Effect of the Use of Tomato Pomace on Feeding and Performance of Lactating Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Management
2.2. Milk Sampling and Analysis
2.3. Blood Biochemical Parameters
2.4. Economic Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Romero-Huelva, M.; Ramos-Morales, E.; Molina-Alcaide, E. Nutrient utilization, ruminal fermentation, microbial abundances, and milk yield and composition in dairy goats fed diets including tomato and cucumber waste fruits. J. Dairy Sci. 2012, 95, 6015–6026. [Google Scholar] [CrossRef] [Green Version]
- Ben Salem, H. Nutritional management to improve sheep and goat performances in semiarid regions. Rev. Bras. Zootec. 2010, 39, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Soto, E.C.; Khelil, H.; Carro, M.D.; Yañez-Ruiz, D.R.; Molina-Alcaide, E. Use of tomato and cucumber waste fruits in goat diets: Effects on rumen fermentation and microbial communities in batch and continuous cultures. J. Agric. Sci. 2015, 153, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Romero-Huelva, M.; Ramírez-Fenosa, M.A.; Planelles-González, R.; García-Casado, P.; Molina-Alcaide, E. Can by-products replace conventional ingredients in concentrate of dairy goat diet? J. Dairy Sci. 2017, 100, 4500–4512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, R.G.; Cavalganti, M.C.d.A.; Nobre, P.T.; Queiroga, R.d.C.R.d.E.; Medeiros, G.R.d.; Silva, N.V.d.; Batista, A.S.M.; Araujo Filho, J.T.d. Sensory quality of meat from Santa Inês lambs fed with guava (Psidium guajava L.) agroindustrial by-product. Food Sci. Technol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.G.; da Silva, N.V.; de Medeiros, G.R.; de Melo, A.A.S.; Bispo, S.V.; Cavalcanti, M.C.d.A. The use of guava byproduct in the production of feedlot sheep in Brazil: Impacts on the productive and economic performance. Rev. Bras. Zootec. 2019, 48, e20170257. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, S.L.; Edwards, G.R.; Harrison, R. Short communication: Supplementing grape marc to cows fed a pasture-based diet as a method to alter nitrogen partitioning and excretion. J. Dairy Sci. 2012, 95, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Mansoori, B.; Modirsanei, M.; Radfar, M.; Kiaei, M.M.; Farkhoy, M.; Honarzad, J. Digestibility and metabolisable energy values of dried tomato pomace for laying and meat type cockerels. Anim. Feed Sci. Technol. 2008, 141, 384–390. [Google Scholar] [CrossRef]
- Domínguez, R.; Gullón, P.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Lorenzo, J.M. Tomato as potential source of natural additives for meat industry. A review. Antioxidants 2020, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Marcos, C.N.; de Evan, T.; Molina-Alcaide, E.; Carro, M.D. Nutritive value of tomato pomace for ruminants and its influence on in vitro methane production. Animals 2019, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Løvdal, T.; Van Droogenbroeck, B.; Eroglu, E.C.; Kaniszewski, S.; Agati, G.; Verheul, M.; Skipnes, D. Valorization of tomato surplus and waste fractions: A case study using Norway, Belgium, Poland, and Turkey as examples. Foods 2019, 8, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megersa, T.; Urge, M.; Nurfeta, A. Effects of feeding sweet potato (Ipomoea batatas) vines as a supplement on feed intake, growth performance, digestibility and carcass characteristics of Sidama goats fed a basal diet of natural grass hay. Trop. Anim. Health Prod. 2012, 45, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Abbeddou, S.; Rischkowsky, B.; Hilali, M.E.D.; Haylani, M.; Hess, H.D.; Kreuzer, M. Supplementing diets of Awassi ewes with olive cake and tomato pomace: On-farm recovery of effects on yield, composition and fatty acid profile of the milk. Trop. Anim. Health Prod. 2014, 47, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, S.; Méndez, P.; Martínez-Fernández, A. Fermentative and nutritive quality of banana by-product silage for goats. J. Appl. Anim. Res. 2015, 43, 396–401. [Google Scholar] [CrossRef]
- Pardo, G.; Martin-Gaarcia, I.; Arco, A.; Yañez-Ruiz, D.R.; Moral, R.; Del Prado, A. Greenhouse-gas mitigation potential of agro-industrial by-products in the diet of dairy goats in Spain: A life-cycle perspective. Anim. Prod. Sci. 2016, 56, 646–654. [Google Scholar] [CrossRef]
- National Research Council Nutrient Requirements of Small Ruminants; National Academies Press: Washington, DC, USA, 2007.
- AOAC. Official Methods of Analysis of AOAC International; AOAC: Rockville, MD, USA, 2005. [Google Scholar]
- Mertens, D.R. Creating a System for Meeting the Fiber Requirements of Dairy Cows. J. Dairy Sci. 1997, 80, 1463–1481. [Google Scholar] [CrossRef]
- Weiss, W.P. Energy prediction equations for ruminant feeds. In Proceedings of the Cornell Nutrition conference for feed manufactures, Rochester, NY, USA, 19–21 October 1999; Volume 62, pp. 176–185. [Google Scholar]
- Silva, J. Fundamentos de Nutriçao dos Ruminantes; Livroceres: Piracicaba, Brazil, 1979. [Google Scholar]
- Brasil. Instrução Normativa n° 37, de 8 de Novembro de 2000. Regulamento Técnico de Produção, Identidade e Qualidade do Leite de Cabra; Diário Oficial da União: Brasilia, Brazil, 2000. [Google Scholar]
- Costa, R.G.; Ribeiro, N.L.; Nobre, P.T.; Carvalho, F.F.R.; Medeiros, A.N.; Cruz, G.R.B.; Freire, L.F.S. Biochemical and hormonal parameters of lambs using guava (Psidium guajava L.) agro-industrial waste in the diet. Trop. Anim. Health Prod. 2018, 50, 217–221. [Google Scholar] [CrossRef]
- Njidda, A.; Shiaibu, A.; Isidahomen, C. Haematological and Serum Biochemical Indices of Sheep in Semi-Arid Environment of Northern Nigeria. Glob. J. Sci. Front. Res. 2014, 14, 49–56. [Google Scholar]
- Lana, G.R.Q.; Rostagno, H.S.; Donzele, J.L.; Lana, Â.M.Q. Effects of programs of feed restriction on the productivity and economic performance and fat deposition in broiler chickens carcass. Rev. Bras. Zootec. 1999, 28, 1302–1309. [Google Scholar] [CrossRef] [Green Version]
- Queiroga, R.d.C.R.; de Maia, M.O.; de Medeiros, A.N.; Costa, R.G.; Pereira, R.A.G.; Bomfim, M.A.D. Production and chemical composition of the milk from crossbred Moxotó goats supplemented with licuri or castor oil. Rev. Bras. Zootec. 2010, 39, 204–209. [Google Scholar] [CrossRef]
- Carvalho, S.; Rodrigues, M.T.; Branco, R.H.; Rodrigues, C.A.F. Nutrient intake and milk yield and composition of Alpine lactating goats fed diets with different fiber levels. Rev. Bras. Zootec. 2006, 35, 1154–1161. [Google Scholar] [CrossRef] [Green Version]
- Diao, Q.; Zhang, R.; Fu, T. Review of strategies to promote rumen development in calves. Animals 2019, 9, 490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaramillo-López, E.; Itza-Ortiz, M.F.; Peraza-Mercado, G.; Carrera-Chávez, J.M. Ruminal acidosis: Strategies for its control. Austral J. Vet. Sci. 2017, 49, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Ventura, M.R.; Pieltain, M.C.; Castanon, J.I.R. Evaluation of tomato crop by-products as feed for goats. Anim. Feed Sci. Technol. 2009, 154, 271–275. [Google Scholar] [CrossRef]
- Alnaimy, A.; Gad, A.E.; Mustafa, M.M.; Atta, M.A.A.; Basuony, H.A. Using of Citrus By-products in Farm Animals Feeding. J. Sci. 2017, 1, 58–67. [Google Scholar] [CrossRef]
- Lean, I.J.; Annison, F.; Bramley, E.; Browning, G.; Cusack, P.; Farquharson, B.; Little, S.; Nandapi, D. Ruminal Acidosis—understandings, Prevention and Treatment Pages 51–56—Text Version | AnyFlip. Available online: http://anyflip.com/sudb/jrhz/basic/51-56 (accessed on 6 June 2020).
- van der Poll, T.; Opal, S.M. Host-pathogen interactions in sepsis. Lancet Infect. Dis. 2008, 8, 32–43. [Google Scholar] [CrossRef]
- Abdollahzadeh, F.; Pirmohammadi, R.; Farhoomand, P.; Fatehi, F.; Pazhoh, F.F. The Effect of Ensiled Mixed Tomato and Apple Pomace on Holstein Dairy Cow. Ital. J. Anim. Sci. 2010, 9, 212–216. [Google Scholar]
- Beauchemin, K.A.; Yang, W.Z.; Rode, L.M. Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminai fermentation, and milk production. J. Dairy Sci. 2003, 86, 630–643. [Google Scholar] [CrossRef] [Green Version]
- Beauchemin, K.A. Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 2018, 101, 4762–4784. [Google Scholar] [CrossRef] [Green Version]
- Abdrollahzadeh, F. The effect of tomato pomace on carcass traits, blood metabolites and fleece characteristic of growing Markhoz goat. J. Am. Sci. 2012, 8, 848–852. [Google Scholar]
- Arco-Pérez, A.; Ramos-Morales, E.; Yáñez-Ruiz, D.R.; Abecia, L.; Martín-García, A.I. Nutritive evaluation and milk quality of including of tomato or olive by-products silages with sunflower oil in the diet of dairy goats. Anim. Feed Sci. Technol. 2017, 232, 57–70. [Google Scholar] [CrossRef]
- Lôbo, A.M.B.O.; Lôbo, R.N.B.; Facó, O.; Souza, V.; Alves, A.A.C.; Costa, A.C.; Albuquerque, M.A.M. Characterization of milk production and composition of four exotic goat breeds in Brazil. Small Rumin. Res. 2017, 153, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Raynal-Ljutovac, K.; Lagriffoul, G.; Paccard, P.; Guillet, I.; Chilliard, Y. Composition of goat and sheep milk products: An update. Small Rumin. Res. 2008, 79, 57–72. [Google Scholar] [CrossRef]
- Olivier, J.J.; Cloete, S.W.P.; Schoeman, S.J.; Muller, C.J.C. Performance testing and recording in meat and dairy goats. Small Rumin. Res. 2005, 60, 83–93. [Google Scholar] [CrossRef]
- Torres-Vázqueza, J.A.; Valencia-Posadasb, M.; Castillo-Juárezc, H.; Montaldod, H.H. Genetic and phenotypic trends for milk yield and milk composition traits of Saanen goats from Mexico. Rev. Mex. Ciencias. Pecu. 2010, 1, 337–348. [Google Scholar]
- Clark, S.; Sherbon, J.W. Alpha (s1)-casein, milk composition and coagulation properties of goat milk. Small Rumin. Res. 2000, 38, 123–134. [Google Scholar] [CrossRef]
- González, F.H.D.; Barcellos, J.; Ospina, H.; Luiz, P.; Ribeiro, A. Perfil Metabólico em Ruminantes. Seu uso em Nutrição e Doenças Nutricionais; Universidade Federal do Rio Grande do Sul-UFRGS: Porto Alegre, Brazil, 2000. [Google Scholar]
- Jerry Kaneko, J.; Harvey, J.J.; Bruss, M.L. Clinical Biochemistry of Domestic Animals; Elsevier Inc.: Amsterdam, The Netherlands, 2008; ISBN 9780123704917. [Google Scholar]
- González, F.H.D.; Scheffer, J.F.S. Perfil sanguíneo: Ferramenta de análise clínica, metabólica e nutricional. In Anais do I Simpósio de Patologia Clínica Veterinária da Região Sul do Brasil; González, F.H.D., Campos, R., Eds.; Gráfica da Universidade Federal do Rio Grande do Sul.: Porto Alegre, Brazil, May 2003; pp. 73–89. [Google Scholar]
- Mouna, M.; Zaina, A.; Farida, K.; Mounira, K. Analysis of the energetic metabolism in cyclic Bedouin goats (Capra hircus): Nychthemeral and seasonal variations of some haematochemical parameters in relation with body and ambient temperatures. J. Therm. Biol. 2016, 60, 86–94. [Google Scholar]
- Vieira, E.L.; Batista, Â.M.V.; Guim, A.; Carvalho, F.F.; Nascimento, A.C.; Araújo, R.F.S.; Mustafa, A.F. Effects of hay inclusion on intake, in vivo nutrient utilization and ruminal fermentation of goats fed spineless cactus (Opuntia fícus-indica Mill) based diets. Anim. Feed Sci. Technol. 2008, 141, 199–208. [Google Scholar] [CrossRef]
Ingredient (g kg−1 DM) | Levels of Tomato Pomace Inclusion (%) | |||
---|---|---|---|---|
0.00 | 20.0 | 40.0 | 60.0 | |
Tomato industrial pomace (TP) 1 | 0.00 | 200 | 400 | 600 |
Tifton hay | 600 | 400 | 200 | 0.00 |
Ground corn | 220 | 285 | 335 | 385 |
Soybean meal | 165 | 100 | 50.0 | 0.00 |
Mineral supplement 2 | 7.0 | 7.0 | 6.0 | 5.0 |
Calcitic limestone | 4.0 | 6.0 | 9.0 | 10.0 |
Dicalcium phosphate | 4.0 | 2.0 | 0.00 | 0.00 |
Chemical composition | ||||
Dry matter, DM (g kg−1 as fed) | 869 | 866 | 863 | 859 |
Crude protein, CP (g kg−1 DM) | 146 | 141 | 142 | 143 |
Ether extract, EE (g kg−1 DM) | 175 | 249 | 320 | 391 |
Neutral detergent fiber, NDF (g kg−1 DM) | 549 | 510 | 470 | 430 |
Acid detergent fiber, ADF (g kg−1 DM) | 279 | 293 | 306 | 319 |
Total Carbohydrates, TC (g kg−1 DM) | 815 | 814 | 808 | 801 |
Non-fibrous carbohydrates, NFC (g kg−1 DM) | 265 | 304 | 337 | 371 |
Metabolizable energy, ME (Mcal kg−1 DM) | 2.38 | 2.49 | 2.59 | 2.70 |
Diet cost (USD kg−1) 3 | 0.355 | 0.296 | 0.236 | 0.176 |
Variables | Levels of Tomato Pomace Inclusion (%) | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0.00 | 20.0 | 40.0 | 60.0 | Tukey | Linear | Quadratic | ||
Initial body weight (kg) | 46.35 | 48.05 | 47.71 | 49.51 | 6.57 | 0.708 | 0.280 | 0.978 |
Final body weight (kg) | 49.41 | 48.00 | 45.08 | 45.08 | 6.77 | 0.397 | 0.174 | 0.516 |
Nutrient intake | ||||||||
Dry matter (kg day−1) | 1.75 ab | 1.90 a | 2.00 a | 1.31 b | 0.41 | 0.001 | 0.050 | 0.001 1 |
Organic matter (kg day−1) | 1.42 a | 1.54 a | 1.62 a | 1.05 b | 0.38 | 0.001 | 0.037 | 0.001 2 |
Mineral material (g day−1) | 0.12 a | 0.10 a | 0.07 b | 0.03 c | 0.02 | <0.0001 | <0.0001 | 0.038 3 |
Crude protein (g day−1) | 0.26 ab | 0.28 a | 0.30 a | 0.21 b | 0.21 | 0.002 | 0.110 | 0.002 4 |
Neutral detergent fiber (g day−1) | 0.84 a | 0.88 a | 0.89 a | 0.56 b | 0.20 | 0.000 | 0.002 | 0.001 5 |
Ether extract (g day−1) | 0.04 c | 0.07 b | 0.09 a | 0.08 ab | 0.08 | <0.0001 | <0.0001 | <0.000 6 |
Non-fibrous carbohydrate (g day−1) | 0.51 a | 0.56 a | 0.59 a | 0.39 b | 0.13 | 0.001 | 0.062 | 0.000 7 |
Apparent digestibility (%) | ||||||||
Crude protein | 0.65 b | 0.73 a | 0.74 a | 0.74 a | 0.068 | <0.0001 | <0.0001 | 0.0002 8 |
Ether Extract | 0.61 c | 0.78 b | 0.83 a | 0.85 a | 0.013 | <0.001 | <0.0001 | <0.0001 9 |
Neutral Detergent Fiber | 0.58 | 0.56 | 0.56 | 0.55 | 0.053 | 0.2828 | 0.0729 | 0.5398 |
Non-fibrous Carbohydrates | 0.86 c | 0.92 b | 0.93 ab | 0.95 a | 0.052 | <0.0001 | <0.0001 | 0.0451 10 |
Water (L day−1) | 4.57 ab | 5.06 ab | 5.18 a | 3.80 b | 0.05 | 0.041 | 0.210 | 0.012 11 |
IWDM (L kg DM−1) | 2.63 | 2.74 | 2.63 | 2.91 | 0.64 | 0.682 | 0.360 | 0.611 |
Variables | Levels of Tomato Pomace Inclusion (%) | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0.00 | 20.0 | 40.0 | 60.0 | Tukey | Linear | Quadratic | ||
Milk production (kg day−1) | 1.20 ab | 1.47 ab | 1.54 a | 1.04 b | 0.43 | 0.022 | 0.502 | 0.003 1 |
Milk production 4% (kg day−1) † | 1.13 b | 1.56 ab | 1.70 a | 1.03 b | 0.49 | 0.004 | 0.917 | 0.001 2 |
Feed efficiency (kg kg−1) | 0.68 | 0.77 | 0.77 | 0.80 | 0.15 | 0.238 | 0.066 | 0.459 |
Variables | Levels of Tomato Pomace Inclusion (%) | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0.00 | 20.0 | 40.0 | 60.0 | Tukey | Linear | Quadratic | ||
Fat (%) | 3.70 | 4.37 | 4.63 | 4.02 | 1.00 | 0.136 | 0.348 | 0.032 1 |
Total solids (%) | 11.78 | 12.48 | 12.87 | 12.26 | 1.46 | 0.342 | 0.331 | 0.130 |
Protein (%) | 2.93 | 3.03 | 3.20 | 3.00 | 0.53 | 0.652 | 0.581 | 0.331 |
Lactose (%) | 4.17 ab | 4.09 ab | 3.97 b | 4.21 a | 0.22 | 0.045 | 0.927 | 0.014 2 |
Urea (mg dL−1) | 28.47 | 29.55 | 31.31 | 28.37 | 6.14 | 0.629 | 0.825 | 0.267 |
Casein (g 100−1) | 2.31 | 2.46 | 2.62 | 2.41 | 0.51 | 0.520 | 0.460 | 0.232 |
Variables | Levels of Tomato Pomace Inclusion (%) | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0.00 | 20.0 | 40.0 | 60.0 | Tukey | Linear | Quadratic | ||
Albumin (g dL−1) | 3.11 | 3.51 | 3.17 | 2.81 | 0.70 | 0.163 | 0.231 | 0.077 |
Total protein (g dL−1) | 7.23 | 7.40 | 7.88 | 7.71 | 0.59 | 0.544 | 0.016 1 | 0.344 |
Globulin (g dL−1) | 4.11 | 3.89 | 4.72 | 4.89 | 0.90 | 0.337 | 0.012 2 | 0.448 |
Glucose (mg dL−1) | 98.08 | 97.99 | 89.88 | 85.44 | 24.05 | 0.530 | 0.155 | 0.752 |
Cholesterol (mg dL−1) | 137.21 | 136.19 | 132.90 | 147.32 | 22.26 | 0.487 | 0.420 | 0.250 |
Urea (mg dL−1) | 87.09 | 83.00 | 94.27 | 84.93 | 16.25 | 0.365 | 0.768 | 0.620 |
Triglycerides (mg dL−1) | 13.35 | 13.91 | 12.76 | 13.40 | 3.55 | 0.888 | 0.816 | 0.981 |
Hormones | ||||||||
T3 (ng mL−1) | 2.15 | 2.03 | 2.01 | 2.15 | 0.30 | 0.556 | 0.718 | 0.152 |
T4 (ng mL−1) | 5.11 | 4.76 | 4.73 | 5.00 | 0.44 | 0.114 | 0.197 | 0.018 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizael, W.C.F.; Costa, R.G.; Rodrigo Beltrão Cruz, G.; Ramos de Carvalho, F.F.; Ribeiro, N.L.; Lima, A.; Domínguez, R.; Lorenzo, J.M. Effect of the Use of Tomato Pomace on Feeding and Performance of Lactating Goats. Animals 2020, 10, 1574. https://doi.org/10.3390/ani10091574
Mizael WCF, Costa RG, Rodrigo Beltrão Cruz G, Ramos de Carvalho FF, Ribeiro NL, Lima A, Domínguez R, Lorenzo JM. Effect of the Use of Tomato Pomace on Feeding and Performance of Lactating Goats. Animals. 2020; 10(9):1574. https://doi.org/10.3390/ani10091574
Chicago/Turabian StyleMizael, Waldeana C. F., Roberto Germano Costa, George Rodrigo Beltrão Cruz, Francisco Fernando Ramos de Carvalho, Neila Lidiany Ribeiro, Aécio Lima, Rubén Domínguez, and José M. Lorenzo. 2020. "Effect of the Use of Tomato Pomace on Feeding and Performance of Lactating Goats" Animals 10, no. 9: 1574. https://doi.org/10.3390/ani10091574
APA StyleMizael, W. C. F., Costa, R. G., Rodrigo Beltrão Cruz, G., Ramos de Carvalho, F. F., Ribeiro, N. L., Lima, A., Domínguez, R., & Lorenzo, J. M. (2020). Effect of the Use of Tomato Pomace on Feeding and Performance of Lactating Goats. Animals, 10(9), 1574. https://doi.org/10.3390/ani10091574