern, H.; Rubin, D.; Dunson, D.; Vehtari, A. Solutions to some exercises from Bayesian Data Analysis, by Gelman, Carlin, Stern, and Rubin. In Bayesian Data Analysis; Columbia University: New York, NY, USA, 2020. [Google Scholar]
- Brewer, K.R. Combined Survey Sampling Inference: Weighing Basu’s Elephants; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Hayes, A.F.; Glynn, C.J.; Huge, M.E. Cautions Regarding the Interpretation of Regression Coefficients and Hypothesis Tests in Linear Models with Interactions. Commun. Methods Meas. 2012, 6, 1–11. [Google Scholar]
- Liang, F.; Paulo, R.; Molina, G.; Clyde, M.A.; Berger, J.O. Mixtures of g priors for Bayesian variable selection. J. Am. Stat. Assoc. 2008, 103, 410–423. [Google Scholar] [CrossRef]
- Heck, D. A Caveat on the Savage-Dickey Density Ratio: The Case of Computing Bayes Factors for Regression Parameters. Br. J. Math. Stat. Psychol. 2019, 72, 316–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zellner, A.; Siow, A. Posterior odds ratios for selected regression hypotheses. Trab. Estadística Y Investig. Oper. 1980, 31, 585–603. [Google Scholar] [CrossRef]
- Rouder, J.N.; Morey, R.D.; Speckman, P.L.; Province, J.M. Default Bayes factors for ANOVA designs. J. Math. Psychol. 2012, 56, 356–374. [Google Scholar] [CrossRef]
- Bayarri, M.J.; Berger, J.O.; Forte, A.; García-Donato, G. Criteria for Bayesian model choice with application to variable selection. Ann. Stat. 2012, 40, 1550–1577. [Google Scholar] [CrossRef] [Green Version]
- Rouder, J.N.; Morey, R.D. Default Bayes factors for model selection in regression. Multivar. Behav. Res. 2012, 47, 877–903. [Google Scholar] [CrossRef] [PubMed]
- Morey, R.; Rouder, J. BayesFactor 0.9. 12-2; Comprehensive R Archive Network: Vienna, Austria, 2015. [Google Scholar]
- Rouder, J.N.; Speckman, P.L.; Sun, D.; Morey, R.D.; Iverson, G. Bayesian t tests for accepting and rejecting the null hypothesis. Psychon. Bull. Rev. 2009, 16, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Depaoli, S.; Van de Schoot, R. Improving transparency and replication in Bayesian statistics: The WAMBS-Checklist. Psychol. Methods 2017, 22, 240. [Google Scholar] [CrossRef]
- Kass, R.E.; Raftery, A.E. Bayes factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [Google Scholar] [CrossRef]
- Arora, J.S. Chapter 14—Practical Applications of Optimization. In Introduction to Optimum Design, 4th ed.; Arora, J.S., Ed.; Academic Press: Boston, MA, USA, 2017; pp. 601–680. [Google Scholar]
- Pizarro Inostroza, M.G.; Navas González, F.J.; Landi, V.; León Jurado, J.M.; Delgado Bermejo, J.V.; Fernández Álvarez, J.; Martínez Martínez, M.D.A. Bayesian Analysis of the Association between Casein Complex Haplotype Variants and Milk Yield, Composition, and Curve Shape Parameters in Murciano-Granadina Goats. Animals 2020, 10, 1845. [Google Scholar] [CrossRef]
- Geweke, J. Variable selection and model comparison in regression. In Proceedings of the Fifth Valencia International Meeting, Valencia, Spain, 5–9 June 1994. [Google Scholar]
- Analla, M. Model validation through the linear regression fit to actual versus predicted values. Agric. Syst. 1998, 57, 115–119. [Google Scholar] [CrossRef]
- Pizarro Inostroza, M.G.; Navas González, F.J.; Landi, V.; León Jurado, J.M.; Delgado Bermejo, J.V.; Fernández Álvarez, J.; Martínez Martínez, M.D.A. Software-Automatized Individual Lactation Model Fitting, Peak and Persistence and Bayesian Criteria Comparison for Milk Yield Genetic Studies in Murciano-Granadina Goats. Mathematics 2020, 8, 1505. [Google Scholar] [CrossRef]
- Pizarro Inostroza, M.G.; Navas González, F.J.; Landi, V.; León Jurado, J.M.; Delgado Bermejo, J.V.; Fernández Álvarez, J.; Martínez, M.D.A.M. Goat Milk Nutritional Quality Software-Automatized Individual Curve Model Fitting, Shape Parameters Calculation and Bayesian Flexibility Criteria Comparison. Animals 2020, 10, 1693. [Google Scholar] [CrossRef] [PubMed]
- Hall, P.; Maiti, T. Nonparametric estimation of mean-squared prediction error in nested-error regression models. Ann. Stat. 2006, 34, 1733–1750. [Google Scholar] [CrossRef] [Green Version]
- Jeffreys, H. Theory of Probability, 3rd ed.; Oxford University Press: Oxford, UK, 1961. [Google Scholar]
- Lee, M.; Wagenmakers, E. Bayesian Data Analysis for Cognitive Science: A Practical Course; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Kaplan, D.; Depaoli, S. Bayesian structural equation modeling. In Handbook of Structural Equation Modeling; Hoyle, H., Ed.; The Guilford Press: New York, NY, USA; pp. 650–673.
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis; CRC Press: Boca Ratón, FL, USA, 2013. [Google Scholar]
- Drton, M.; Plummer, M. A Bayesian information criterion for singular models. J. R. Stat. Soc. B 2017, 79, 323–380. [Google Scholar] [CrossRef] [Green Version]
- Clyde, M.; Cetinkaya-Rundel, M.; Rundel, C.; Banks, D.; Chai, C.; Huang, L. Bayesian Model Choice. In An Introduction to Bayesian Thinking: A Companion to the Statistics with R Course; Clyde, M., Cetinkaya-Rundel, M., Rundel, C., Banks, D., Chai, C., Huang, L., Eds.; Coursera: Mountain View, CA, USA, 2019; Chapter 7. [Google Scholar]
- Gelman, A.; Goodrich, B.; Gabry, J.; Vehtari, A. R-squared for Bayesian regression models. Am. Stat. 2019, 73, 307–309. [Google Scholar] [CrossRef]
- Kumar, S.; Srivastava, S. Testicular biometry and its correlation with body weight and semen output in murrah bull. Buffalo Bull. 2017, 36, 105–114. [Google Scholar]
- Brito, L.F.; Silva, A.E.; Barbosa, R.T.; Kastelic, J.P. Testicular thermoregulation in Bos indicus, crossbred and Bos taurus bulls: Relationship with scrotal, testicular vascular cone and testicular morphology, and effects on semen quality and sperm production. Theriogenology 2004, 61, 511–528. [Google Scholar] [CrossRef]
- Gemeda, A.E.; Workalemahu, K. Body weight and scrotal-testicular biometry in three indigenous breeds of bucks in arid and semiarid agroecologies, Ethiopia. J. Vet. Med. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Kerketta, S.; Singh, M.; Patel, B.; Dutt, T.; Upadhyay, D.; Bharti, P.; Sahu, S.; Kamal, R. Relationships between age, body measurements, testicular measurements and total ejaculation of semen in local goat of Rohilkhand region. Small Rum. Res. 2015, 130, 193–196. [Google Scholar] [CrossRef]
- Olar, T.; Amann, R.; Pickett, B. Relationships among testicular size, daily production and output of spermatozoa, and extragonadal spermatozoal reserves of the dog. Biol. Reprod. 1983, 29, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Mialot, J.; Guerin, C.; Begon, D. Growth, testicular development and sperm output in the dog from birth to post pubertal period. Andrologia 1985, 17, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Pozor, M.; Morrissey, H.; Albanese, V.; Khouzam, N.; Deriberprey, A.; Macpherson, M.L.; Kelleman, A.A. Relationship between echotextural and histomorphometric characteristics of stallion testes. Theriogenology 2017, 99, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Canisso, I.F.; Morel, M.D.; McDonnell, S. Strategies for the management of donkey jacks in intensive breeding systems. Equine Vet. Educ. 2009, 21, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Lemma, A.; Deressa, B. Study on reproductive activity and evaluation of breeding soundness of jacks (Equus asinus) in and around Debre Zeit, Ethiopia. Livest. Res. Rural. Dev. 2009, 21, 126. [Google Scholar]
- Moustafa, M.; Sayed, R.; Zayed, A.; El-Hafeez, A.H. Morphological and morphometric study of the development of seminiferous epithelium of donkey (Equus asinus) from birth to maturity. J. Cytol. Histol. 2015, 6, 1. [Google Scholar]
- Nipken, C.; Wrobel, K. A quantitative morphological study of age-related changes in the donkey testis in the period between puberty and senium. Andrologia 1997, 29, 149–161. [Google Scholar] [CrossRef]
- Carluccio, A.; Panzani, S.; Contri, A.; Bronzo, V.; Robbe, D.; Veronesi, M. Influence of season on testicular morphometry and semen characteristics in Martina Franca jackasses. Theriogenology 2013, 79, 502–507. [Google Scholar] [CrossRef]
- Rota, A.; Puddu, B.; Sabatini, C.; Panzani, D.; Lainé, A.-L.; Camillo, F. Reproductive parameters of donkey jacks undergoing puberty. Anim. Reprod. Sci. 2018, 192, 119–125. [Google Scholar] [CrossRef]
- Abdelhafeez, H.; Moustafa, M.; Zayed, A.; Sayed, R. Morphological and Morphometric Study of the Development of Leydig Cell population of Donkey (Equus asinus) Testis from Birth to Maturity. Cell Biol. 2017, 6, 1. [Google Scholar] [CrossRef]
- Calado, A.; Lemos, H.; Leiva, B.; Quaresma, M.; Martins-Bessa, A. Comparative testicular histology from adult Equus Asinus and Equus Caballus. In Proceedings of the Book INCOMAM 18—52° International Congress on Microscopy and Microanalysis, Coimbra, Portugal, 12–13 October 2018; p. 35. [Google Scholar]
- Serres, C. Evaluación y Conservación del Semen en el Asno Zamorano-Leonés. Ph.D. Thesis, Complutense University of Madrid, Madrid, Spain, 2003. [Google Scholar]
- Miró, J.; Lobo, V.; Quintero-Moreno, A.; Medrano, A.; Peña, A.; Rigau, T. Sperm motility patterns and metabolism in Catalonian donkey semen. Theriogenology 2005, 63, 1706–1716. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, I.; Dorado, J.; Ramírez, L.; Morrell, J.M.; Acha, D.; Urbano, M.; Gálvez, M.J.; Carrasco, J.J.; Gómez-Arrones, V.; Calero-Carretero, R.; et al. Effect of single layer centrifugation using Androcoll-E-Large on the sperm quality parameters of cooled-stored donkey semen doses. Animal 2013, 8, 308–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorado, J.; Acha, D.; Ortiz, I.; Gálvez, M.; Carrasco, J.; Díaz, B.; Gómez-Arrones, V.; Calero-Carretero, R.; Hidalgo, M. Relationship between conventional semen characteristics, sperm motility patterns and fertility of Andalusian donkeys (Equus asinus). Anim. Reprod. Sci. 2013, 143, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Dorado, J.; Acha, D.; Ortiz, I.; Gálvez, M.; Carrasco, J.; Gómez-Arrones, V.; Calero-Carretero, R.; Hidalgo, M. Effect of extender and amino acid supplementation on sperm quality of cooled-preserved Andalusian donkey (Equus asinus) spermatozoa. Anim. Reprod. Sci. 2014, 146, 79–88. [Google Scholar] [CrossRef]
- Canisso, I.F.; Panzani, D.; Miró, J.; Ellerbrock, R.E. Key Aspects of Donkey and Mule Reproduction. Vet. Clin. Equine 2019, 35, 607–642. [Google Scholar] [CrossRef]
- Kay, G.; Tligui, N.; Semmate, N.; Azrib, R.; González, F.J.N.; Brizgys, L.; McLean, A. Determining factors and interspecific modeling for serum amyloid a concentrations in working horses, donkeys, and mules. Res. Vet. Sci. 2019, 125, 256–265. [Google Scholar] [CrossRef]
- Calhim, S.; Birkhead, T.R. Intraspecific variation in testis asymmetry in birds: Evidence for naturally occurring compensation. Proc. Biol. Sci. 2009, 276, 2279–2284. [Google Scholar] [CrossRef] [Green Version]
- Cassinello, J.; Abaigar, T.; Gomendio, M.; Roldan, E. Characteristics of the semen of three endangered species of gazelles (Gazella dama mhorr, G. dorcas neglecta and G. cuvieri). Reproduction 1998, 113, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Omar, M.M.A.; Hassanein, K.M.A.; Abdel-Razek, A.-R.K.; Hussein, H.A.Y. Unilateral orchidectomy in donkey (Equus asinus): Evaluation of different surgical techniques, histological and morphological changes on remaining testis. Vet. Res. Forum 2013, 4, 1–6. [Google Scholar]
- Hoagland, T.; Ott, K.; Dinger, J.; Mannen, K.; Woody, C.; Riesen, J.; Daniels, W. Effects of unilateral castration on morphologic characteristics of the testis in one-, two-, and three-year-old stallions. Theriogenology 1986, 26, 397–405. [Google Scholar] [CrossRef]
- Barnes, M.; Longnecker, J.; Charter, R.; Riesen, J.; Woody, C. Influence of unilateral castration and increased plane of nutrition on sexual development of Holstein bulls. I. Growth and sperm production. Theriogenology 1980, 14, 49–58. [Google Scholar] [CrossRef]
- Barnes, M.; Longnecker, J.; Riesen, J.; Woody, C. Influence of unilateral castration and increased plane of nutrition on sexual development of Holstein bulls. III. Endocrine responses. Theriogenology 1980, 14, 67–81. [Google Scholar] [CrossRef]
- Putra, D.H.; Blackshaw, A. Quantitative studies of compensatory testicular hypertrophy following unilateral castration in the boar. Aust. J. Biol. Sci. 1985, 38, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Kandiel, M.; El Khawagah, A. Evaluation of semen characteristics, oxidative stress, and biochemical indices in Arabian horses of different ages during the hot summer season. Iran. J. Vet. Res. 2018, 19, 270. [Google Scholar] [PubMed]
- Gamal, A.; El-Maaty, A.M.A.; Rawash, Z.M. Comparative blood and seminal plasma oxidant/antioxidant status of Arab stallions with different ages and their relation to semen quality. Asian Pac. J. Reprod. 2016, 5, 428–433. [Google Scholar]
- Dowsett, K.; Knott, L. The influence of age and breed on stallion semen. Theriogenology 1996, 46, 397–412. [Google Scholar] [CrossRef]
- Blanchard, T.L.; Brinsko, S.P.; Varner, D.D.; Love, C.C.; Morehead, J.P. Progression of reproductive changes accompanying testicular dysfunction in aging Thoroughbred stallions: Case studies. In Proceedings of the AAEP Annual Convention, Nashville, TN, USA, 11 December 2013; Volume 59, pp. 532–536. [Google Scholar]
- Woodall, P.; Johnstone, I. Dimensions and allometry of testes, epididymides and spermatozoa in the domestic dog (Canis familiaris). Reproduction 1988, 82, 603–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
N | Age Range | Age Percentile | Median Weight Evolution Per Percentile |
---|---|---|---|
6 | 7 to 14 months | 14 months (P25) | 200 kg |
11 | 15 to 95 months | 40 months (P50/Median) | 248 kg |
6 | ≥96 months | 96 months (P75) | 302 kg |
Items | N | Mean | SEM | SD | Skewness | Kurtosis | Minimum | Percentile 25 | Median | Percentile 75 | Maximum |
---|---|---|---|---|---|---|---|---|---|---|---|
Body Weight (kg) | 161 | 248.39 | 5.63 | 71.38 | 0.23 | −0.56 | 120.00 | 200.00 | 248.00 | 302.00 | 400.00 |
Age (months) | 161 | 62.00 | 4.66 | 59.07 | 1.77 | 3.28 | 7.00 | 14.00 | 40.00 | 96.00 | 259.00 |
US Length LT (cm) | 161 | 6.94 | 0.19 | 2.42 | −0.51 | −1.07 | 2.80 | 3.87 | 7.50 | 8.76 | 10.60 |
US Length RT (cm) | 161 | 6.81 | 0.20 | 2.51 | −0.50 | −1.07 | 2.36 | 4.10 | 7.57 | 8.87 | 10.10 |
US Height LT (cm) | 161 | 4.16 | 0.12 | 1.57 | −0.11 | −1.07 | 1.50 | 2.63 | 4.51 | 5.50 | 6.93 |
US Height RT (cm) | 161 | 3.96 | 0.12 | 1.48 | 0.15 | −0.01 | 1.40 | 2.56 | 4.26 | 4.94 | 7.61 |
US Width LT (cm) | 161 | 5.18 | 0.16 | 1.98 | −0.44 | −1.11 | 1.50 | 3.32 | 5.42 | 6.86 | 7.88 |
US Width RT (cm) | 161 | 5.17 | 0.16 | 1.97 | −0.37 | −1.13 | 1.60 | 3.07 | 5.69 | 6.69 | 8.40 |
US Volume LT (cm3) | 161 | 106.60 | 6.56 | 83.22 | 0.45 | −0.82 | 3.30 | 17.95 | 95.58 | 175.20 | 283.91 |
US Volume RT (cm3) | 161 | 98.88 | 6.13 | 77.80 | 0.65 | −0.10 | 2.93 | 19.28 | 91.39 | 136.63 | 297.64 |
US TTV (cm3) | 161 | 205.44 | 12.62 | 160.08 | 0.52 | −0.53 | 6.23 | 37.23 | 185.30 | 329.08 | 581.54 |
US GSI (%) | 161 | 0.73 | 0.04 | 0.50 | 0.37 | −0.60 | 0.04 | 0.22 | 0.72 | 1.09 | 1.86 |
Caliper Length LT (cm) | 49 | 4.70 | 0.27 | 1.86 | 1.24 | −0.06 | 3.30 | 3.50 | 3.70 | 6.40 | 8.50 |
Caliper Length RT (cm) | 49 | 4.83 | 0.29 | 2.06 | 1.13 | −0.13 | 3.00 | 3.20 | 4.00 | 6.60 | 9.00 |
Caliper Height LT (cm) | 49 | 3.13 | 0.13 | 0.94 | 0.61 | −1.37 | 2.20 | 2.30 | 2.70 | 4.50 | 4.50 |
Caliper Height RT (cm) | 49 | 3.06 | 0.15 | 1.05 | 0.51 | −1.46 | 2.00 | 2.00 | 2.50 | 4.50 | 4.60 |
Caliper Width LT (cm) | 49 | 3.23 | 0.20 | 1.41 | 1.00 | −0.37 | 1.90 | 2.00 | 2.50 | 4.50 | 6.00 |
Caliper Width RT (cm) | 49 | 3.26 | 0.23 | 1.63 | 1.09 | −0.31 | 1.90 | 2.00 | 2.50 | 4.80 | 6.50 |
Caliper Volume LT (cm3) | 49 | 35.55 | 5.73 | 40.10 | 1.34 | 0.25 | 7.94 | 8.35 | 14.13 | 67.81 | 120.10 |
Caliper Volume RT (cm3) | 49 | 38.85 | 6.70 | 46.93 | 1.33 | 0.25 | 6.59 | 7.33 | 10.46 | 76.25 | 137.76 |
Caliper TTV (cm3) | 49 | 74.40 | 12.43 | 86.99 | 1.34 | 0.26 | 14.53 | 17.89 | 21.46 | 144.06 | 257.86 |
Caliper GSI (%) | 49 | 0.35 | 0.05 | 0.35 | 1.16 | −0.25 | 0.10 | 0.10 | 0.14 | 0.69 | 1.05 |
Gel-free volume (mL) | 40 | 75.09 | 6.49 | 41.07 | 0.51 | 0.19 | 12.00 | 38.25 | 75.25 | 103.50 | 189.00 |
Concentration (× 106/mL) | 40 | 281.00 | 21.03 | 133.00 | 0.02 | −0.41 | 45.00 | 213.75 | 282.50 | 363.75 | 540.00 |
TSN (× 109) sperm | 40 | 18.45 | 1936.98 | 12,250.54 | 1.27 | 2.05 | 4560.00 | 8482.50 | 15,750.00 | 25,653.75 | 59,360.00 |
Motility (%) | 40 | 72.13 | 2.60 | 16.44 | −1.35 | 1.80 | 20.00 | 60.00 | 77.50 | 85.00 | 90.00 |
Morphologically normal sperm (%) | 40 | 87.35 | 1.58 | 9.97 | −1.46 | 1.95 | 58.00 | 83.00 | 90.00 | 94.00 | 99.00 |
Morphologically abnormal sperm (%) | 40 | 12.43 | 1.52 | 9.61 | 1.52 | 2.45 | 1.00 | 6.00 | 10.00 | 17.00 | 42.00 |
TMS (× 109) sperm | 40 | 13,555.38 | 1479.60 | 9357.81 | 0.91 | 0.76 | 1650.00 | 5607.75 | 11,264.50 | 20,300.00 | 42,642.00 |
Body Weight (kg) | Age (months) | Length LT (cm) | Length RT (cm) | Height LT (cm) | Height RT (cm) | Width LT (cm) | Width RT (cm) | Volume LT (cm3) | Volume RT (cm3) | TTV (cm3) | GSI (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Body Weight (kg) | 1.000 | 0.552 | 0.845 | 0.876 | 0.825 | 0.778 | 0.826 | 0.824 | 0.797 | 0.805 | 0.806 | 0.680 |
Age (months) | 0.552 | 1.000 | 0.511 | 0.600 | 0.479 | 0.523 | 0.522 | 0.556 | 0.467 | 0.539 | 0.505 | 0.461 |
Length LT (cm) | 0.845 | 0.511 | 1.000 | 0.977 | 0.944 | 0.924 | 0.942 | 0.925 | 0.916 | 0.908 | 0.918 | 0.917 |
Length RT (cm) | 0.876 | 0.600 | 0.977 | 1.000 | 0.948 | 0.897 | 0.957 | 0.946 | 0.917 | 0.911 | 0.920 | 0.903 |
Height LT (cm) | 0.825 | 0.479 | 0.944 | 0.948 | 1.000 | 0.908 | 0.940 | 0.926 | 0.962 | 0.922 | 0.949 | 0.939 |
Height RT (cm) | 0.778 | 0.523 | 0.924 | 0.897 | 0.908 | 1.000 | 0.901 | 0.858 | 0.897 | 0.930 | 0.919 | 0.914 |
Width LT (cm) | 0.826 | 0.522 | 0.942 | 0.957 | 0.940 | 0.901 | 1.000 | 0.962 | 0.922 | 0.901 | 0.917 | 0.923 |
Width RT (cm) | 0.824 | 0.556 | 0.925 | 0.946 | 0.926 | 0.858 | 0.962 | 1.000 | 0.903 | 0.900 | 0.908 | 0.909 |
Volume LT (cm3) | 0.797 | 0.467 | 0.916 | 0.917 | 0.962 | 0.897 | 0.922 | 0.903 | 1.000 | 0.976 | 0.994 | 0.964 |
Volume RT (cm3) | 0.805 | 0.539 | 0.908 | 0.911 | 0.922 | 0.930 | 0.901 | 0.900 | 0.976 | 1.000 | 0.993 | 0.951 |
TTV (cm3) | 0.806 | 0.505 | 0.918 | 0.920 | 0.949 | 0.919 | 0.917 | 0.908 | 0.994 | 0.993 | 1.000 | 0.964 |
GSI (%) | 0.680 | 0.461 | 0.917 | 0.903 | 0.939 | 0.914 | 0.923 | 0.909 | 0.964 | 0.951 | 0.964 | 1.000 |
Model 1 | Bayes Factor | R | R Squared | Adjusted R Squared |
Gel-free volume (mL) | 406,756.54 | 0.855 | 0.731 | 0.682 |
Concentration (×106/mL) | 1554.89 | 0.788 | 0.621 | 0.553 |
TSN (×109) | 1308.11 | 0.786 | 0.617 | 0.548 |
Motility (%) | 180.53 | 0.754 | 0.568 | 0.490 |
Morphologically normal (%) | 47,305.85 | 0.832 | 0.693 | 0.637 |
Morphologically abnormal (%) | 8839.07 | 0.812 | 0.660 | 0.598 |
GSI | 1.38 × 1019 | 0.980 | 0.961 | 0.954 |
TMS (×109) | 52,401.57 | 0.833 | 0.695 | 0.639 |
Model 2 | Bayes Factor | R | R Squared | Adjusted R Squared |
Gel-free volume (mL) | 252,538.00 | 0.794 | 0.630 | 0.599 |
Concentration (×106/mL) | 1169.55 | 0.706 | 0.498 | 0.457 |
TSN (×109) | 370.37 | 0.682 | 0.465 | 0.420 |
Motility (%) | 5160.20 | 0.734 | 0.539 | 0.500 |
Morphologically normal (%) | 1,907,536.17 | 0.819 | 0.670 | 0.643 |
Morphologically abnormal (%) | 259,329.18 | 0.794 | 0.631 | 0.600 |
GSI | 4.89 × 1044 | 0.999 | 0.998 | 0.998 |
TMS (×109) | 7080.51 | 0.740 | 0.547 | 0.509 |
Parameter | Posterior | 95% Credible Interval | Parameter | Posterior | 95% Credible Interval | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Gel-free volume (mL) | Mean | SD | MCSE | Lower Bound | Upper Bound | Morphologically normal (%) | Mean | SD | MCSE | Lower Bound | Upper Bound |
(Intercept) | 6.750 | 85.650 | 7.882 | 11.940 | −159.039 | (Intercept) | 38.820 | 61.999 | 17.656 | 35.535 | −69.634 |
Age (months) | 0.554 | 0.186 | 0.020 | 0.551 | 0.190 | Age (months) | 0.009 | 0.120 | 0.033 | 0.016 | −0.273 |
Length LT (cm) | −7.618 | 23.395 | 2.210 | −8.748 | −52.776 | Length LT (cm) | 7.176 | 15.183 | 4.290 | 8.154 | −29.472 |
Length RT (cm) | −8.047 | 19.952 | 1.350 | −7.762 | −45.424 | Length RT (cm) | −7.758 | 6.349 | 0.756 | −7.367 | −21.025 |
Height LT (cm) | 39.055 | 10.577 | 0.513 | 39.257 | 16.789 | Height LT (cm) | 4.253 | 2.752 | 0.142 | 4.226 | −1.076 |
Height RT (cm) | −0.142 | 15.488 | 1.598 | −0.446 | −30.291 | Height RT (cm) | −2.344 | 10.261 | 2.868 | −3.001 | −20.264 |
Width LT (cm) | −8.293 | 13.214 | 1.203 | −8.355 | −35.057 | Width LT (cm) | 2.925 | 5.712 | 1.243 | 3.167 | −7.979 |
Width RT (cm) | −0.867 | 16.024 | 1.877 | −0.780 | −32.031 | Width RT (cm) | 3.021 | 6.681 | 1.586 | 2.709 | −10.081 |
Concentration (× 106/mL) | Mean | SD | MCSE | Lower Bound | Upper Bound | Morphologically abnormal (%) | Mean | SD | MCSE | Lower Bound | Upper Bound |
(Intercept) | 119.325 | 95.837 | 6.792 | 120.692 | −67.802 | (Intercept) | −92.566 | 4.923 | 1.290 | −92.168 | −102.543 |
Age (months) | −1.675 | 0.438 | 0.024 | −1.672 | −2.510 | Age (months) | 0.268 | 0.036 | 0.002 | 0.267 | 0.199 |
Length LT (cm) | −179.851 | 51.735 | 14.252 | −170.219 | −289.282 | Length LT (cm) | 28.736 | 4.098 | 0.370 | 28.543 | 21.311 |
Length RT (cm) | 112.455 | 63.065 | 7.805 | 114.114 | −13.492 | Length RT (cm) | 1.078 | 5.696 | 0.306 | 1.182 | −10.506 |
Height LT (cm) | −82.447 | 38.657 | 3.239 | −84.282 | −154.495 | Height LT (cm) | −5.022 | 2.742 | 0.145 | −5.009 | −10.399 |
Height RT (cm) | 60.562 | 33.694 | 8.149 | 57.459 | 2.457 | Height RT (cm) | −22.037 | 2.535 | 0.272 | −21.978 | −27.089 |
Width LT (cm) | 143.483 | 47.524 | 9.710 | 138.746 | 58.199 | Width LT (cm) | 8.980 | 3.366 | 0.145 | 8.888 | 2.389 |
Width RT (cm) | 12.984 | 51.340 | 8.872 | 9.472 | −80.658 | Width RT (cm) | −15.696 | 3.963 | 0.276 | −15.608 | −23.572 |
Parameter | Posterior | 95% Credible Interval | Parameter | Posterior | 95% Credible Interval | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TSN | Mean | SD | MCSE | Lower Bound | Upper Bound | Gonadosomatic ratio (GSI) | Mean | SD | MCSE | Lower Bound | Upper Bound |
(Intercept) | 23,753.340 | 80.646 | 4.744 | 23,753.840 | 23,598.750 | (Intercept) | −0.600 | 0.035 | 0.003 | −0.602 | −0.670 |
Age (months) | −1416.025 | 443.100 | 133.800 | −1451.571 | −2085.682 | Age (months) | 0.000 | 0.000 | 0.000 | 0.000 | −0.001 |
Length LT (cm) | 8883.943 | 111.914 | 30.604 | 8885.097 | 8667.620 | Length LT (cm) | 0.048 | 0.031 | 0.003 | 0.046 | −0.014 |
Length RT (cm) | 13,450.930 | 78.239 | 21.894 | 13,444.170 | 13,319.860 | Length RT (cm) | −0.086 | 0.036 | 0.004 | −0.086 | −0.156 |
Height LT (cm) | −33,418.180 | 131.843 | 37.637 | −33,411.060 | −33,681.770 | Height LT (cm) | 0.154 | 0.029 | 0.003 | 0.153 | 0.099 |
Height RT (cm) | 3060.495 | 62.605 | 4.230 | 3059.644 | 2940.727 | Height RT (cm) | 0.097 | 0.027 | 0.002 | 0.097 | 0.046 |
Width LT (cm) | 19,157.550 | 69.930 | 5.174 | 19,157.660 | 19,020.890 | Width LT (cm) | 0.036 | 0.030 | 0.003 | 0.037 | −0.034 |
Width RT (cm) | −17,716.000 | 24.807 | 1.749 | −17,716.020 | −17,763.690 | Width RT (cm) | 0.072 | 0.025 | 0.002 | 0.071 | 0.026 |
Motility (%) | Mean | SD | MCSE | Lower Bound | Upper Bound | TMS (× 109) | Mean | SD | MCSE | Lower Bound | Upper Bound |
(Intercept) | −12.707 | 90.778 | 13.158 | −11.443 | −185.472 | (Intercept) | −782.074 | 1094.008 | 328.918 | −1260.849 | −1857.071 |
Age (months) | −0.069 | 0.175 | 0.022 | −0.070 | −0.390 | Age (months) | −612.420 | 250.955 | 74.637 | −643.819 | −958.823 |
Length LT (cm) | 16.644 | 21.823 | 3.203 | 15.668 | −24.687 | Length LT (cm) | −3816.467 | 87.995 | 16.210 | −3819.298 | −3982.185 |
Length RT (cm) | 12.235 | 11.157 | 0.668 | 11.796 | −9.577 | Length RT (cm) | 4859.292 | 206.757 | 60.216 | 4806.093 | 4601.664 |
Height LT (cm) | −5.247 | 5.292 | 0.369 | −5.314 | −15.183 | Height LT (cm) | −2809.112 | 2318.070 | 702.958 | −1870.947 | −7896.015 |
Height RT (cm) | −11.939 | 14.762 | 2.118 | −11.310 | −40.592 | Height RT (cm) | 536.574 | 140.014 | 15.828 | 524.424 | 295.207 |
Width LT (cm) | 2.605 | 9.550 | 0.603 | 2.700 | −16.521 | Width LT (cm) | 1678.912 | 2687.695 | 816.107 | 484.096 | −742.483 |
Width RT (cm) | −13.494 | 10.278 | 0.916 | −13.619 | −33.146 | Width RT (cm) | −7924.881 | 837.695 | 252.844 | −7632.309 | −9824.660 |
Parameter | Posterior | 95% Credible Interval | Parameter | Posterior | 95% Credible Interval | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Gel-free volume (mL) | Mean | SD | MCSE | Lower Bound | Upper Bound | Morphologically normal (%) | Mean | SD | MCSE | Lower Bound | Upper Bound |
(Intercept) | 18.027 | 74.948 | 4.027 | 17.645 | −131.021 | (Intercept) | 101.165 | 48.993 | 2.230 | 102.862 | 6.593 |
Age (months) | 0.380 | 0.075 | 0.003 | 0.386 | 0.228 | Age (months) | −0.088 | 0.028 | 0.001 | −0.089 | −0.141 |
BW (kg) | 0.059 | 0.241 | 0.013 | 0.057 | −0.408 | BW (kg) | −0.048 | 0.153 | 0.007 | −0.051 | −0.353 |
TTV (cm3) | 0.229 | 0.206 | 0.011 | 0.237 | −0.183 | TTV (cm3) | 0.082 | 0.130 | 0.006 | 0.086 | −0.178 |
GSI | −61.537 | 63.042 | 3.287 | −61.751 | −178.796 | GSI | −16.479 | 39.912 | 1.736 | −17.993 | −95.823 |
Concentration (× 106/mL) | Mean | SD | MCSE | Lower Bound | Upper Bound | Morphologically abnormal (%) | Mean | SD | MCSE | Lower Bound | Upper Bound |
(Intercept) | 34.599 | 87.218 | 4.216 | 29.855 | −135.220 | (Intercept) | −34.631 | 48.161 | 2.471 | −33.664 | −130.104 |
Age (months) | −1.281 | 0.246 | 0.012 | −1.287 | −1.751 | Age (months) | 0.098 | 0.027 | 0.002 | 0.098 | 0.045 |
BW (kg) | 1.577 | 0.397 | 0.018 | 1.568 | 0.802 | BW (kg) | 0.151 | 0.151 | 0.008 | 0.147 | −0.133 |
TTV (cm3) | −0.434 | 0.282 | 0.013 | −0.443 | −1.002 | TTV (cm3) | −0.167 | 0.128 | 0.006 | −0.168 | −0.424 |
GSI | 71.418 | 77.349 | 4.329 | 72.597 | −84.034 | GSI | 43.228 | 39.364 | 1.902 | 43.112 | −30.970 |
TSN | Mean | SD | MCSE | Lower Bound | Upper Bound | Gonadosomatic ratio (GSI) (%) | Mean | SD | MCSE | Lower Bound | Upper Bound |
(Intercept) | 11,264.220 | 1978.212 | 598.275 | 10,786.800 | 8794.520 | (Intercept) | 1.213 | 0.036 | 0.001 | 1.214 | 1.140 |
Age (months) | 4577.180 | 417.008 | 125.933 | 4671.496 | 3705.060 | Age (months) | −0.001 | 0.000 | 0.000 | −0.001 | −0.001 |
BW (kg) | −5091.494 | 439.681 | 133.092 | −5203.422 | −5634.810 | BW (kg) | −0.004 | 0.000 | 0.000 | −0.004 | −0.004 |
TTV (cm3) | 2606.332 | 220.725 | 66.742 | 2662.469 | 2131.406 | TTV (cm3) | 0.003 | 0.000 | 0.000 | 0.003 | 0.003 |
GSI | −4379.107 | 756.935 | 227.540 | −4209.127 | −5956.150 | ||||||
Motility (%) | Mean | SD | MCSE | Lower Bound | Upper Bound | TMS (× 109) | Mean | SD | MCSE | Lower Bound | Upper Bound |
(Intercept) | 10.199 | 65.301 | 3.019 | 8.928 | −114.356 | (Intercept) | −4076.090 | 195.502 | 54.547 | −4028.317 | −4586.811 |
Age (months) | −0.116 | 0.043 | 0.002 | −0.116 | −0.202 | Age (months) | −1422.795 | 311.451 | 88.829 | −1524.509 | −1776.786 |
BW (kg) | 0.223 | 0.206 | 0.010 | 0.221 | −0.173 | BW (kg) | 569.508 | 82.412 | 14.404 | 572.642 | 397.312 |
TTV (cm3) | −0.152 | 0.175 | 0.008 | −0.156 | −0.484 | TTV (cm3) | −172.885 | 46.034 | 7.844 | −172.536 | −261.502 |
GSI | 51.775 | 53.600 | 2.428 | 54.210 | −54.645 | GSI | 2298.200 | 133.412 | 29.547 | 2281.863 | 2070.603 |
Model 1 | Gel-Free Volume (mL) | Concentration (× 106/mL) | TSN | Motility (%) | Morphologically Normal (%) | Morphologically Abnormal (%) | Gonadosomatic Ratio (GSI) | TMS (× 109) |
MCMC iterations | 12.500 | 12.500 | 12.500 | 12.500 | 12.500 | 12.500 | 12.500 | 12.500 |
Burn-in | 2.500 | 2.500 | 2.500 | 2.500 | 2.500 | 2.500 | 2.500 | 2.500 |
MCMC sample size | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 |
Number of obs | 40.000 | 40.000 | 40.000 | 40.000 | 40.000 | 40.000 | 40.000 | 40.000 |
Acceptance rate | 0.299 | 0.225 | 0.800 | 0.314 | 0.325 | 0.292 | 0.345 | 0.539 |
Min efficiency | 0.007 | 0.001 | 0.001 | 0.005 | 0.001 | 0.001 | 0.015 | 0.001 |
Avg efficiency | 0.023 | 0.010 | 0.011 | 0.019 | 0.008 | 0.029 | 0.037 | 0.002 |
Max efficiency | 0.083 | 0.033 | 0.029 | 0.065 | 0.037 | 0.059 | 0.071 | 0.008 |
Log marginal likelihood | −209.558 | −259.862 | −132,346.360 | −186.416 | −164.579 | −166.624 | −31.747 | −5993.399 |
BIC | 433.872 | 534.480 | 264,707.476 | 387.587 | 343.913 | 348.003 | 78.249 | 12,001.553 |
Model 2 | Gel−Free Volume (mL) | Concentration (× 106/mL) | TSN | Motility (%) | Morphologically Normal (%) | Morphologically Abnormal (%) | Gonadosomatic Ratio (GSI) | TMS (× 109) |
MCMC iterations | 12.500 | 12.500 | 12.500 | 12.500 | 12.500 | 12.500 | 12.500 | 12.500 |
Burn-in | 2.500 | 2.500 | 2.500 | 2.500 | 2.500 | 2.500 | 2.500 | 2.500 |
MCMC sample size | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 |
Number of obs | 40.000 | 40.000 | 40.000 | 40.000 | 40.000 | 40.000 | 40.000 | 40.000 |
Acceptance rate | 0.302 | 0.410 | 0.467 | 0.348 | 0.353 | 0.402 | 0.300 | 0.705 |
Min efficiency | 0.032 | 0.032 | 0.001 | 0.036 | 0.045 | 0.031 | 0.049 | 0.001 |
Avg efficiency | 0.049 | 0.056 | 0.001 | 0.051 | 0.063 | 0.049 | 0.064 | 0.002 |
Max efficiency | 0.108 | 0.125 | 0.001 | 0.088 | 0.129 | 0.099 | 0.095 | 0.003 |
Log marginal likelihood | −215.503 | −263.929 | −17,310.242 | −186.604 | −163.466 | −163.531 | 27.657 | −1746.014 |
BIC | 445.762 | 542.613 | 34,635.240 | 387.964 | 341.687 | 341.817 | −40.559 | 3506.783 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins-Bessa, A.; Quaresma, M.; Leiva, B.; Calado, A.; Navas González, F.J. Bayesian Linear Regression Modelling for Sperm Quality Parameters Using Age, Body Weight, Testicular Morphometry, and Combined Biometric Indices in Donkeys. Animals 2021, 11, 176. https://doi.org/10.3390/ani11010176
Martins-Bessa A, Quaresma M, Leiva B, Calado A, Navas González FJ. Bayesian Linear Regression Modelling for Sperm Quality Parameters Using Age, Body Weight, Testicular Morphometry, and Combined Biometric Indices in Donkeys. Animals. 2021; 11(1):176. https://doi.org/10.3390/ani11010176
Chicago/Turabian StyleMartins-Bessa, Ana, Miguel Quaresma, Belén Leiva, Ana Calado, and Francisco Javier Navas González. 2021. "Bayesian Linear Regression Modelling for Sperm Quality Parameters Using Age, Body Weight, Testicular Morphometry, and Combined Biometric Indices in Donkeys" Animals 11, no. 1: 176. https://doi.org/10.3390/ani11010176
APA StyleMartins-Bessa, A., Quaresma, M., Leiva, B., Calado, A., & Navas González, F. J. (2021). Bayesian Linear Regression Modelling for Sperm Quality Parameters Using Age, Body Weight, Testicular Morphometry, and Combined Biometric Indices in Donkeys. Animals, 11(1), 176. https://doi.org/10.3390/ani11010176